Novel stereological method for estimation of cell counts in 3D collagen scaffolds

. 2023 May 17 ; 13 (1) : 7959. [epub] 20230517

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, Research Support, U.S. Gov't, Non-P.H.S., práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37198326
Odkazy

PubMed 37198326
PubMed Central PMC10192446
DOI 10.1038/s41598-023-35162-z
PII: 10.1038/s41598-023-35162-z
Knihovny.cz E-zdroje

Current methods for assessing cell proliferation in 3D scaffolds rely on changes in metabolic activity or total DNA, however, direct quantification of cell number in 3D scaffolds remains a challenge. To address this issue, we developed an unbiased stereology approach that uses systematic-random sampling and thin focal-plane optical sectioning of the scaffolds followed by estimation of total cell number (StereoCount). This approach was validated against an indirect method for measuring the total DNA (DNA content); and the Bürker counting chamber, the current reference method for quantifying cell number. We assessed the total cell number for cell seeding density (cells per unit volume) across four values and compared the methods in terms of accuracy, ease-of-use and time demands. The accuracy of StereoCount markedly outperformed the DNA content for cases with ~ 10,000 and ~ 125,000 cells/scaffold. For cases with ~ 250,000 and ~ 375,000 cells/scaffold both StereoCount and DNA content showed lower accuracy than the Bürker but did not differ from each other. In terms of ease-of-use, there was a strong advantage for the StereoCount due to output in terms of absolute cell numbers along with the possibility for an overview of cell distribution and future use of automation for high throughput analysis. Taking together, the StereoCount method is an efficient approach for direct cell quantification in 3D collagen scaffolds. Its major benefit is that automated StereoCount could accelerate research using 3D scaffolds focused on drug discovery for a wide variety of human diseases.

Erratum v

PubMed

Zobrazit více v PubMed

Bott K, et al. The effect of matrix characteristics on fibroblast proliferation in 3D gels. Biomaterials. 2010 doi: 10.1016/j.biomaterials.2010.07.046. PubMed DOI

Wang H, Pieper J, Péters F, Van Blitterswijk CA, Lamme EN. Synthetic scaffold morphology controls human dermal connective tissue formation. J. Biomed. Mater. Res. Part A. 2005 doi: 10.1002/jbm.a.30232. PubMed DOI

Schindelin J, et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods. 2012;9:676–682. doi: 10.1038/nmeth.2019. PubMed DOI PMC

Ghiasi M, Kalhor N, Tabatabaei Qomi R, Sheykhhasan M. The effects of synthetic and natural scaffolds on viability and proliferation of adipose-derived stem cells. Front. Life Sci. 2016 doi: 10.1080/21553769.2015.1077477. DOI

Rothan HA, et al. Three-dimensional culture environment increases the efficacy of platelet rich plasma releasate in prompting skin fibroblast differentiation and extracellular matrix formation. Int. J. Med. Sci. 2014;11:1029–1038. doi: 10.7150/ijms.8895. PubMed DOI PMC

Guo J, Chen H, Wang Y, Cao CB, Guan GQ. A novel porcine acellular dermal matrix scaffold used in periodontal regeneration. Int. J. Oral Sci. 2013;5:37–43. doi: 10.1038/ijos.2013.1. PubMed DOI PMC

Dong C, Lv Y. Application of collagen scaffold in tissue engineering: Recent advances and new perspectives. Polymers. 2016 doi: 10.3390/polym8020042. PubMed DOI PMC

Chan EC, et al. Three dimensional collagen scaffold promotes intrinsic vascularisation for tissue engineering applications. PLoS ONE. 2016;11:e0149799. doi: 10.1371/journal.pone.0149799. PubMed DOI PMC

Adan A, Kiraz Y, Baran Y. Cell proliferation and cytotoxicity assays. Curr. Pharm. Biotechnol. 2016;17:1213–1221. doi: 10.2174/1389201017666160808160513. PubMed DOI

Salinas M, Rosas J, Iborra J, Manero H, Pascual E. Comparison of manual and automated cell counts in EDTA preserved synovial fluids: Storage has little influence on the results. Ann. Rheum. Dis. 1997 doi: 10.1136/ard.56.10.622. PubMed DOI PMC

Camacho-Fernández C, Hervás D, Rivas-Sendra A, Marín MP, Seguí-Simarro JM. Comparison of six different methods to calculate cell densities. Plant Methods. 2018 doi: 10.1186/s13007-018-0297-4. PubMed DOI PMC

Mouton PR. Principles and Practices of Unbiased Stereology: An Introduction for Bioscientists. Johns Hopkins University Press; 2002.

Arzt M, et al. LABKIT: Labeling and segmentation toolkit for big image data. Front. Comput. Sci. 2022 doi: 10.3389/fcomp.2022.777728. DOI

R Development Core Team. R: A Language and Environment for Statistical Computing. (2020).

Eklund, A. beeswarm: The Bee Swarm Plot, an Alternative to Stripchart. (2016).

Adler, D. & Kelly, S. T. vioplot: Violin plot. (2020).

Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R Core Team. nlme: Linear and Nonlinear Mixed Effects Models. (2018).

Tichanek F, et al. Hippocampal mitochondrial dysfunction and psychiatric-relevant behavioral deficits in spinocerebellar ataxia 1 mouse model. Sci. Rep. 2020;10:1–14. doi: 10.1038/s41598-020-62308-0. PubMed DOI PMC

Good PI. Permutation, Parametric and Bootstrap Tests of Hypotheses. Springer; 2005.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...