SOFA Score, Hemodynamics and Body Temperature Allow Early Discrimination between Porcine Peritonitis-Induced Sepsis and Peritonitis-Induced Septic Shock

. 2021 Feb 28 ; 11 (3) : . [epub] 20210228

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33670874

Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000787 Ministerstvo Školství, Mládeže a Tělovýchovy
NU20-05-00165 Ministerstvo Zdravotnictví Ceské Republiky
Progres Q39 Univerzita Karlova v Praze

Porcine model of peritonitis-induced sepsis is a well-established clinically relevant model of human disease. Interindividual variability of the response often complicates the interpretation of findings. To better understand the biological basis of the disease variability, the progression of the disease was compared between animals with sepsis and septic shock. Peritonitis was induced by inoculation of autologous feces in fifteen anesthetized, mechanically ventilated and surgically instrumented pigs and continued for 24 h. Cardiovascular and biochemical parameters were collected at baseline (just before peritonitis induction), 12 h, 18 h and 24 h (end of the experiment) after induction of peritonitis. Analysis of multiple parameters revealed the earliest significant differences between sepsis and septic shock groups in the sequential organ failure assessment (SOFA) score, systemic vascular resistance, partial pressure of oxygen in mixed venous blood and body temperature. Other significant functional differences developed later in the course of the disease. The data indicate that SOFA score, hemodynamical parameters and body temperature discriminate early between sepsis and septic shock in a clinically relevant porcine model. Early pronounced alterations of these parameters may herald a progression of the disease toward irreversible septic shock.

Zobrazit více v PubMed

Martin G.S., Mannino D.M., Eaton S., Moss M. The Epidemiology of Sepsis in the United States from 1979 through 2000. N. Engl. J. Med. 2003;348:1546–1554. doi: 10.1056/NEJMoa022139. PubMed DOI

Sartelli M., Catena F., Di Saverio S., Ansaloni L., Malangoni M., E Moore E., A Moore F., Ivatury R., Coimbra R., Leppaniemi A., et al. Current concept of abdominal sepsis: WSES position paper. World J. Emerg. Surg. 2014;9:22. doi: 10.1186/1749-7922-9-22. PubMed DOI PMC

Mouncey P.R., Osborn T.M., Power G.S., Harrison D.A., Sadique M.Z., Grieve R.D., Jahan R., Harvey S.E., Bell D., Bion J.F., et al. Trial of Early, Goal-Directed Resuscitation for Septic Shock. N. Engl. J. Med. 2015;372:1301–1311. doi: 10.1056/NEJMoa1500896. PubMed DOI

E Rudd K., Johnson S.C., Agesa K.M., Shackelford K.A., Tsoi D., Kievlan D.R., Colombara D.V., Ikuta K.S., Kissoon N., Finfer S., et al. Global, regional, and national sepsis incidence and mortality, 1990–2017: Analysis for the Global Burden of Disease Study. Lancet. 2020;395:200–211. doi: 10.1016/S0140-6736(19)32989-7. PubMed DOI PMC

Fleischmann M.C., Scherag A., Adhikari N.K.J., Hartog C.S., Tsaganos T., Schlattmann P., Angus D.C., Reinhart K. Assessment of Global Incidence and Mortality of Hospital-treated Sepsis. Current Estimates and Limitations. Am. J. Respir. Crit. Care Med. 2016;193:259–272. doi: 10.1164/rccm.201504-0781OC. PubMed DOI

Rhee C., Dantes R., Epstein L., Murphy D.J., Seymour C.W., Iwashyna T.J., Kadri S.S., Angus D.C., Danner R.L., Fiore A.E., et al. Incidence and Trends of Sepsis in US Hospitals Using Clinical vs Claims Data, 2009–2014. JAMA. 2017;318:1241–1249. doi: 10.1001/jama.2017.13836. PubMed DOI PMC

Rhee C., Jones T.M., Hamad Y., Pande A., Varon J., O’Brien C., Anderson D.J., Warren D.K., Dantes R.B., Epstein L., et al. Prevalence, Underlying Causes, and Preventability of Sepsis-Associated Mortality in US Acute Care Hospitals. JAMA Netw. Open. 2019;2:e187571. doi: 10.1001/jamanetworkopen.2018.7571. PubMed DOI PMC

Singer M., Deutschman C.S., Seymour C.W., Shankar-Hari M., Annane D., Bauer M., Bellomo R., Bernard G.R., Chiche J.-D., Coopersmith C.M., et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3) JAMA. 2016;315:801–810. doi: 10.1001/jama.2016.0287. PubMed DOI PMC

Osuchowski M.F., Thiemermann C., Remick D.G. Sepsis-3 on the Block. Shock. 2017;47:658–660. doi: 10.1097/SHK.0000000000000775. PubMed DOI PMC

Kohoutova M., Horak J., Jarkovska D., Martinkova V., Tegl V., Nalos L., Vistejnova L., Benes J., Sviglerova J., Kuncova J., et al. Vagus Nerve Stimulation Attenuates Multiple Organ Dysfunction in Resuscitated Porcine Progressive Sepsis. Crit. Care Med. 2019;47:e461–e469. doi: 10.1097/CCM.0000000000003714. PubMed DOI

Jarkovska D., Markova M., Horak J., Nalos L., Benes J., Al-Obeidallah M., Tuma Z., Sviglerova J., Kuncova J., Matejovic M., et al. Cellular Mechanisms of Myocardial Depression in Porcine Septic Shock. Front. Physiol. 2018;9:726. doi: 10.3389/fphys.2018.00726. PubMed DOI PMC

Kohoutová M., Dejmek J., Tůma Z., Kuncová J. Variability of Mitochondrial Respiration in Relation to Sepsis-Induced Multiple Organ Dysfunction. Physiol. Res. 2018;67:S577–S592. doi: 10.33549/physiolres.934050. PubMed DOI

Horak J., Nalos L., Martinkova V., Tegl V., Vistejnova L., Kuncova J., Kohoutova M., Jarkovska D., Dolejsova M., Benes J., et al. Evaluation of Mesenchymal Stem Cell Therapy for Sepsis: A Randomized Controlled Porcine Study. Front. Immunol. 2020;11:126. doi: 10.3389/fimmu.2020.00126. PubMed DOI PMC

Jarkovska D., Valesova L., Chvojka J., Benes J., Danihel V., Sviglerova J., Nalos L., Matejovic M., Stengl M. Heart-rate variability depression in porcine peritonitis-induced sepsis without organ failure. Exp. Biol. Med. 2017;242:1005–1012. doi: 10.1177/1535370217700521. PubMed DOI PMC

Tichanek F., Salomova M., Jedlicka J., Kuncova J., Pitule P., Macanova T., Petrankova Z., Tuma Z., Cendelin J. Hippocampal mitochondrial dysfunction and psychiatric-relevant behavioral deficits in spinocerebellar ataxia 1 mouse model. Sci. Rep. 2020;10:5418. doi: 10.1038/s41598-020-62308-0. PubMed DOI PMC

Elbers P.W.G., Ince C. Bench-to-bedside review: Mechanisms of critical illness—Classifying microcirculatory flow abnormalities in distributive shock. Crit. Care. 2006;10:221. doi: 10.1186/cc4969. PubMed DOI PMC

Verdant C.L., De Backer D., Bruhn A., Clausi C.M., Su F., Wang Z., Rodriguez H., Pries A.R., Vincent J.-L. Evaluation of sublingual and gut mucosal microcirculation in sepsis: A quantitative analysis. Crit. Care Med. 2009;37:2875–2881. doi: 10.1097/CCM.0b013e3181b029c1. PubMed DOI

Siegemund M., Van Bommel J., Schwarte L.A., Studer W., Girard T., Marsch S., Radermacher P., Ince C. Inducible nitric oxide synthase inhibition improves intestinal microcirculatory oxygenation and CO2 balance during endotoxemia in pigs. Intensiv. Care Med. 2005;31:985–992. doi: 10.1007/s00134-005-2664-7. PubMed DOI

Ellis C.G., Bateman R.M., Sharpe M.D., Sibbald W.J., Gill R. Effect of a maldistribution of microvascular blood flow on capillary O2 extraction in sepsis. Am. J. Physiol. Circ. Physiol. 2002;282:H156–H164. doi: 10.1152/ajpheart.2002.282.1.H156. PubMed DOI

Porta F., Takala J., Weikert C., Bracht H., Kolarova A., Lauterburg B.H., Borotto E., Jakob S.M. Effects of prolonged endotoxemia on liver, skeletal muscle and kidney mitochondrial function. Crit. Care. 2006;10:R118. doi: 10.1186/cc5013. PubMed DOI PMC

Makrecka-Kuka M., Korzh S., Vilks K., Vilskersts R., Cirule H., Dambrova M., Liepinsh E. Mitochondrial Function in the Kidney and Heart, but Not the Brain, is Mainly Altered in an Experimental Model of Endotoxaemia. Shock. 2019;52:e153–e162. doi: 10.1097/SHK.0000000000001315. PubMed DOI

Diktas H., Uysal S., Erdem H., Cag Y., Miftode E., Durmus G., Ulu-Kilic A., Alabay S., Szabo B.G., Lakatos B., et al. A novel id-iri score: Development and internal validation of the multivariable community acquired sepsis clinical risk prediction model. Eur. J. Clin. Microbiol. Infect. Dis. 2019;39:689–701. doi: 10.1007/s10096-019-03781-y. PubMed DOI

Mackowiak P.A., Marling-Cason M., Cohen R.L. Effects of Temperature on Antimicrobial Susceptibility of Bacteria. J. Infect. Dis. 1982;145:550–553. doi: 10.1093/infdis/145.4.550. PubMed DOI

Small P.M., Täuber M.G., Hackbarth C.J., A Sande M. Influence of body temperature on bacterial growth rates in experimental pneumococcal meningitis in rabbits. Infect. Immun. 1986;52:484–487. doi: 10.1128/IAI.52.2.484-487.1986. PubMed DOI PMC

Rice P., Martin E., He J.-R., Frank M., DeTolla L., Hester L., O’Neill T., Manka C., Benjamin I., Nagarsekar A., et al. Febrile-Range Hyperthermia Augments Neutrophil Accumulation and Enhances Lung Injury in Experimental Gram-Negative Bacterial Pneumonia. J. Immunol. 2005;174:3676–3685. doi: 10.4049/jimmunol.174.6.3676. PubMed DOI

Ejarkovska D., Evalesova L., Echvojka J., Ebenes J., Esviglerova J., Eflorova B., Enalos L., Ematejovic M., Estengl M. Heart Rate Variability in Porcine Progressive Peritonitis-Induced Sepsis. Front. Physiol. 2016;6:412. doi: 10.3389/fphys.2015.00412. PubMed DOI PMC

Mussbacher M., Salzmann M., Brostjan C., Hoesel B., Schoergenhofer C., Datler H., Hohensinner P., Basílio J., Petzelbauer P., Assinger A., et al. Cell Type-Specific Roles of NF-κB Linking Inflammation and Thrombosis. Front. Immunol. 2019;10:85. doi: 10.3389/fimmu.2019.00085. PubMed DOI PMC

Ali M.S., Starke R.M., Jabbour P.M., I Tjoumakaris S., Gonzalez L.F., Rosenwasser R.H., Owens G.K., Koch W.J., Greig N.H., Dumont A.S. TNF-α Induces Phenotypic Modulation in Cerebral Vascular Smooth Muscle Cells: Implications for Cerebral Aneurysm Pathology. Br. J. Pharmacol. 2013;33:1564–1573. doi: 10.1038/jcbfm.2013.109. PubMed DOI PMC

Gotes J., Kasian K., Jacobs H., Cheng Z.-Q., Mink S.N. Mechanisms of systemic vasodilation by lysozyme-c in septic shock. J. Appl. Physiol. 2012;112:638–650. doi: 10.1152/japplphysiol.00707.2011. PubMed DOI

Geven C., Kox M., Pickkers P. Adrenomedullin and Adrenomedullin-Targeted Therapy As Treatment Strategies Relevant for Sepsis. Front. Immunol. 2018;9:292. doi: 10.3389/fimmu.2018.00292. PubMed DOI PMC

Kuncová J., Sykora R., Chvojka J., Švíglerová J., Stengl M., Krouzecky A., Nalos L., Matejovic M. Plasma and Tissue Levels of Neuropeptide Y in Experimental Septic Shock: Relation to Hemodynamics, Inflammation, Oxidative Stress, and Hemofiltration. Artif. Organs. 2011;35:625–633. doi: 10.1111/j.1525-1594.2010.01154.x. PubMed DOI

Hollenberg S.M., Cunnion R.E., Zimmerberg J. Nitric oxide synthase inhibition reverses arteriolar hyporesponsiveness to catecholamines in septic rats. Am. J. Physiol. Circ. Physiol. 1993;264:H660–H663. doi: 10.1152/ajpheart.1993.264.2.H660. PubMed DOI

Hollenberg S.M., Piotrowski M.J., Parrillo J.E. Nitric oxide synthase inhibition reverses arteriolar hyporesponsiveness to endothelin-1 in septic rats. Am. J. Physiol. Integr. Comp. Physiol. 1997;272:R969–R974. doi: 10.1152/ajpregu.1997.272.3.R969. PubMed DOI

Hollenberg S.M., Tangora J.J., Piotrowski M.J., Easington C., Parrillo J.E. Impaired microvascular vasoconstrictive responses to vasopressin in septic rats. Crit. Care Med. 1997;25:869–873. doi: 10.1097/00003246-199705000-00025. PubMed DOI

Marshall J.M. Interactions between local dilator and sympathetic vasoconstrictor influences in skeletal muscle in acute and chronic hypoxia. Exp. Physiol. 2015;100:1400–1411. doi: 10.1113/EP085139. PubMed DOI

Jolly L., E March J., A Kemp P., Bennett T., Gardiner S.M. Regional haemodynamic responses to adenosine receptor activation vary across time following lipopolysaccharide treatment in conscious rats. Br. J. Pharmacol. 2008;154:1600–1610. doi: 10.1038/bjp.2008.205. PubMed DOI PMC

Lee H.T., Kim M., Joo J.D., Gallos G., Chen J.-F., Emala C.W. A3 adenosine receptor activation decreases mortality and renal and hepatic injury in murine septic peritonitis. Am. J. Physiol. Integr. Comp. Physiol. 2006;291:R959–R969. doi: 10.1152/ajpregu.00034.2006. PubMed DOI

Yang X., Lu G.-P., Cai X.-D., Lu Z.-J., Kissoon N. Alterations of complex IV in the tissues of a septic mouse model. Mitochondrion. 2019;49:89–96. doi: 10.1016/j.mito.2018.11.008. PubMed DOI

Vincent J.-L., Martin G.S., Levy M.M. qSOFA does not replace SIRS in the definition of sepsis. Crit. Care. 2016;20:1–3. doi: 10.1186/s13054-016-1389-z. PubMed DOI PMC

Zanza C., Thangathurai J., Audo A., A Muir H., Candelli M., Pignataro G., Thangathurai D., Cicchinelli S., Racca F., Longhitano Y., et al. Oxidative stress in critical care and vitamins supplement therapy: “A beneficial care enhancing”. Eur. Rev. Med. Pharmacol. Sci. 2019;23:7703–7712. PubMed

Longhitano Y., Zanza C., Thangathurai D., Taurone S., Kozel D., Racca F., Audo A., Ravera E., Migneco A., Piccioni A., et al. Gut Alterations in Septic Patients: A Biochemical Literature Review. Rev. Recent Clin. Trials. 2021;15:289–297. doi: 10.2174/1574887115666200811105251. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace