SOFA Score, Hemodynamics and Body Temperature Allow Early Discrimination between Porcine Peritonitis-Induced Sepsis and Peritonitis-Induced Septic Shock
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000787
Ministerstvo Školství, Mládeže a Tělovýchovy
NU20-05-00165
Ministerstvo Zdravotnictví Ceské Republiky
Progres Q39
Univerzita Karlova v Praze
PubMed
33670874
PubMed Central
PMC7997134
DOI
10.3390/jpm11030164
PII: jpm11030164
Knihovny.cz E-zdroje
- Klíčová slova
- SOFA score, pig, sepsis, septic shock,
- Publikační typ
- časopisecké články MeSH
Porcine model of peritonitis-induced sepsis is a well-established clinically relevant model of human disease. Interindividual variability of the response often complicates the interpretation of findings. To better understand the biological basis of the disease variability, the progression of the disease was compared between animals with sepsis and septic shock. Peritonitis was induced by inoculation of autologous feces in fifteen anesthetized, mechanically ventilated and surgically instrumented pigs and continued for 24 h. Cardiovascular and biochemical parameters were collected at baseline (just before peritonitis induction), 12 h, 18 h and 24 h (end of the experiment) after induction of peritonitis. Analysis of multiple parameters revealed the earliest significant differences between sepsis and septic shock groups in the sequential organ failure assessment (SOFA) score, systemic vascular resistance, partial pressure of oxygen in mixed venous blood and body temperature. Other significant functional differences developed later in the course of the disease. The data indicate that SOFA score, hemodynamical parameters and body temperature discriminate early between sepsis and septic shock in a clinically relevant porcine model. Early pronounced alterations of these parameters may herald a progression of the disease toward irreversible septic shock.
Zobrazit více v PubMed
Martin G.S., Mannino D.M., Eaton S., Moss M. The Epidemiology of Sepsis in the United States from 1979 through 2000. N. Engl. J. Med. 2003;348:1546–1554. doi: 10.1056/NEJMoa022139. PubMed DOI
Sartelli M., Catena F., Di Saverio S., Ansaloni L., Malangoni M., E Moore E., A Moore F., Ivatury R., Coimbra R., Leppaniemi A., et al. Current concept of abdominal sepsis: WSES position paper. World J. Emerg. Surg. 2014;9:22. doi: 10.1186/1749-7922-9-22. PubMed DOI PMC
Mouncey P.R., Osborn T.M., Power G.S., Harrison D.A., Sadique M.Z., Grieve R.D., Jahan R., Harvey S.E., Bell D., Bion J.F., et al. Trial of Early, Goal-Directed Resuscitation for Septic Shock. N. Engl. J. Med. 2015;372:1301–1311. doi: 10.1056/NEJMoa1500896. PubMed DOI
E Rudd K., Johnson S.C., Agesa K.M., Shackelford K.A., Tsoi D., Kievlan D.R., Colombara D.V., Ikuta K.S., Kissoon N., Finfer S., et al. Global, regional, and national sepsis incidence and mortality, 1990–2017: Analysis for the Global Burden of Disease Study. Lancet. 2020;395:200–211. doi: 10.1016/S0140-6736(19)32989-7. PubMed DOI PMC
Fleischmann M.C., Scherag A., Adhikari N.K.J., Hartog C.S., Tsaganos T., Schlattmann P., Angus D.C., Reinhart K. Assessment of Global Incidence and Mortality of Hospital-treated Sepsis. Current Estimates and Limitations. Am. J. Respir. Crit. Care Med. 2016;193:259–272. doi: 10.1164/rccm.201504-0781OC. PubMed DOI
Rhee C., Dantes R., Epstein L., Murphy D.J., Seymour C.W., Iwashyna T.J., Kadri S.S., Angus D.C., Danner R.L., Fiore A.E., et al. Incidence and Trends of Sepsis in US Hospitals Using Clinical vs Claims Data, 2009–2014. JAMA. 2017;318:1241–1249. doi: 10.1001/jama.2017.13836. PubMed DOI PMC
Rhee C., Jones T.M., Hamad Y., Pande A., Varon J., O’Brien C., Anderson D.J., Warren D.K., Dantes R.B., Epstein L., et al. Prevalence, Underlying Causes, and Preventability of Sepsis-Associated Mortality in US Acute Care Hospitals. JAMA Netw. Open. 2019;2:e187571. doi: 10.1001/jamanetworkopen.2018.7571. PubMed DOI PMC
Singer M., Deutschman C.S., Seymour C.W., Shankar-Hari M., Annane D., Bauer M., Bellomo R., Bernard G.R., Chiche J.-D., Coopersmith C.M., et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3) JAMA. 2016;315:801–810. doi: 10.1001/jama.2016.0287. PubMed DOI PMC
Osuchowski M.F., Thiemermann C., Remick D.G. Sepsis-3 on the Block. Shock. 2017;47:658–660. doi: 10.1097/SHK.0000000000000775. PubMed DOI PMC
Kohoutova M., Horak J., Jarkovska D., Martinkova V., Tegl V., Nalos L., Vistejnova L., Benes J., Sviglerova J., Kuncova J., et al. Vagus Nerve Stimulation Attenuates Multiple Organ Dysfunction in Resuscitated Porcine Progressive Sepsis. Crit. Care Med. 2019;47:e461–e469. doi: 10.1097/CCM.0000000000003714. PubMed DOI
Jarkovska D., Markova M., Horak J., Nalos L., Benes J., Al-Obeidallah M., Tuma Z., Sviglerova J., Kuncova J., Matejovic M., et al. Cellular Mechanisms of Myocardial Depression in Porcine Septic Shock. Front. Physiol. 2018;9:726. doi: 10.3389/fphys.2018.00726. PubMed DOI PMC
Kohoutová M., Dejmek J., Tůma Z., Kuncová J. Variability of Mitochondrial Respiration in Relation to Sepsis-Induced Multiple Organ Dysfunction. Physiol. Res. 2018;67:S577–S592. doi: 10.33549/physiolres.934050. PubMed DOI
Horak J., Nalos L., Martinkova V., Tegl V., Vistejnova L., Kuncova J., Kohoutova M., Jarkovska D., Dolejsova M., Benes J., et al. Evaluation of Mesenchymal Stem Cell Therapy for Sepsis: A Randomized Controlled Porcine Study. Front. Immunol. 2020;11:126. doi: 10.3389/fimmu.2020.00126. PubMed DOI PMC
Jarkovska D., Valesova L., Chvojka J., Benes J., Danihel V., Sviglerova J., Nalos L., Matejovic M., Stengl M. Heart-rate variability depression in porcine peritonitis-induced sepsis without organ failure. Exp. Biol. Med. 2017;242:1005–1012. doi: 10.1177/1535370217700521. PubMed DOI PMC
Tichanek F., Salomova M., Jedlicka J., Kuncova J., Pitule P., Macanova T., Petrankova Z., Tuma Z., Cendelin J. Hippocampal mitochondrial dysfunction and psychiatric-relevant behavioral deficits in spinocerebellar ataxia 1 mouse model. Sci. Rep. 2020;10:5418. doi: 10.1038/s41598-020-62308-0. PubMed DOI PMC
Elbers P.W.G., Ince C. Bench-to-bedside review: Mechanisms of critical illness—Classifying microcirculatory flow abnormalities in distributive shock. Crit. Care. 2006;10:221. doi: 10.1186/cc4969. PubMed DOI PMC
Verdant C.L., De Backer D., Bruhn A., Clausi C.M., Su F., Wang Z., Rodriguez H., Pries A.R., Vincent J.-L. Evaluation of sublingual and gut mucosal microcirculation in sepsis: A quantitative analysis. Crit. Care Med. 2009;37:2875–2881. doi: 10.1097/CCM.0b013e3181b029c1. PubMed DOI
Siegemund M., Van Bommel J., Schwarte L.A., Studer W., Girard T., Marsch S., Radermacher P., Ince C. Inducible nitric oxide synthase inhibition improves intestinal microcirculatory oxygenation and CO2 balance during endotoxemia in pigs. Intensiv. Care Med. 2005;31:985–992. doi: 10.1007/s00134-005-2664-7. PubMed DOI
Ellis C.G., Bateman R.M., Sharpe M.D., Sibbald W.J., Gill R. Effect of a maldistribution of microvascular blood flow on capillary O2 extraction in sepsis. Am. J. Physiol. Circ. Physiol. 2002;282:H156–H164. doi: 10.1152/ajpheart.2002.282.1.H156. PubMed DOI
Porta F., Takala J., Weikert C., Bracht H., Kolarova A., Lauterburg B.H., Borotto E., Jakob S.M. Effects of prolonged endotoxemia on liver, skeletal muscle and kidney mitochondrial function. Crit. Care. 2006;10:R118. doi: 10.1186/cc5013. PubMed DOI PMC
Makrecka-Kuka M., Korzh S., Vilks K., Vilskersts R., Cirule H., Dambrova M., Liepinsh E. Mitochondrial Function in the Kidney and Heart, but Not the Brain, is Mainly Altered in an Experimental Model of Endotoxaemia. Shock. 2019;52:e153–e162. doi: 10.1097/SHK.0000000000001315. PubMed DOI
Diktas H., Uysal S., Erdem H., Cag Y., Miftode E., Durmus G., Ulu-Kilic A., Alabay S., Szabo B.G., Lakatos B., et al. A novel id-iri score: Development and internal validation of the multivariable community acquired sepsis clinical risk prediction model. Eur. J. Clin. Microbiol. Infect. Dis. 2019;39:689–701. doi: 10.1007/s10096-019-03781-y. PubMed DOI
Mackowiak P.A., Marling-Cason M., Cohen R.L. Effects of Temperature on Antimicrobial Susceptibility of Bacteria. J. Infect. Dis. 1982;145:550–553. doi: 10.1093/infdis/145.4.550. PubMed DOI
Small P.M., Täuber M.G., Hackbarth C.J., A Sande M. Influence of body temperature on bacterial growth rates in experimental pneumococcal meningitis in rabbits. Infect. Immun. 1986;52:484–487. doi: 10.1128/IAI.52.2.484-487.1986. PubMed DOI PMC
Rice P., Martin E., He J.-R., Frank M., DeTolla L., Hester L., O’Neill T., Manka C., Benjamin I., Nagarsekar A., et al. Febrile-Range Hyperthermia Augments Neutrophil Accumulation and Enhances Lung Injury in Experimental Gram-Negative Bacterial Pneumonia. J. Immunol. 2005;174:3676–3685. doi: 10.4049/jimmunol.174.6.3676. PubMed DOI
Ejarkovska D., Evalesova L., Echvojka J., Ebenes J., Esviglerova J., Eflorova B., Enalos L., Ematejovic M., Estengl M. Heart Rate Variability in Porcine Progressive Peritonitis-Induced Sepsis. Front. Physiol. 2016;6:412. doi: 10.3389/fphys.2015.00412. PubMed DOI PMC
Mussbacher M., Salzmann M., Brostjan C., Hoesel B., Schoergenhofer C., Datler H., Hohensinner P., Basílio J., Petzelbauer P., Assinger A., et al. Cell Type-Specific Roles of NF-κB Linking Inflammation and Thrombosis. Front. Immunol. 2019;10:85. doi: 10.3389/fimmu.2019.00085. PubMed DOI PMC
Ali M.S., Starke R.M., Jabbour P.M., I Tjoumakaris S., Gonzalez L.F., Rosenwasser R.H., Owens G.K., Koch W.J., Greig N.H., Dumont A.S. TNF-α Induces Phenotypic Modulation in Cerebral Vascular Smooth Muscle Cells: Implications for Cerebral Aneurysm Pathology. Br. J. Pharmacol. 2013;33:1564–1573. doi: 10.1038/jcbfm.2013.109. PubMed DOI PMC
Gotes J., Kasian K., Jacobs H., Cheng Z.-Q., Mink S.N. Mechanisms of systemic vasodilation by lysozyme-c in septic shock. J. Appl. Physiol. 2012;112:638–650. doi: 10.1152/japplphysiol.00707.2011. PubMed DOI
Geven C., Kox M., Pickkers P. Adrenomedullin and Adrenomedullin-Targeted Therapy As Treatment Strategies Relevant for Sepsis. Front. Immunol. 2018;9:292. doi: 10.3389/fimmu.2018.00292. PubMed DOI PMC
Kuncová J., Sykora R., Chvojka J., Švíglerová J., Stengl M., Krouzecky A., Nalos L., Matejovic M. Plasma and Tissue Levels of Neuropeptide Y in Experimental Septic Shock: Relation to Hemodynamics, Inflammation, Oxidative Stress, and Hemofiltration. Artif. Organs. 2011;35:625–633. doi: 10.1111/j.1525-1594.2010.01154.x. PubMed DOI
Hollenberg S.M., Cunnion R.E., Zimmerberg J. Nitric oxide synthase inhibition reverses arteriolar hyporesponsiveness to catecholamines in septic rats. Am. J. Physiol. Circ. Physiol. 1993;264:H660–H663. doi: 10.1152/ajpheart.1993.264.2.H660. PubMed DOI
Hollenberg S.M., Piotrowski M.J., Parrillo J.E. Nitric oxide synthase inhibition reverses arteriolar hyporesponsiveness to endothelin-1 in septic rats. Am. J. Physiol. Integr. Comp. Physiol. 1997;272:R969–R974. doi: 10.1152/ajpregu.1997.272.3.R969. PubMed DOI
Hollenberg S.M., Tangora J.J., Piotrowski M.J., Easington C., Parrillo J.E. Impaired microvascular vasoconstrictive responses to vasopressin in septic rats. Crit. Care Med. 1997;25:869–873. doi: 10.1097/00003246-199705000-00025. PubMed DOI
Marshall J.M. Interactions between local dilator and sympathetic vasoconstrictor influences in skeletal muscle in acute and chronic hypoxia. Exp. Physiol. 2015;100:1400–1411. doi: 10.1113/EP085139. PubMed DOI
Jolly L., E March J., A Kemp P., Bennett T., Gardiner S.M. Regional haemodynamic responses to adenosine receptor activation vary across time following lipopolysaccharide treatment in conscious rats. Br. J. Pharmacol. 2008;154:1600–1610. doi: 10.1038/bjp.2008.205. PubMed DOI PMC
Lee H.T., Kim M., Joo J.D., Gallos G., Chen J.-F., Emala C.W. A3 adenosine receptor activation decreases mortality and renal and hepatic injury in murine septic peritonitis. Am. J. Physiol. Integr. Comp. Physiol. 2006;291:R959–R969. doi: 10.1152/ajpregu.00034.2006. PubMed DOI
Yang X., Lu G.-P., Cai X.-D., Lu Z.-J., Kissoon N. Alterations of complex IV in the tissues of a septic mouse model. Mitochondrion. 2019;49:89–96. doi: 10.1016/j.mito.2018.11.008. PubMed DOI
Vincent J.-L., Martin G.S., Levy M.M. qSOFA does not replace SIRS in the definition of sepsis. Crit. Care. 2016;20:1–3. doi: 10.1186/s13054-016-1389-z. PubMed DOI PMC
Zanza C., Thangathurai J., Audo A., A Muir H., Candelli M., Pignataro G., Thangathurai D., Cicchinelli S., Racca F., Longhitano Y., et al. Oxidative stress in critical care and vitamins supplement therapy: “A beneficial care enhancing”. Eur. Rev. Med. Pharmacol. Sci. 2019;23:7703–7712. PubMed
Longhitano Y., Zanza C., Thangathurai D., Taurone S., Kozel D., Racca F., Audo A., Ravera E., Migneco A., Piccioni A., et al. Gut Alterations in Septic Patients: A Biochemical Literature Review. Rev. Recent Clin. Trials. 2021;15:289–297. doi: 10.2174/1574887115666200811105251. PubMed DOI
Sepsis as a Challenge for Personalized Medicine
Modeling sepsis, with a special focus on large animal models of porcine peritonitis and bacteremia