Cellular Mechanisms of Myocardial Depression in Porcine Septic Shock
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
29946267
PubMed Central
PMC6005898
DOI
10.3389/fphys.2018.00726
Knihovny.cz E-zdroje
- Klíčová slova
- calcium, mitochondria, myocardial depression, pig, sepsis,
- Publikační typ
- časopisecké články MeSH
The complex pathogenesis of sepsis and septic shock involves myocardial depression, the pathophysiology of which, however, remains unclear. In this study, cellular mechanisms of myocardial depression were addressed in a clinically relevant, large animal (porcine) model of sepsis and septic shock. Sepsis was induced by fecal peritonitis in eight anesthetized, mechanically ventilated, and instrumented pigs of both sexes and continued for 24 h. In eight control pigs, an identical experiment but without sepsis induction was performed. In vitro analysis of cardiac function included measurements of action potentials and contractions in the right ventricle trabeculae, measurements of sarcomeric contractions, calcium transients and calcium current in isolated cardiac myocytes, and analysis of mitochondrial respiration by ultrasensitive oxygraphy. Increased values of modified sequential organ failure assessment score and serum lactate levels documented the development of sepsis/septic shock, accompanied by hyperdynamic circulation with high heart rate, increased cardiac output, peripheral vasodilation, and decreased stroke volume. In septic trabeculae, action potential duration was shortened and contraction force reduced. In septic cardiac myocytes, sarcomeric contractions, calcium transients, and L-type calcium current were all suppressed. Similar relaxation trajectory of the intracellular calcium-cell length phase-plane diagram indicated unchanged calcium responsiveness of myofilaments. Mitochondrial respiration was diminished through inhibition of Complex II and Complex IV. Defective calcium handling with reduced calcium current and transients, together with inhibition of mitochondrial respiration, appears to represent the dominant cellular mechanisms of myocardial depression in porcine septic shock.
Biomedical Center Faculty of Medicine in Pilsen Charles University Pilsen Czechia
Department of Internal Medicine 1 Faculty of Medicine in Pilsen Charles University Pilsen Czechia
Department of Physiology Faculty of Medicine in Pilsen Charles University Pilsen Czechia
Zobrazit více v PubMed
Abi-Gerges N., Tavernier B., Mebazaa A., Faivre V., Paqueron X., Payen D., et al. (1999). Sequential changes in autonomic regulation of cardiac myocytes after in vivo endotoxin injection in rat. Am. J. Respir. Crit. Care Med. 160 1196–1204. 10.1164/ajrccm.160.4.9808149 PubMed DOI
Andrienko T. N., Picht E., Bers D. M. (2009). Mitochondrial free calcium regulation during sarcoplasmic reticulum calcium release in rat cardiac myocytes. J. Mol. Cell. Cardiol. 46 1027–1036. 10.1016/j.yjmcc.2009.03.015 PubMed DOI PMC
Antonucci E., Fiaccadori E., Donadello K., Taccone F. S., Franchi F., Scolletta S. (2014). Myocardial depression in sepsis: from pathogenesis to clinical manifestations and treatment. J. Crit. Care 29 500–511. 10.1016/j.jcrc.2014.03.028 PubMed DOI
Cantó C., Garcia-Roves P. M. (2015). High-resolution respirometry for mitochondrial characterization of ex vivo mouse tissues. Curr. Protoc. Mouse Biol. 5 135–153. 10.1002/9780470942390.mo140061 PubMed DOI
Cimolai M. C., Alvarez S., Bode C., Bugger H. (2015). Mitochondrial mechanisms in septic cardiomyopathy. Int. J. Mol. Sci. 16 17763–17778. 10.3390/ijms160817763 PubMed DOI PMC
Corrêa T. D., Vuda M., Blaser A. R., Takala J., Djafarzadeh S., Dünser M. W., et al. (2012). Effect of treatment delay on disease severity and need for resuscitation in porcine fecal peritonitis. Crit. Care Med. 40 2841–2849. 10.1097/CCM.0b013e31825b916b PubMed DOI
Cunnion R. E., Schaer G. L., Parker M. M., Natanson C., Parrillo J. E. (1986). The coronary circulation in human septic shock. Circulation 73 637–644. 10.1161/01.CIR.73.4.637 PubMed DOI
Dyson A., Singer M. (2009). Animal models of sepsis: why does preclinical efficacy fail to translate to the clinical setting? Crit. Care Med. 37 S30–S37. 10.1097/CCM.0b013e3181922bd3 PubMed DOI
Eisner D. A., Caldwell J. L., Kistamás K., Trafford A. W. (2017). Calcium and excitation-contraction coupling in the heart. Circ. Res. 121 181–195. 10.1161/CIRCRESAHA.117.310230 PubMed DOI PMC
Fleischmann C., Scherag A., Adhikari N. K., Hartog C. S., Tsaganos T., Schlattmann P., et al. (2016). Assessment of global incidence and mortality of hospital-treated sepsis. current estimates and limitations. Am. J. Respir. Crit. Care Med. 193 259–272. 10.1164/rccm.201504-0781OC PubMed DOI
Gellerich F. N., Trumbeckaite S., Opalka J. R., Gellerich J. F., Chen Y., Neuhof C., et al. (2002). Mitochondrial dysfunction in sepsis: evidence from bacteraemic baboons and endotoxaemic rabbits. Biosci. Rep. 22 99–113. 10.1023/A:1016017224003 PubMed DOI
Gnaiger E., Kuznetsov A. V., Schneeberger S., Seiler R., Brandacher G., Steurer W., et al. (2000). “Mitochondria in the cold,” in Life in the Cold, (Berlin: Springer), 431–442. 10.1007/978-3-662-04162-8_45 DOI
Gu M., Bose R., Bose D., Yang J., Li X., Light R. B., et al. (1998). Tumour necrosis factor-alpha, but not septic plasma depresses cardiac myofilament contraction. Can. J. Anaesth. J. Can. Anesth. 45 352–359. 10.1007/BF03012028 PubMed DOI
Ives N., King J. W., Chernow B., Roth B. L. (1986). BAY k 8644, a calcium channel agonist, reverses hypotension in endotoxin-shocked rats. Eur. J. Pharmacol. 130 169–175. 10.1016/0014-2999(86)90265-7 PubMed DOI
Jarkovska D., Valesova L., Chvojka J., Benes J., Sviglerova J., Florova B., et al. (2016). Heart rate variability in porcine progressive peritonitis-induced sepsis. Front. Physiol. 6:412. 10.3389/fphys.2015.00412 PubMed DOI PMC
Kaasik A., Veksler V., Boehm E., Novotova M., Minajeva A., Ventura-Clapier R. (2001). Energetic crosstalk between organelles: architectural integration of energy production and utilization. Circ. Res. 89 153–159. 10.1161/hh1401.093440 PubMed DOI
Kohlhaas M., Maack C. (2013). Calcium release microdomains and mitochondria. Cardiovasc. Res. 98 259–268. 10.1093/cvr/cvt032 PubMed DOI
Kuznetsov A. V., Strobl D., Ruttmann E., Königsrainer A., Margreiter R., Gnaiger E. (2002). Evaluation of mitochondrial respiratory function in small biopsies of liver. Anal. Biochem. 305 186–194. 10.1006/abio.2002.5658 PubMed DOI
Levy R. J., Vijayasarathy C., Raj N. R., Avadhani N. G., Deutschman C. S. (2004). Competitive and noncompetitive inhibition of myocardial cytochrome C oxidase in sepsis. Shock 21 110–114. 10.1097/01.shk.0000108400.56565.ab PubMed DOI
Lew W. Y., Yasuda S., Yuan T., Hammond H. K. (1996). Endotoxin-induced cardiac depression is associated with decreased cardiac dihydropyridine receptors in rabbits. J. Mol. Cell. Cardiol. 28 1367–1371. 10.1006/jmcc.1996.0127 PubMed DOI
Li C. M., Chen J. H., Zhang P., He Q., Yuan J., Chen R. J., et al. (2007). Continuous veno-venous haemofiltration attenuates myocardial mitochondrial respiratory chain complexes activity in porcine septic shock. Anaesth. Intensive Care 35 911–919. PubMed
Liu V., Escobar G. J., Greene J. D., Soule J., Whippy A., Angus D. C., et al. (2014). Hospital deaths in patients with sepsis from 2 independent cohorts. JAMA 312 90–92. 10.1001/jama.2014.5804 PubMed DOI
Lowes D. A., Webster N. R., Murphy M. P., Galley H. F. (2013). Antioxidants that protect mitochondria reduce interleukin-6 and oxidative stress, improve mitochondrial function, and reduce biochemical markers of organ dysfunction in a rat model of acute sepsis. Br. J. Anaesth. 110 472–480. 10.1093/bja/aes577 PubMed DOI PMC
Merx M. W., Weber C. (2007). Sepsis and the heart. Circulation 116 793–802. 10.1161/CIRCULATIONAHA.106.678359 PubMed DOI
Parrillo J. E., Burch C., Shelhamer J. H., Parker M. M., Natanson C., Schuette W. (1985). A circulating myocardial depressant substance in humans with septic shock. Septic shock patients with a reduced ejection fraction have a circulating factor that depresses in vitro myocardial cell performance. J. Clin. Invest. 76 1539–1553. 10.1172/JCI112135 PubMed DOI PMC
Pesta D., Gnaiger E. (2012). High-resolution respirometry: OXPHOS protocols for human cells and permeabilized fibers from small biopsies of human muscle. Methods Mol. Biol. 810 25–58. 10.1007/978-1-61779-382-0_3 PubMed DOI
Piquereau J., Godin R., Deschênes S., Bessi V. L., Mofarrahi M., Hussain S. N., et al. (2013). Protective role of PARK2/Parkin in sepsis-induced cardiac contractile and mitochondrial dysfunction. Autophagy 9 1837–1851. 10.4161/auto.26502 PubMed DOI
Poli-de-Figueiredo L. F., Garrido A. G., Nakagawa N., Sannomiya P. (2008). Experimental models of sepsis and their clinical relevance. Shock 30(Suppl. 1), 53–59. 10.1097/SHK.0b013e318181a343 PubMed DOI
Preiser J. C., Moulart D., Cosyns B., Vincent J. L. (1991). Administration of the calcium agonist BAY K 8644 in endotoxic shock. Circ. Shock 35 199–206. PubMed
Ren J., Ren B. H., Sharma A. C. (2002). Sepsis-induced depressed contractile function of isolated ventricular myocytes is due to altered calcium transient properties. Shock 18 285–288. 10.1097/00024382-200209000-00014 PubMed DOI
Sato R., Nasu M. (2015). A review of sepsis-induced cardiomyopathy. J. Intensive Care 3:48. 10.1186/s40560-015-0112-5 PubMed DOI PMC
Sepúlveda M., Gonano L. A., Viotti M., Morell M., Blanco P., López Alarcón M., et al. (2017). Calcium/Calmodulin protein kinase II-dependent ryanodine receptor phosphorylation mediates cardiac contractile dysfunction associated with sepsis. Crit. Care Med. 45 e399–e408. 10.1097/CCM.0000000000002101 PubMed DOI
Singer M., Deutschman C. S., Seymour C. W., Shankar-Hari M., Annane D., Bauer M., et al. (2016). The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA 315 801–810. 10.1001/jama.2016.0287 PubMed DOI PMC
Spurgeon H. A., duBell W. H., Stern M. D., Sollott S. J., Ziman B. D., Silverman H. S., et al. (1992). Cytosolic calcium and myofilaments in single rat cardiac myocytes achieve a dynamic equilibrium during twitch relaxation. J. Physiol. 447 83–102. 10.1113/jphysiol.1992.sp018992 PubMed DOI PMC
Stengl M., Bartak F., Sykora R., Chvojka J., Benes J., Krouzecky A., et al. (2010). Reduced L-type calcium current in ventricular myocytes from pigs with hyperdynamic septic shock. Crit. Care Med. 38 579–587. 10.1097/CCM.0b013e3181cb0f61 PubMed DOI
Stengl M., Ledvinova L., Chvojka J., Benes J., Jarkovska D., Holas J., et al. (2013). Effects of clinically relevant acute hypercapnic and metabolic acidosis on the cardiovascular system: an experimental porcine study. Crit. Care 17:R303. 10.1186/cc13173 PubMed DOI PMC
Stengl M., Sykora R., Krouzecky A., Chvojka J., Novak I., Varnerova V., et al. (2008). Continuous hemofiltration in pigs with hyperdynamic septic shock affects cardiac repolarization. Crit. Care Med. 36 3198–3204. 10.1097/CCM.0b013e31818f9eda PubMed DOI
Supinski G. S., Murphy M. P., Callahan L. A. (2009). MitoQ administration prevents endotoxin-induced cardiac dysfunction. Am. J. Physiol. Regul. Integr. Comp. Physiol. 297 R1095–R1102. 10.1152/ajpregu.90902.2008 PubMed DOI PMC
Tavernier B., Mebazaa A., Mateo P., Sys S., Ventura-Clapier R., Veksler V. (2001). Phosphorylation-dependent alteration in myofilament ca2+ sensitivity but normal mitochondrial function in septic heart. Am. J. Respir. Crit. Care Med. 163 362–367. 10.1164/ajrccm.163.2.2002128 PubMed DOI
Vanasco V., Magnani N. D., Cimolai M. C., Valdez L. B., Evelson P., Boveris A., et al. (2012). Endotoxemia impairs heart mitochondrial function by decreasing electron transfer, ATP synthesis and ATP content without affecting membrane potential. J. Bioenerg. Biomembr. 44 243–252. 10.1007/s10863-012-9426-3 PubMed DOI
Wagner S., Schürmann S., Hein S., Schüttler J., Friedrich O. (2015). Septic cardiomyopathy in rat LPS-induced endotoxemia: relative contribution of cellular diastolic Ca(2+) removal pathways, myofibrillar biomechanics properties and action of the cardiotonic drug levosimendan. Basic Res. Cardiol. 110:507. 10.1007/s00395-015-0507-4 PubMed DOI
Watts J. A., Kline J. A., Thornton L. R., Grattan R. M., Brar S. S. (2004). Metabolic dysfunction and depletion of mitochondria in hearts of septic rats. J. Mol. Cell. Cardiol. 36 141–150. 10.1016/j.yjmcc.2003.10.015 PubMed DOI
Williams G. S., Boyman L., Lederer W. J. (2015). Mitochondrial calcium and the regulation of metabolism in the heart. J. Mol. Cell. Cardiol. 78 35–45. 10.1016/j.yjmcc.2014.10.019 PubMed DOI PMC
Wu L. L., Tang C., Liu M. S. (2001). Altered phosphorylation and calcium sensitivity of cardiac myofibrillar proteins during sepsis. Am. J. Physiol. Regul. Integr. Comp. Physiol. 281 R408–R416. 10.1152/ajpregu.2001.281.2.R408 PubMed DOI
Zhong J., Hwang T. C., Adams H. R., Rubin L. J. (1997). Reduced L-type calcium current in ventricular myocytes from endotoxemic guinea pigs. Am. J. Physiol. 273 H2312–H2324. 10.1152/ajpheart.1997.273.5.H2312 PubMed DOI
Zhu X., Bernecker O. Y., Manohar N. S., Hajjar R. J., Hellman J., Ichinose F., et al. (2005). Increased leakage of sarcoplasmic reticulum Ca2+ contributes to abnormal myocyte Ca2+ handling and shortening in sepsis. Crit. Care Med. 33 598–604. 10.1097/01.CCM.0000152223.27176.A6 PubMed DOI
Renal mitochondria response to sepsis: a sequential biopsy evaluation of experimental porcine model
Gut microbiome diversity of porcine peritonitis model of sepsis
Modeling sepsis, with a special focus on large animal models of porcine peritonitis and bacteremia