Beetle bioluminescence outshines extant aerial predators
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
PubMed
35855602
PubMed Central
PMC9297012
DOI
10.1098/rspb.2022.0821
Knihovny.cz E-zdroje
- Klíčová slova
- Lampyridae, aposematism, divergence time estimation, phylogeny, predation,
- MeSH
- brouci * MeSH
- Chiroptera * MeSH
- fylogeneze MeSH
- genomika MeSH
- světluškovití MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
We understand very little about the timing and origins of bioluminescence, particularly as a predator avoidance strategy. Understanding the timing of its origins, however, can help elucidate the evolution of this ecologically important signal. Using fireflies, a prevalent bioluminescent group where bioluminescence primarily functions as aposematic and sexual signals, we explore the origins of this signal in the context of their potential predators. Divergence time estimations were performed using genomic-scale datasets providing a robust estimate for the origin of firefly bioluminescence as both a terrestrial and as an aerial signal. Our results recover the origin of terrestrial beetle bioluminescence at 141.17 (122.63-161.17) Ma and firefly aerial bioluminescence at 133.18 (117.86-152.47) Ma using a large dataset focused on Lampyridae; and terrestrial bioluminescence at 148.03 (130.12-166.80) Ma, with the age of aerial bioluminescence at 104.97 (99.00-120.90) Ma using a complementary Elateroidea dataset. These ages pre-date the origins of all known extant aerial predators (i.e. bats and birds) and support much older terrestrial predators (assassin bugs, frogs, ground beetles, lizards, snakes, hunting spiders and harvestmen) as the drivers of terrestrial bioluminescence in beetles. These ages also support the hypothesis that sexual signalling was probably the original function of this signal in aerial fireflies.
Department of Biology and Monte L Bean Museum Brigham Young University 4102 LSB Provo UT 84602 USA
Department of Biology Case Western Reserve University 2080 Adelbert Road Cleveland OH 44106 USA
School of Math and Sciences Laramie County Community College 1400 E College Dr Cheyenne WY 82007 USA
Zobrazit více v PubMed
Herring PJ. 1987. Systematic distribution of bioluminescence in living organisms. J. Biolumin. Chemilumin. 1, 147-163. (10.1002/bio.1170010303) PubMed DOI
Wilson T, Hastings JW. 1998. Bioluminescence. Annu. Rev. Cell Dev. Biol. 14, 197-230. (10.1146/annurev.cellbio.14.1.197) PubMed DOI
Widder EA. 2010. Bioluminescence in the ocean: origins of biological, chemical, and ecological diversity. Science 328, 704-708. (10.1126/science.1174269) PubMed DOI
Lau ES, Oakley TH. 2021. Multi-level convergence of complex traits and the evolution of bioluminescence. Biol. Rev. 96, 673-691. (10.1111/brv.12672) PubMed DOI
Lloyd JE. 1975. Aggressive mimicry in Photuris fireflies: signal repertoires by femmes fatales. Science 187, 452-453. (10.1126/science.187.4175.452) PubMed DOI
Redford KH. 1982. Prey attraction as a possible function of bioluminescence in the larvae of Pyrearinus termitilluminans (Coleoptera: Elateridae). Revista Brasileira de Zool. 1, 31-34. (10.1590/S0101-81751982000100004) DOI
Faust L, De Cock R, Lewis S. 2012. Thieves in the night: Kleptoparasitism by fireflies in the genus Photuris Dejean (Coleoptera: Lampyridae). Coleopterists Bullet. 66, 1-6. (10.1649/072.066.0101) DOI
Souto PM, Campello L, Khattar G, Mermudes JRM, Monteiro RF, da Silveira LFL. 2019. How to design a predatory firefly? Lessons from the Photurinae (Coleoptera: Lampyridae). Zoologischer Anzeiger 278, 1-13. (10.1016/j.jcz.2018.10.006) DOI
Grober MS. 1988. Brittle-star bioluminescence functions as an aposematic signal to deter crustacean predators. Anim. Behav. 36, 493-501. (10.1016/S0003-3472(88)80020-4) DOI
Marek P, Papaj D, Yeager J, Molina S, Moore W. 2011. Bioluminescent aposematism in millipedes. Curr. Biol. 21, R680-R681. (10.1016/j.cub.2011.08.012) PubMed DOI PMC
Jones BW, Nishiguchi MK. 2004. Counterillumination in the hawaiian bobtail squid, Euprymna scolopes Berry (Mollusca: Cephalopoda). Mar. Biol. 144, 1151-1155. (10.1007/s00227-003-1285-3) DOI
Martini S, Haddock SH. 2017. Quantification of bioluminescence from the surface to the deep sea demonstrates its predominance as an ecological trait. Sci. Rep. 7, 1-11. (10.1038/srep45750) PubMed DOI PMC
Lloyd JE. 1983. Bioluminescence and communication in insects. Annu. Rev. Entomol. 28, 131-160. (10.1146/annurev.en.28.010183.001023) DOI
Herring PJ. 2007. Sex with the lights on? A review of bioluminescent sexual dimorphism in the sea. Marine Biological Association of the United Kingdom. J. Mar. Biol. Assoc. UK 87, 829. (10.1017/S0025315407056433) DOI
Desjardin DE, Oliveira AG, Stevani CV. 2008. Fungi bioluminescence revisited. Photochem. Photobiol. Sci. 7, 170-182. (10.1039/b713328f) PubMed DOI
Oliveira AG, Stevani CV, Waldenmaier HE, Viviani V, Emerson JM, Loros JJ, Dunlap JC. 2015. Circadian control sheds light on fungal bioluminescence. Curr. Biol. 25, 964-968. (10.1016/j.cub.2015.02.021) PubMed DOI PMC
De Cock R, Matthysen E. 2001. Do glow-worm larvae (Coleoptera: Lampyridae) use warning coloration? Ethology 107, 1019-1033. (10.1046/j.1439-0310.2001.00746.x) DOI
De Cock R, Matthysen E. 2003. Glow-worm larvae bioluminescence (Coleoptera: Lampyridae) operates as an aposematic signal upon toads (Bufo bufo). Behav. Ecol. 14, 103-108. (10.1093/beheco/14.1.103) DOI
Stanger-Hall KF, Oakley TH. 2019. Bioluminescent signals. In Encyclopedia of animal behavior (ed. Choe JC.), (2nd edn.), vol. 1, pp. 449-461. London, UK: Elsevier.
Martin GJ, Branham MA, Whiting MF, Bybee SM. 2017. Total evidence phylogeny and the evolution of adult bioluminescence in fireflies (Coleoptera: Lampyridae). Mol. Phylogenet. Evol. 107, 564-575. (10.1016/j.ympev.2016.12.017) PubMed DOI
Kusy D, He JW, Bybee SM, Motyka M, Bi WX, Podsiadlowski L, Xue-Yan L, Bocak L. 2021. Phylogenomic relationships of bioluminescent elateroids define the ‘lampyroid’ clade with clicking Sinopyrophoridae as its earliest member. Syst. Entomol. 46, 111-123. (10.1111/syen.12451) DOI
Fallon TR, et al. 2018. Firefly genomes illuminate parallel origins of bioluminescence in beetles. Elife 7, e36495. (10.7554/eLife.36495) PubMed DOI PMC
Branham MA, Wenzel JW. 2001. The evolution of bioluminescence in cantharoids (Coleoptera: Elateroidea). Florida Entomol. 84, 565-586. (10.2307/3496389) DOI
Branham MA, Wenzel JW. 2003. The origin of photic behavior and the evolution of sexual communication in fireflies (Coleoptera: Lampyridae). Cladistics 19, 1-22. (10.1111/j.1096-0031.2003.tb00404.x) PubMed DOI
Oba Y, Konishi K, Yano D, Shibata H, Kato D, Shirai T. 2020. Resurrecting the ancient glow of the fireflies. Sci. Adv. 6, eabc5705. (10.1126/sciadv.abc5705) PubMed DOI PMC
Sagegami-Oba R, Takahashi N, Oba Y. 2007. The evolutionary process of bioluminescence and aposematism in cantharoid beetles (Coleoptera: Elateroidea) inferred by the analysis of 18S ribosomal DNA. Gene 400, 104-113. (10.1016/j.gene.2007.06.004) PubMed DOI
Viviani VR, Bechara EJ. 1997. Bioluminescence and biological aspects of Brazilian railroad-worms (Coleoptera: Phengodidae). Ann. Entomol. Soc. Am. 90, 389-398. (10.1093/aesa/90.3.389) DOI
Underwood TJ, Tallamy DW, Pesek JD. 1997. Bioluminescence in firefly larvae: a test of the aposematic display hypothesis (Coleoptera: Lampyridae). J. Insect Behav. 10, 365-370. (10.1007/BF02765604) DOI
Stanger-Hall KF, Lloyd JE, Hillis DM. 2007. Phylogeny of North American fireflies (Coleoptera: Lampyridae): implications for the evolution of light signals. Mol. Phylogenet. Evol. 45, 33-49. (10.1016/j.ympev.2007.05.013) PubMed DOI
Lloyd JE. 1971. Bioluminescent communication in insects. Annu. Rev. Entomol. 16, 97-122. (10.1146/annurev.en.16.010171.000525) DOI
Moosman PR Jr, Cratsley CK, Lehto SD, Thomas HH. 2009. Do courtship flashes of fireflies (Coleoptera: Lampyridae) serve as aposematic signals to insectivorous bats? Anim. Behav. 78, 1019-1025. (10.1016/j.anbehav.2009.07.028) DOI
Leavell BC, Rubin JJ, McClure CJ, Miner KA, Branham MA, Barber JR. 2018. Fireflies thwart bat attack with multisensory warnings. Sci. Adv. 5, eaat6601. (10.1126/sciadv.aat6601) PubMed DOI PMC
Lloyd JE. 1973. Firefly parasites and predators. Coleopterists' Bullet. 27, 91-106.
Lewis SM, Cratsley CK. 2008. Flash signal evolution, mate choice, and predation in fireflies. Annu. Rev. Entomol. 53, 293-321. (10.1146/annurev.ento.53.103106.093346) PubMed DOI
Dillon LS. 1967. Animal variety, 180pp. Dubuque, IA: Wm. C. Brown Co.
Martin GJ, et al. 2019. Higher-level phylogeny and reclassification of Lampyridae (Coleoptera: Elateroidea). Insect Syst. Divers. 3, 11. (10.1093/isd/ixz024) DOI
Douglas HB, et al. 2021. Anchored phylogenomics, evolution and systematics of Elateridae: are all bioluminescent Elateroidea derived click beetles? Biology 10, 451. (10.3390/biology10060451) PubMed DOI PMC
Drummond AJ, Rambaut A. 2007. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 7, 1-8. (10.1186/1471-2148-7-214) PubMed DOI PMC
Peters RS, et al. 2017. Evolutionary history of the Hymenoptera. Curr. Biol. 27, 1013-1018. (10.1016/j.cub.2017.01.027) PubMed DOI
Saladin B, Leslie AB, Wüest RO, Litsios G, Conti E, Salamin N, Zimmermann NE. 2017. Fossils matter: improved estimates of divergence times in Pinus reveal older diversification. BMC Evol. Biol. 17, 1-15. (10.1186/s12862-017-0941-z) PubMed DOI PMC
Toussaint EF, Seidel M, Arriaga-Varela E, Hájek J, Kral D, Sekerka L, Short AE, Fikáček M. 2017. The peril of dating beetles. Syst. Entomol. 42, 1-10. (10.1111/syen.12198) DOI
Kalyaanamoorthy S, Minh BQ, Wong TK, Von Haeseler A, Jermiin LS. 2017. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587-589. (10.1038/nmeth.4285) PubMed DOI PMC
Nguyen LT, Schmidt HA, Von Haeseler A, Minh BQ. 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268-274. (10.1093/molbev/msu300) PubMed DOI PMC
Hoang DT, Chernomor O, Von Haeseler A, Minh BQ, Vinh LS. 2018. UFBoot2: improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518-522. (10.1093/molbev/msx281) PubMed DOI PMC
RStudio Team. 2020. RStudio: integrated development for R. Boston, MA: RStudio, PBC. See http://www.rstudio.com/.
Paradis E, Schliep K. 2019. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526-528. (10.1093/bioinformatics/bty633) PubMed DOI
Brewer MS, Spruill CL, Rao NS, Bond JE. 2012. Phylogenetics of the millipede genus Brachycybe Wood, 1864 (Diplopoda: Platydesmida: Andrognathidae): patterns of deep evolutionary history and recent speciation. Mol. Phylogenet. Evol. 64, 232-242. (10.1016/j.ympev.2012.04.003) PubMed DOI
Huie JM, Thacker CE, Tornabene L. 2020. Co-evolution of cleaning and feeding morphology in western Atlantic and eastern Pacific gobies. Evolution 74, 419-433. (10.1111/evo.13904) PubMed DOI
Heer O. 1849. Die Insektenfauna der Tertiärgebilde von Oeningen und von Radoboj in Croatien: Heuschrecken, Florfliegen, Adlerflügler, Schmetterlinge und Fliegen. Leipzig, Germany: W. Engelmann.
Wickham HF. 1912. A report on some recent collections of fossil Coleoptera from the Miocene shales of Florissant. Bullet. Laboratories Natural Hist. State Univers. Iowa 6, 3-38.
Clapham M. 2021. Taxonomic occurrences of Elateroidea in the Paleobiology Database. Fossilworks. See http://fossilworks.org (downloaded January 2021).
Kazantsev SV. 2015. Protoluciola albertalleni gen.n., sp.n., a new Luciolinae firefly (Insecta: Coleoptera: Lampyridae) from Burmite amber. Russian Entomol. J. 24, 281-283. (10.15298/rusentj.24.4.02) DOI
Li YD, Kundrata R, Tihelka E, Liu Z, Huang D, Cai C. 2021. Cretophengodidae, a new Cretaceous beetle family, sheds light on the evolution of bioluminescence. Proc. R. Soc. B 288, 20202730. (10.1098/rspb.2020.2730) PubMed DOI PMC
Beier M. 1952. Miozäne und oligozäne Insekten aus Österreich und den unmittelbar angrenzenden Gebieten. Sitzungsberichte der Österreichische Akademie der Wissenschaften, Mathematisch-naturwissenschaftliche Klasse, Abt. I 161, 129-134.
Fanti F. 2017. World catalog of fossil Cantharidae. Fossils Minerals Rev. 2, 1-52.
Alekseev VI. 2019. New extinct Eocene Coleoptera in Baltic amber of Friedhelm Eichmann's collection (Germany). Baltic J. Coleopterol. 19, 11-22. (10.1127/njgpa/2022/1050) DOI
Kundrata R, Packova G, Hoffmannova J. 2020. Fossil genera in Elateridae (Insecta, Coleoptera): a Triassic origin and Jurassic diversification. Insects 11, 394. (10.3390/insects11060394) PubMed DOI PMC
Ho SY, Phillips MJ. 2009. Accounting for calibration uncertainty in phylogenetic estimation of evolutionary divergence times. Syst. Biol. 58, 367-380. (10.1093/sysbio/syp035) PubMed DOI
Bouckaert R, et al. 2019. BEAST 2.5: an advanced software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 15, e1006650. (10.1371/journal.pcbi.1006650) PubMed DOI PMC
Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA. 2018. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901. (10.1093/sysbio/syy032) PubMed DOI PMC
Maddison WP, Maddison DR. 2019. Mesquite: a modular system for evolutionary analysis. Version 3.61. See http://www.mesquiteproject.org.
Day JC. 2011. Parasites, predators and defence of fireflies and glow-worms (Lampyrid Review Series). Lampyrid 1, 70-102.
Ezcurra MD, et al. 2020. Enigmatic dinosaur precursors bridge the gap to the origin of Pterosauria. Nature 588, 445-449. (10.1038/s41586-020-3011-4) PubMed DOI
Coddington JA, Levi HW. 1991. Systematics and evolution of spiders (Araneae). Annu. Rev. Ecol. Syst. 22, 565-592. (10.1146/annurev.es.22.110191.003025) DOI
Evans SE. 2003. At the feet of the dinosaurs: the early history and radiation of lizards. Biol. Rev. 78, 513-551. (10.1017/S1464793103006134) PubMed DOI
Teeling EC, Springer MS, Madsen O, Bates P, O'brien SJ, Murphy WJ. 2005. A molecular phylogeny for bats illuminates biogeography and the fossil record. Science 307, 580-584. (10.1126/science.1105113) PubMed DOI
Pyron RA. 2011. Divergence time estimation using fossils as terminal taxa and the origins of Lissamphibia. Syst. Biol. 60, 466-481. (10.1093/sysbio/syr047) PubMed DOI
dos Reis M, Inoue J, Hasegawa M, Asher RJ, Donoghue PC, Yang Z. 2012. Phylogenomic datasets provide both precision and accuracy in estimating the timescale of placental mammal phylogeny. Proc. R. Soc. B 279, 3491-3500. (10.1098/rspb.2012.0683) PubMed DOI PMC
Hwang WS, Weirauch C. 2012. Evolutionary history of assassin bugs (Insecta: Hemiptera: Reduviidae): insights from divergence dating and ancestral state reconstruction. PLoS ONE 7, e45523. (10.1371/journal.pone.0045523) PubMed DOI PMC
Sharma PP, Giribet G. 2014. A revised dated phylogeny of the arachnid order Opiliones. Front. Genet. 5, 255. (10.3389/fgene.2014.00255) PubMed DOI PMC
Prum RO, Berv JS, Dornburg A, Field DJ, Townsend JP, Lemmon EM, Lemmon AR. 2015. A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. Nature 526, 569-573. (10.1038/nature15697) PubMed DOI
Lemmon AR, Brown JM, Stanger-Hall K, Lemmon EM. 2009. The effect of ambiguous data on phylogenetic estimates obtained by maximum likelihood and Bayesian inference. Syst. Biol. 58, 130-145. (10.1093/sysbio/syp017) PubMed DOI PMC
McKenna DD, et al. 2015. The beetle tree of life reveals that Coleoptera survived end-Permian mass extinction to diversify during the Cretaceous terrestrial revolution. Syst. Entomol. 40, 835-880. (10.1111/syen.12132) DOI
Bocak L, Kundrata R, Andújar Fernández C, Vogler AP. 2016. The discovery of Iberobaeniidae (Coleoptera: Elateroidea): a new family of beetles from Spain, with immatures detected by environmental DNA sequencing. Proc. R. Soc. B 283, 20152350. (10.1098/rspb.2015.2350) PubMed DOI PMC
Cai C, et al. 2022. Integrated phylogenomics and fossil data illuminate the evolution of beetles. R. Soc. Open Sci. 9, 211771. (10.1098/rsos.211771) PubMed DOI PMC
McKenna DD, et al. 2019. The evolution and genomic basis of beetle diversity. Proc. Natl Acad. Sci. USA 116, 24 729-24 737. (10.1073/pnas.1909655116) PubMed DOI PMC
Gunter NL, Weir TA, Slipinksi A, Bocak L, Cameron SL. 2016. If dung beetles (Scarabaeidae: Scarabaeinae) arose in association with dinosaurs, did they also suffer a mass co-extinction at the K-Pg boundary? PLoS ONE 11, e0153570. (10.1371/journal.pone.0153570) PubMed DOI PMC
Drummond AJ, Ho SY, Phillips MJ, Rambaut A. 2006. Relaxed phylogenetics and dating with confidence. PLoS Biol. 4, e88. (10.1371/journal.pbio.0040088) PubMed DOI PMC
Lepage T, Bryant D, Philippe H, Lartillot N. 2007. A general comparison of relaxed molecular clock models. Mol. Biol. Evol. 24, 2669-2680. (10.1093/molbev/msm193) PubMed DOI
Stanger-Hall KF, Lloyd JE. 2015. Flash signal evolution in Photinus fireflies: character displacement and signal exploitation in a visual communication system. Evolution 69, 666-682. (10.1111/evo.12606) PubMed DOI
Hope GM, Bhatnagar KP. 1979. Electrical response of bat retina to spectral stimulation: comparison of four microchiropteran species. Experientia 35, 1189-1191. (10.1007/BF01963279) PubMed DOI
Krivoruchko K, Goldshtein A, Boonman A, Eitan O, Ben-Simon J, Thong VD, Yovel Y. 2021. Fireflies produce ultrasonic clicks during flight as a potential aposematic anti-bat signal. Iscience 24, 102194. (10.1016/j.isci.2021.102194) PubMed DOI PMC
von der Emde G, Menne D. 1989. Discrimination of insect wingbeat-frequencies by the bat Rhinolophus ferrumequinum. J. Comp. Physiol. A 164, 663-671. (10.1007/BF00614509) DOI
von der Emde G, Schnitzler HU. 1990. Classification of insects by echolocating greater horseshoe bats. J. Comp. Physiol. A 167, 423-430. (10.1007/BF00192577) DOI
Koselj K, Schnitzler HU, Siemers BM. 2011. Horseshoe bats make adaptive prey-selection decisions, informed by echo cues. Proc. R. Soc. B 278, 3034-3041. (10.1098/rspb.2010.2793) PubMed DOI PMC
Grossnickle DM, Smith SM, Wilson GP. 2019. Untangling the multiple ecological radiations of early mammals. Trends Ecol. Evol. 34, 936-949. (10.1016/j.tree.2019.05.008) PubMed DOI
Bakhurina NN, Unwin DM. 1995. A survey of pterosaurs from the Jurassic and Cretaceous of the former Soviet Union and Mongolia. Hist. Biol. 10, 197-245. (10.1080/10292389509380522) DOI
Zhou CF, Gao KQ, Yi H, Xue J, Li Q, Fox RC. 2017. Earliest filter-feeding pterosaur from the Jurassic of China and ecological evolution of Pterodactyloidea. R. Soc. Open Sci. 4, 160672. (10.1098/rsos.160672) PubMed DOI PMC
Schmitz L, Motani R. 2011. Nocturnality in dinosaurs inferred from scleral ring and orbit morphology. Science 332, 705-708. (10.1126/science.1200043) PubMed DOI
Powell GS, et al. 2022. Beetle bioluminescence outshines extant aerial predators. FigShare. (10.6084/m9.figshare.c.6080917) PubMed DOI PMC
Beetle bioluminescence outshines extant aerial predators