Beetle bioluminescence outshines extant aerial predators

. 2022 Jul 27 ; 289 (1979) : 20220821. [epub] 20220720

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.

Perzistentní odkaz   https://www.medvik.cz/link/pmid35855602

We understand very little about the timing and origins of bioluminescence, particularly as a predator avoidance strategy. Understanding the timing of its origins, however, can help elucidate the evolution of this ecologically important signal. Using fireflies, a prevalent bioluminescent group where bioluminescence primarily functions as aposematic and sexual signals, we explore the origins of this signal in the context of their potential predators. Divergence time estimations were performed using genomic-scale datasets providing a robust estimate for the origin of firefly bioluminescence as both a terrestrial and as an aerial signal. Our results recover the origin of terrestrial beetle bioluminescence at 141.17 (122.63-161.17) Ma and firefly aerial bioluminescence at 133.18 (117.86-152.47) Ma using a large dataset focused on Lampyridae; and terrestrial bioluminescence at 148.03 (130.12-166.80) Ma, with the age of aerial bioluminescence at 104.97 (99.00-120.90) Ma using a complementary Elateroidea dataset. These ages pre-date the origins of all known extant aerial predators (i.e. bats and birds) and support much older terrestrial predators (assassin bugs, frogs, ground beetles, lizards, snakes, hunting spiders and harvestmen) as the drivers of terrestrial bioluminescence in beetles. These ages also support the hypothesis that sexual signalling was probably the original function of this signal in aerial fireflies.

Zobrazit více v PubMed

Herring PJ. 1987. Systematic distribution of bioluminescence in living organisms. J. Biolumin. Chemilumin. 1, 147-163. (10.1002/bio.1170010303) PubMed DOI

Wilson T, Hastings JW. 1998. Bioluminescence. Annu. Rev. Cell Dev. Biol. 14, 197-230. (10.1146/annurev.cellbio.14.1.197) PubMed DOI

Widder EA. 2010. Bioluminescence in the ocean: origins of biological, chemical, and ecological diversity. Science 328, 704-708. (10.1126/science.1174269) PubMed DOI

Lau ES, Oakley TH. 2021. Multi-level convergence of complex traits and the evolution of bioluminescence. Biol. Rev. 96, 673-691. (10.1111/brv.12672) PubMed DOI

Lloyd JE. 1975. Aggressive mimicry in Photuris fireflies: signal repertoires by femmes fatales. Science 187, 452-453. (10.1126/science.187.4175.452) PubMed DOI

Redford KH. 1982. Prey attraction as a possible function of bioluminescence in the larvae of Pyrearinus termitilluminans (Coleoptera: Elateridae). Revista Brasileira de Zool. 1, 31-34. (10.1590/S0101-81751982000100004) DOI

Faust L, De Cock R, Lewis S. 2012. Thieves in the night: Kleptoparasitism by fireflies in the genus Photuris Dejean (Coleoptera: Lampyridae). Coleopterists Bullet. 66, 1-6. (10.1649/072.066.0101) DOI

Souto PM, Campello L, Khattar G, Mermudes JRM, Monteiro RF, da Silveira LFL. 2019. How to design a predatory firefly? Lessons from the Photurinae (Coleoptera: Lampyridae). Zoologischer Anzeiger 278, 1-13. (10.1016/j.jcz.2018.10.006) DOI

Grober MS. 1988. Brittle-star bioluminescence functions as an aposematic signal to deter crustacean predators. Anim. Behav. 36, 493-501. (10.1016/S0003-3472(88)80020-4) DOI

Marek P, Papaj D, Yeager J, Molina S, Moore W. 2011. Bioluminescent aposematism in millipedes. Curr. Biol. 21, R680-R681. (10.1016/j.cub.2011.08.012) PubMed DOI PMC

Jones BW, Nishiguchi MK. 2004. Counterillumination in the hawaiian bobtail squid, Euprymna scolopes Berry (Mollusca: Cephalopoda). Mar. Biol. 144, 1151-1155. (10.1007/s00227-003-1285-3) DOI

Martini S, Haddock SH. 2017. Quantification of bioluminescence from the surface to the deep sea demonstrates its predominance as an ecological trait. Sci. Rep. 7, 1-11. (10.1038/srep45750) PubMed DOI PMC

Lloyd JE. 1983. Bioluminescence and communication in insects. Annu. Rev. Entomol. 28, 131-160. (10.1146/annurev.en.28.010183.001023) DOI

Herring PJ. 2007. Sex with the lights on? A review of bioluminescent sexual dimorphism in the sea. Marine Biological Association of the United Kingdom. J. Mar. Biol. Assoc. UK 87, 829. (10.1017/S0025315407056433) DOI

Desjardin DE, Oliveira AG, Stevani CV. 2008. Fungi bioluminescence revisited. Photochem. Photobiol. Sci. 7, 170-182. (10.1039/b713328f) PubMed DOI

Oliveira AG, Stevani CV, Waldenmaier HE, Viviani V, Emerson JM, Loros JJ, Dunlap JC. 2015. Circadian control sheds light on fungal bioluminescence. Curr. Biol. 25, 964-968. (10.1016/j.cub.2015.02.021) PubMed DOI PMC

De Cock R, Matthysen E. 2001. Do glow-worm larvae (Coleoptera: Lampyridae) use warning coloration? Ethology 107, 1019-1033. (10.1046/j.1439-0310.2001.00746.x) DOI

De Cock R, Matthysen E. 2003. Glow-worm larvae bioluminescence (Coleoptera: Lampyridae) operates as an aposematic signal upon toads (Bufo bufo). Behav. Ecol. 14, 103-108. (10.1093/beheco/14.1.103) DOI

Stanger-Hall KF, Oakley TH. 2019. Bioluminescent signals. In Encyclopedia of animal behavior (ed. Choe JC.), (2nd edn.), vol. 1, pp. 449-461. London, UK: Elsevier.

Martin GJ, Branham MA, Whiting MF, Bybee SM. 2017. Total evidence phylogeny and the evolution of adult bioluminescence in fireflies (Coleoptera: Lampyridae). Mol. Phylogenet. Evol. 107, 564-575. (10.1016/j.ympev.2016.12.017) PubMed DOI

Kusy D, He JW, Bybee SM, Motyka M, Bi WX, Podsiadlowski L, Xue-Yan L, Bocak L. 2021. Phylogenomic relationships of bioluminescent elateroids define the ‘lampyroid’ clade with clicking Sinopyrophoridae as its earliest member. Syst. Entomol. 46, 111-123. (10.1111/syen.12451) DOI

Fallon TR, et al. 2018. Firefly genomes illuminate parallel origins of bioluminescence in beetles. Elife 7, e36495. (10.7554/eLife.36495) PubMed DOI PMC

Branham MA, Wenzel JW. 2001. The evolution of bioluminescence in cantharoids (Coleoptera: Elateroidea). Florida Entomol. 84, 565-586. (10.2307/3496389) DOI

Branham MA, Wenzel JW. 2003. The origin of photic behavior and the evolution of sexual communication in fireflies (Coleoptera: Lampyridae). Cladistics 19, 1-22. (10.1111/j.1096-0031.2003.tb00404.x) PubMed DOI

Oba Y, Konishi K, Yano D, Shibata H, Kato D, Shirai T. 2020. Resurrecting the ancient glow of the fireflies. Sci. Adv. 6, eabc5705. (10.1126/sciadv.abc5705) PubMed DOI PMC

Sagegami-Oba R, Takahashi N, Oba Y. 2007. The evolutionary process of bioluminescence and aposematism in cantharoid beetles (Coleoptera: Elateroidea) inferred by the analysis of 18S ribosomal DNA. Gene 400, 104-113. (10.1016/j.gene.2007.06.004) PubMed DOI

Viviani VR, Bechara EJ. 1997. Bioluminescence and biological aspects of Brazilian railroad-worms (Coleoptera: Phengodidae). Ann. Entomol. Soc. Am. 90, 389-398. (10.1093/aesa/90.3.389) DOI

Underwood TJ, Tallamy DW, Pesek JD. 1997. Bioluminescence in firefly larvae: a test of the aposematic display hypothesis (Coleoptera: Lampyridae). J. Insect Behav. 10, 365-370. (10.1007/BF02765604) DOI

Stanger-Hall KF, Lloyd JE, Hillis DM. 2007. Phylogeny of North American fireflies (Coleoptera: Lampyridae): implications for the evolution of light signals. Mol. Phylogenet. Evol. 45, 33-49. (10.1016/j.ympev.2007.05.013) PubMed DOI

Lloyd JE. 1971. Bioluminescent communication in insects. Annu. Rev. Entomol. 16, 97-122. (10.1146/annurev.en.16.010171.000525) DOI

Moosman PR Jr, Cratsley CK, Lehto SD, Thomas HH. 2009. Do courtship flashes of fireflies (Coleoptera: Lampyridae) serve as aposematic signals to insectivorous bats? Anim. Behav. 78, 1019-1025. (10.1016/j.anbehav.2009.07.028) DOI

Leavell BC, Rubin JJ, McClure CJ, Miner KA, Branham MA, Barber JR. 2018. Fireflies thwart bat attack with multisensory warnings. Sci. Adv. 5, eaat6601. (10.1126/sciadv.aat6601) PubMed DOI PMC

Lloyd JE. 1973. Firefly parasites and predators. Coleopterists' Bullet. 27, 91-106.

Lewis SM, Cratsley CK. 2008. Flash signal evolution, mate choice, and predation in fireflies. Annu. Rev. Entomol. 53, 293-321. (10.1146/annurev.ento.53.103106.093346) PubMed DOI

Dillon LS. 1967. Animal variety, 180pp. Dubuque, IA: Wm. C. Brown Co.

Martin GJ, et al. 2019. Higher-level phylogeny and reclassification of Lampyridae (Coleoptera: Elateroidea). Insect Syst. Divers. 3, 11. (10.1093/isd/ixz024) DOI

Douglas HB, et al. 2021. Anchored phylogenomics, evolution and systematics of Elateridae: are all bioluminescent Elateroidea derived click beetles? Biology 10, 451. (10.3390/biology10060451) PubMed DOI PMC

Drummond AJ, Rambaut A. 2007. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 7, 1-8. (10.1186/1471-2148-7-214) PubMed DOI PMC

Peters RS, et al. 2017. Evolutionary history of the Hymenoptera. Curr. Biol. 27, 1013-1018. (10.1016/j.cub.2017.01.027) PubMed DOI

Saladin B, Leslie AB, Wüest RO, Litsios G, Conti E, Salamin N, Zimmermann NE. 2017. Fossils matter: improved estimates of divergence times in Pinus reveal older diversification. BMC Evol. Biol. 17, 1-15. (10.1186/s12862-017-0941-z) PubMed DOI PMC

Toussaint EF, Seidel M, Arriaga-Varela E, Hájek J, Kral D, Sekerka L, Short AE, Fikáček M. 2017. The peril of dating beetles. Syst. Entomol. 42, 1-10. (10.1111/syen.12198) DOI

Kalyaanamoorthy S, Minh BQ, Wong TK, Von Haeseler A, Jermiin LS. 2017. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587-589. (10.1038/nmeth.4285) PubMed DOI PMC

Nguyen LT, Schmidt HA, Von Haeseler A, Minh BQ. 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268-274. (10.1093/molbev/msu300) PubMed DOI PMC

Hoang DT, Chernomor O, Von Haeseler A, Minh BQ, Vinh LS. 2018. UFBoot2: improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518-522. (10.1093/molbev/msx281) PubMed DOI PMC

RStudio Team. 2020. RStudio: integrated development for R. Boston, MA: RStudio, PBC. See http://www.rstudio.com/.

Paradis E, Schliep K. 2019. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526-528. (10.1093/bioinformatics/bty633) PubMed DOI

Brewer MS, Spruill CL, Rao NS, Bond JE. 2012. Phylogenetics of the millipede genus Brachycybe Wood, 1864 (Diplopoda: Platydesmida: Andrognathidae): patterns of deep evolutionary history and recent speciation. Mol. Phylogenet. Evol. 64, 232-242. (10.1016/j.ympev.2012.04.003) PubMed DOI

Huie JM, Thacker CE, Tornabene L. 2020. Co-evolution of cleaning and feeding morphology in western Atlantic and eastern Pacific gobies. Evolution 74, 419-433. (10.1111/evo.13904) PubMed DOI

Heer O. 1849. Die Insektenfauna der Tertiärgebilde von Oeningen und von Radoboj in Croatien: Heuschrecken, Florfliegen, Adlerflügler, Schmetterlinge und Fliegen. Leipzig, Germany: W. Engelmann.

Wickham HF. 1912. A report on some recent collections of fossil Coleoptera from the Miocene shales of Florissant. Bullet. Laboratories Natural Hist. State Univers. Iowa 6, 3-38.

Clapham M. 2021. Taxonomic occurrences of Elateroidea in the Paleobiology Database. Fossilworks. See http://fossilworks.org (downloaded January 2021).

Kazantsev SV. 2015. Protoluciola albertalleni gen.n., sp.n., a new Luciolinae firefly (Insecta: Coleoptera: Lampyridae) from Burmite amber. Russian Entomol. J. 24, 281-283. (10.15298/rusentj.24.4.02) DOI

Li YD, Kundrata R, Tihelka E, Liu Z, Huang D, Cai C. 2021. Cretophengodidae, a new Cretaceous beetle family, sheds light on the evolution of bioluminescence. Proc. R. Soc. B 288, 20202730. (10.1098/rspb.2020.2730) PubMed DOI PMC

Beier M. 1952. Miozäne und oligozäne Insekten aus Österreich und den unmittelbar angrenzenden Gebieten. Sitzungsberichte der Österreichische Akademie der Wissenschaften, Mathematisch-naturwissenschaftliche Klasse, Abt. I 161, 129-134.

Fanti F. 2017. World catalog of fossil Cantharidae. Fossils Minerals Rev. 2, 1-52.

Alekseev VI. 2019. New extinct Eocene Coleoptera in Baltic amber of Friedhelm Eichmann's collection (Germany). Baltic J. Coleopterol. 19, 11-22. (10.1127/njgpa/2022/1050) DOI

Kundrata R, Packova G, Hoffmannova J. 2020. Fossil genera in Elateridae (Insecta, Coleoptera): a Triassic origin and Jurassic diversification. Insects 11, 394. (10.3390/insects11060394) PubMed DOI PMC

Ho SY, Phillips MJ. 2009. Accounting for calibration uncertainty in phylogenetic estimation of evolutionary divergence times. Syst. Biol. 58, 367-380. (10.1093/sysbio/syp035) PubMed DOI

Bouckaert R, et al. 2019. BEAST 2.5: an advanced software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 15, e1006650. (10.1371/journal.pcbi.1006650) PubMed DOI PMC

Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA. 2018. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901. (10.1093/sysbio/syy032) PubMed DOI PMC

Maddison WP, Maddison DR. 2019. Mesquite: a modular system for evolutionary analysis. Version 3.61. See http://www.mesquiteproject.org.

Day JC. 2011. Parasites, predators and defence of fireflies and glow-worms (Lampyrid Review Series). Lampyrid 1, 70-102.

Ezcurra MD, et al. 2020. Enigmatic dinosaur precursors bridge the gap to the origin of Pterosauria. Nature 588, 445-449. (10.1038/s41586-020-3011-4) PubMed DOI

Coddington JA, Levi HW. 1991. Systematics and evolution of spiders (Araneae). Annu. Rev. Ecol. Syst. 22, 565-592. (10.1146/annurev.es.22.110191.003025) DOI

Evans SE. 2003. At the feet of the dinosaurs: the early history and radiation of lizards. Biol. Rev. 78, 513-551. (10.1017/S1464793103006134) PubMed DOI

Teeling EC, Springer MS, Madsen O, Bates P, O'brien SJ, Murphy WJ. 2005. A molecular phylogeny for bats illuminates biogeography and the fossil record. Science 307, 580-584. (10.1126/science.1105113) PubMed DOI

Pyron RA. 2011. Divergence time estimation using fossils as terminal taxa and the origins of Lissamphibia. Syst. Biol. 60, 466-481. (10.1093/sysbio/syr047) PubMed DOI

dos Reis M, Inoue J, Hasegawa M, Asher RJ, Donoghue PC, Yang Z. 2012. Phylogenomic datasets provide both precision and accuracy in estimating the timescale of placental mammal phylogeny. Proc. R. Soc. B 279, 3491-3500. (10.1098/rspb.2012.0683) PubMed DOI PMC

Hwang WS, Weirauch C. 2012. Evolutionary history of assassin bugs (Insecta: Hemiptera: Reduviidae): insights from divergence dating and ancestral state reconstruction. PLoS ONE 7, e45523. (10.1371/journal.pone.0045523) PubMed DOI PMC

Sharma PP, Giribet G. 2014. A revised dated phylogeny of the arachnid order Opiliones. Front. Genet. 5, 255. (10.3389/fgene.2014.00255) PubMed DOI PMC

Prum RO, Berv JS, Dornburg A, Field DJ, Townsend JP, Lemmon EM, Lemmon AR. 2015. A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. Nature 526, 569-573. (10.1038/nature15697) PubMed DOI

Lemmon AR, Brown JM, Stanger-Hall K, Lemmon EM. 2009. The effect of ambiguous data on phylogenetic estimates obtained by maximum likelihood and Bayesian inference. Syst. Biol. 58, 130-145. (10.1093/sysbio/syp017) PubMed DOI PMC

McKenna DD, et al. 2015. The beetle tree of life reveals that Coleoptera survived end-Permian mass extinction to diversify during the Cretaceous terrestrial revolution. Syst. Entomol. 40, 835-880. (10.1111/syen.12132) DOI

Bocak L, Kundrata R, Andújar Fernández C, Vogler AP. 2016. The discovery of Iberobaeniidae (Coleoptera: Elateroidea): a new family of beetles from Spain, with immatures detected by environmental DNA sequencing. Proc. R. Soc. B 283, 20152350. (10.1098/rspb.2015.2350) PubMed DOI PMC

Cai C, et al. 2022. Integrated phylogenomics and fossil data illuminate the evolution of beetles. R. Soc. Open Sci. 9, 211771. (10.1098/rsos.211771) PubMed DOI PMC

McKenna DD, et al. 2019. The evolution and genomic basis of beetle diversity. Proc. Natl Acad. Sci. USA 116, 24 729-24 737. (10.1073/pnas.1909655116) PubMed DOI PMC

Gunter NL, Weir TA, Slipinksi A, Bocak L, Cameron SL. 2016. If dung beetles (Scarabaeidae: Scarabaeinae) arose in association with dinosaurs, did they also suffer a mass co-extinction at the K-Pg boundary? PLoS ONE 11, e0153570. (10.1371/journal.pone.0153570) PubMed DOI PMC

Drummond AJ, Ho SY, Phillips MJ, Rambaut A. 2006. Relaxed phylogenetics and dating with confidence. PLoS Biol. 4, e88. (10.1371/journal.pbio.0040088) PubMed DOI PMC

Lepage T, Bryant D, Philippe H, Lartillot N. 2007. A general comparison of relaxed molecular clock models. Mol. Biol. Evol. 24, 2669-2680. (10.1093/molbev/msm193) PubMed DOI

Stanger-Hall KF, Lloyd JE. 2015. Flash signal evolution in Photinus fireflies: character displacement and signal exploitation in a visual communication system. Evolution 69, 666-682. (10.1111/evo.12606) PubMed DOI

Hope GM, Bhatnagar KP. 1979. Electrical response of bat retina to spectral stimulation: comparison of four microchiropteran species. Experientia 35, 1189-1191. (10.1007/BF01963279) PubMed DOI

Krivoruchko K, Goldshtein A, Boonman A, Eitan O, Ben-Simon J, Thong VD, Yovel Y. 2021. Fireflies produce ultrasonic clicks during flight as a potential aposematic anti-bat signal. Iscience 24, 102194. (10.1016/j.isci.2021.102194) PubMed DOI PMC

von der Emde G, Menne D. 1989. Discrimination of insect wingbeat-frequencies by the bat Rhinolophus ferrumequinum. J. Comp. Physiol. A 164, 663-671. (10.1007/BF00614509) DOI

von der Emde G, Schnitzler HU. 1990. Classification of insects by echolocating greater horseshoe bats. J. Comp. Physiol. A 167, 423-430. (10.1007/BF00192577) DOI

Koselj K, Schnitzler HU, Siemers BM. 2011. Horseshoe bats make adaptive prey-selection decisions, informed by echo cues. Proc. R. Soc. B 278, 3034-3041. (10.1098/rspb.2010.2793) PubMed DOI PMC

Grossnickle DM, Smith SM, Wilson GP. 2019. Untangling the multiple ecological radiations of early mammals. Trends Ecol. Evol. 34, 936-949. (10.1016/j.tree.2019.05.008) PubMed DOI

Bakhurina NN, Unwin DM. 1995. A survey of pterosaurs from the Jurassic and Cretaceous of the former Soviet Union and Mongolia. Hist. Biol. 10, 197-245. (10.1080/10292389509380522) DOI

Zhou CF, Gao KQ, Yi H, Xue J, Li Q, Fox RC. 2017. Earliest filter-feeding pterosaur from the Jurassic of China and ecological evolution of Pterodactyloidea. R. Soc. Open Sci. 4, 160672. (10.1098/rsos.160672) PubMed DOI PMC

Schmitz L, Motani R. 2011. Nocturnality in dinosaurs inferred from scleral ring and orbit morphology. Science 332, 705-708. (10.1126/science.1200043) PubMed DOI

Powell GS, et al. 2022. Beetle bioluminescence outshines extant aerial predators. FigShare. (10.6084/m9.figshare.c.6080917) PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace