A light in the dark: a mid-Cretaceous bioluminescent firefly with specialized antennal sensory organs
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
CONCYTEC
Interinstitutional Alliances for Doctorate Programs
National Natural Science Foundation of China
PubMed
39255838
PubMed Central
PMC11387053
DOI
10.1098/rspb.2024.1671
Knihovny.cz E-zdroje
- Klíčová slova
- Lampyridae, Mesozoic, bioluminescence, diversity,
- MeSH
- biologická evoluce MeSH
- fylogeneze MeSH
- luminiscence MeSH
- světluškovití * MeSH
- tykadla členovců MeSH
- zkameněliny * MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Myanmar MeSH
The beetle superfamily Elateroidea comprises the most biodiverse bioluminescent insects among terrestrial light-producing animals. Recent exceptional fossils from the Mesozoic era and phylogenomic studies have provided valuable insights into the origin and evolution of bioluminescence in elateroids. However, due to the fragmentary nature of the fossil record, the early evolution of bioluminescence in fireflies (Lampyridae), one of the most charismatic lineages of insects, remains elusive. Here, we report the discovery of the second Mesozoic bioluminescent firefly, Flammarionella hehaikuni Cai, Ballantyne & Kundrata gen. et sp. nov., from the Albian/Cenomanian of northern Myanmar (ca 99 Ma). Based on the available set of diagnostic characters, we interpret the specimen as a female of stem-group Luciolinae. The fossil possesses deeply impressed oval pits on the apices of antennomeres 3-11, representing specialized sensory organs likely involved in olfaction. The light organ near the abdominal apex of Flammarionella resembles that found in extant light-producing lucioline fireflies. The growing fossil record of lampyrids provides direct evidence that the stunning light displays of fireflies were already established by the late Mesozoic.
Bristol Palaeobiology Group School of Earth Sciences University of Bristol Bristol BS8 1TQ UK
Department of Earth Sciences University of Cambridge Cambridge CB2 3EQ UK
Department of Zoology Faculty of Science Palacky University Olomouc 779 00 Czech Republic
Division of Invertebrate Zoology American Museum of Natural History New York NY 10024 5192 USA
Facultad de Ciencias Biológicas Universidad Nacional Mayor de San Marcos Lima 15081 Perú
Zobrazit více v PubMed
Goczał J, Beutel RG, Gimmel ML, Kundrata R. 2024. When a key innovation becomes redundant: patterns, drivers and consequences of elytral reduction in Coleoptera. Syst. Entomol. 49 , 193–220. (10.1111/syen.12617) DOI
Oba Y. 2009. On the origin of beetle luminescence. In Bioluminescence in focus—a collection of illuminating essays (ed. Meyer-Rochow VB), pp. 277–290. Kerala, IN: Research Signpost.
Bi WX, He JW, Chen CC, Kundrata R, Li XY. 2019. Sinopyrophorinae, a new subfamily of Elateridae (Coleoptera, Elateroidea) with the first record of a luminous click beetle in Asia and evidence for multiple origins of bioluminescence in Elateridae. Zookeys 864 , 79–97. (10.3897/zookeys.864.26689) PubMed DOI PMC
Li YD, Kundrata R, Tihelka E, Liu Z, Huang D, Cai C. 2021. Cretophengodidae, a new Cretaceous beetle family, sheds light on the evolution of bioluminescence. Proc. R. Soc. B 288 , 20202730. (10.1098/rspb.2020.2730) PubMed DOI PMC
Kundrata R, Hoffmannova J, Hinson KR, Keller O, Packova G. 2022. Rhagophthalmidae Olivier, 1907 (Coleoptera, Elateroidea): described genera and species, current problems, and prospects for the bioluminescent and paedomorphic beetle lineage. Zookeys 1126 , 55–130. (10.3897/zookeys.1126.90233) PubMed DOI PMC
Roza AS, Kusy D, Lian ZD, Kundrata R. 2023. The first Phengodidae fossil (Coleoptera: Elateroidea): Cretocydistus wittmeri gen. et sp. nov. from the mid-Cretaceous Burmese amber. Palaeoentomology 6 , 356–364. (10.11646/palaeoentomology.6.4.7) DOI
Lloyd JE. 1983. Bioluminescence and communication in insects. Annu. Rev. Entomol. 28 , 131–160. (10.1146/annurev.en.28.010183.001023) DOI
Underwood TJ, Tallamy DW, Pesek JD. 1997. Bioluminescence in firefly larvae: a test of the aposematic display hypothesis (Coleoptera: Lampyridae). J. Insect Behav. 10 , 365–370. (10.1007/BF02765604) DOI
Martin GJ, Branham MA, Whiting MF, Bybee SM. 2017. Total evidence phylogeny and the evolution of adult bioluminescence in fireflies (Coleoptera: Lampyridae). Mol. Phylogenet. Evol. 107 , 564–575. (10.1016/j.ympev.2016.12.017) PubMed DOI
Branham MA, Wenzel JW. 2003. The origin of photic behavior and the evolution of sexual communication in fireflies (Coleoptera: Lampyridae). Cladistics 19 , 1–22. (10.1111/j.1096-0031.2003.tb00404.x) PubMed DOI
Crowson RA. 1972. A review of the classification of Cantharoidea (Coleoptera), with the definition of two new families: Cneoglossidae and Omethidae. Rev. Univ. Madrid 21, 35–71.
Branham MA, Wenzel JW. 2001. The evolution of bioluminescence in cantharoids (Coleoptera: Elateroidea). Fla. Entomol. 84 , 565. (10.2307/3496389) DOI
McDermott FA. 1964. The taxonomy of the Lampyridae (Coleoptera). Trans. Am. Entomol. Soc. 90 , 1–72.
Sivinski J. 1981. The nature and possible functions of luminescence in Coleoptera larvae. Coleopt. Bull . 35, 167–179.
Zhu C, et al. . 2024. Firefly toxin lucibufagins evolved after the origin of bioluminescence. PNAS Nexus 3 , gae215. (10.1093/pnasnexus/pgae215) PubMed DOI PMC
Cai C, et al. . 2022. Integrated phylogenomics and fossil data illuminate the evolution of beetles. R. Soc. Open Sci. 9 , 211771. (10.1098/rsos.211771) PubMed DOI PMC
McKenna DD, et al. . 2019. The evolution and genomic basis of beetle diversity. Proc. Natl Acad. Sci. USA 116 , 24729–24737. (10.1073/pnas.1909655116) PubMed DOI PMC
Powell GS, et al. . 2022. Beetle bioluminescence outshines extant aerial predators. Proc. R. Soc. B 289 , 20220821. (10.1098/rspb.2022.0821) PubMed DOI PMC
Kazantsev SV. 2015. Protoluciola albertalleni gen.n., sp.n., a new Luciolinae firefly (Insecta: Coleoptera: Lampyridae) from Burmite amber. Russ. Entomol. J. 24 , 281–283. (10.15298/rusentj.24.4.02) DOI
Alekseev VI. 2019. New extinct Eocene Coleoptera in Baltic amber of Friedhelm Eichmann’s collection (Germany). Balt. J. Coleopterol. 19 , 11–22.
Kazantsev SV. 2012. A new Luciolinae firefly (Coleoptera: Lampyridae) from the Baltic amber. Russ. Entomol. J. 21 , 319–320. (10.15298/rusentj.21.3.08) DOI
Kazantsev SV. 2012. New omethid and lampyrid taxa from the Baltic amber (Insecta: Coleoptera). Zootaxa 3186 , 59–63. (10.11646/zootaxa.3186.1.5) DOI
Wedmann S, Poschmann M, Hörnschemeyer T. 2010. Fossil insects from the Late Oligocene Enspel Lagerstätte and their palaeobiogeographic and palaeoclimatic significance. Paleobiodivers. Paleoenviron. 90 , 49–58. (10.1007/s12549-009-0013-5) DOI
Cruickshank RD, Ko K. 2003. Geology of an amber locality in the Hukawng valley, northern Myanmar. J. Asian Earth Sci. 21 , 441–455. (10.1016/S1367-9120(02)00044-5) DOI
Shi G, Grimaldi DA, Harlow GE, Wang J, Wang J, Yang M, Lei W, Li Q, Li X. 2012. Age constraint on Burmese amber based on U–Pb dating of zircons. Cretac. Res. 37 , 155–163. (10.1016/j.cretres.2012.03.014) DOI
Grimaldi D, Ross AJ. 2017. Extraordinary Lagerstätten in amber, with particular reference to the Cretaceous of Burma. In Terrestrial conservation Lagerstätten: windows into the evolution of life on land (eds Fraser NC, Sues HD), pp. 287–342. Edinburgh, UK: Dunedin Academic Press. (10.2307/jj.12638994.12) DOI
Shi C, et al. . 2022. Fire-prone Rhamnaceae with South African affinities in Cretaceous Myanmar amber. Nat. Plants 8 , 125–135. (10.1038/s41477-021-01091-w) PubMed DOI
Fu YZ, Li YD, Su YT, Cai CY, Huang DY. 2021. Application of confocal laser scanning microscopy to the study of amber bioinclusions. Palaeoentomology 4 , 266–278. (10.11646/palaeoentomology.4.3.14) DOI
Lawrence JF, Beutel RG, Leschen RAB, Ślipiński A. 2010. Glossary of morphological terms. In Coleoptera, beetles; Volume 2: Morphology and systematics (Elateroidea, Bostrichiformia, Cucujiformia partim) (eds Leschen RAB, Beutel RG, Lawrence JF), pp. 9–20. Berlin/New York: Walter de Gruyter. (10.1515/9783110911213.9) DOI
Thancharoen A, Ballantyne LA, Branham MA, Jeng ML. 2007. Description of Luciola aquatilis sp. nov., a new aquatic firefly (Coleoptera: Lampyridae: Luciolinae) from Thailand. Zootaxa 1611 , 55–62. (10.11646/zootaxa.1611.1.4) DOI
Ballantyne LA. 1987. Lucioline morphology, taxonomy and behaviour: a reappraisal (Coleoptera, Lampyridae). Trans. Am. Entomol. Soc . 113, 171–188.
Martin GJ, et al. . 2019. Higher-level phylogeny and reclassification of Lampyridae (Coleoptera: Elateroidea). Insect Syst. Divers. 3 , 11. (10.1093/isd/ixz024) DOI
Bocakova M, Campello-Gonçalves L, Da Silveira LFL. 2022. Phylogeny of the new subfamily Cladodinae: neotenic fireflies from the Neotropics (Coleoptera: Lampyridae). Zool. J. Linn. Soc. 195 , 1181–1199. (10.1093/zoolinnean/zlab091) DOI
Ferreira VS, Keller O, Branham MA, Ivie MA. 2019. Molecular data support the placement of the enigmatic Cheguevaria as a subfamily of Lampyridae (Insecta: Coleoptera). Zool. J. Linn. Soc. 187 , 1253–1258. (10.1093/zoolinnean/zlz073/5581577) DOI
Ferreira VS, Keller O, Branham MA. 2020. Multilocus phylogeny support the nonbioluminescent firefly Chespirito as a new subfamily in the Lampyridae (Coleoptera: Elateroidea). Insect Syst. Divers. 4 , 2. (10.1093/isd/ixaa014) DOI
Janisova K, Bocakova M. 2013. Revision of the subfamily Ototretinae (Coleoptera: Lampyridae). Zool. Anz. 252 , 1–19. (10.1016/j.jcz.2012.01.001) DOI
Ballantyne LA, Lambkin CL, Ho JZ, Jusoh WFA, Nada B, Nak-Eiam S, Thancharoen A, Wattanachaiyingcharoen W, Yiu V. 2019. The Luciolinae of S. E. Asia and the Australopacific region: a revisionary checklist (Coleoptera: Lampyridae) including description of three new genera and 13 new species. Zootaxa 4687 , 1–174. (10.11646/zootaxa.4687.1.1) PubMed DOI
Ballantyne L, Lambkin CL, Boontop Y, Jusoh WFA. 2015. Revisional studies on the Luciolinae fireflies of Asia (Coleoptera: Lampyridae): 1. The genus Pyrophanes Olivier with two new species. 2. Four new species of Pteroptyx Olivier and 3. A new genus Inflata Boontop, with redescription of Luciola indica (Motsch.) as Inflata indica comb. nov. Zootaxa 3959 , 1–84. (10.11646/zootaxa.3959.1.1) PubMed DOI
Jusoh WFA, Ballantyne L, Lambkin CL, Hashim NR, Wahlberg N. 2018. The firefly genus Pteroptyx Olivier revisited (Coleoptera: Lampyridae: Luciolinae). Zootaxa 4456 , 1–71. (10.11646/zootaxa.4456.1.1) PubMed DOI
Ballantyne LA, Lambkin C. 2006. A phylogenetic reassessment of the rare S.E. Asian firefly genus Pygoluciola Wittmer (Coleoptera: Lampyridae: Luciolinae). Raffles B. Zool. 54 , 21–48.
Hansson BS. 1999. Insect olfaction. Berlin, Germany: Springer.
Chahda JS, Soni N, Sun JS, Ebrahim SAM, Weiss BL, Carlson JR. 2019. The molecular and cellular basis of olfactory response to tsetse fly attractants. PLoS Genet. 15 , e1008005. (10.1371/journal.pgen.1008005) PubMed DOI PMC
Jaffar-Bandjee M, Steinmann T, Krijnen G, Casas J. 2020. Insect pectinate antennae maximize odor capture efficiency at intermediate flight speeds. Proc. Natl Acad. Sci. USA 117 , 28126–28133. (10.1073/pnas.2007871117) PubMed DOI PMC
De Cock R, Matthysen E. 2005. Sexual communication by pheromones in a firefly, Phosphaenus hemipterus (Coleoptera: Lampyridae). Anim. Behav. 70 , 807–818. (10.1016/j.anbehav.2005.01.011) DOI
Kim JJ, Lee Y, Kim HG, Choi KJ, Kweon HS, Park S, Jeong KH. 2012. Biologically inspired LED lens from cuticular nanostructures of firefly lantern. Proc. Natl Acad. Sci. USA 109 , 18674–18678. (10.1073/pnas.1213331109) PubMed DOI PMC
Cai C, Tihelka E, Ballantyne L, Li YD, Huang D, Engel Met al. . 2024. Data from: A light in the dark: A mid-Cretaceous bioluminescent firefly with specialized antennal sensory organs. Figshare. (10.6084/m9.figshare.c.7425747) PubMed DOI PMC