Enigmatic Campyloxenus: Shedding light on the delayed origin of bioluminescence in ancient Gondwanan click beetles
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38077142
PubMed Central
PMC10709052
DOI
10.1016/j.isci.2023.108440
PII: S2589-0042(23)02517-8
Knihovny.cz E-zdroje
- Klíčová slova
- Entomology, evolutionary biology, phylogenetics,
- Publikační typ
- časopisecké články MeSH
Gondwanan elaterids, previously thought to be unrelated, include bioluminescent Campyloxenus earlier placed in bioluminescent Pyrophorinae. Genomic data suggest close relationships between Gondwanan groups. We maintain Morostomatinae and Hapatesinae and redefine Pityobiinae with Nearctic Pityobiini, Gondwanan Parablacini stat. nov., Campyloxenini stat. nov., and Tibionemini trib. nov. Their ancestors putatively underwent differentiation in Gondwana during the Cretaceous separation of southern continents. In contrast with their age, extant groups are species poor. Campyloxenus represents a recent origin of bioluminescence, no older than ∼53 my. Its large pronotal lanterns differ from Pyrophorini and resemble color patches of sympatric beetle co-mimics. This discovery highlights the fourth or fifth origin of bioluminescence in Elateroidea, alongside the lampyroid clade, click beetles Pyrophorini, Alampoides and Coctilelater in Anaissini (Pyrophorinae), and Balgus schnusei (Thylacosterninae). While our phylogenetic findings illuminate the phylogenetic aspects, the complete story awaits further field observations and in-depth genomic analyses of biochemical pathways used by bioluminescent elateroids.
Zobrazit více v PubMed
Costa C., Lawrence J.F., Rosa S.P. In: Coleoptera, Beetles, Vol 2: Morphology and Systematics. Leschen R.A.B., Beutel R.G., Lawrence J.F., editors. Walter De Gruyter Gmbh; 2010. Elateridae Leach, 1815; pp. 75–103.
Kundrata R., Gunter N.L., Douglas H., Bocak L. Next step toward a molecular phylogeny of click-beetles (Coleoptera: Elateridae): redefinition of Pityobiinae, with a description of a new subfamily Parablacinae from the Australasian Region. Aust. Entomol. 2016;55:291–302.
Douglas H.B., Kundrata R., Brunke A.J., Escalona H.E., Chapados J.T., Eyres J., Richter R., Savard K., Ślipiński A., McKenna D., Dettman J.R. Anchored Phylogenomics, evolution and systematics of Elateridae: are all bioluminescent Elateroidea derived click beetles? Biology-Basel. 2021;10:451. PubMed PMC
Kusy D., He J.W., Bybee S.M., Motyka M., Bi W.X., Podsiadlowski L., Li X.Y., Bocak L. Phylogenomic relationships of bioluminescent elateroids define the 'lampyroid' clade with clicking Sinopyrophoridae as its earliest member. Syst. Entomol. 2021;46:111–123.
Kusy D., Motyka M., Bocak L. Ontogenetic modifications produce similar phenotypes in distantly related click beetles (Coleoptera: Elateridae) Insect Syst. Divers. 2023;7:16.
Kusy D., Motyka M., Bocek M., Vogler A.P., Bocak L. Genome sequences identify three families of Coleoptera as morphologically derived click beetles (Elateridae) Sci. Rep. 2018;8 PubMed PMC
Stibick J.N.L. Classification of the Elateridae (Coleoptera) - relationships of the subfamilies and tribes Pac. Ins. 1979;20:145–186.
Kundrata R., Bocak L. The phylogeny and limits of Elateridae (Insecta, Coleoptera): is there a common tendency of click beetles to soft-bodiedness and neoteny? Zool. Scr. 2011;40:364–378.
Calder A.A. CSIRO Publishing; 1996. Click Beetles: Genera of the Australian Elateridae (Coleoptera)
Dolin V.G. Zoologicheskii Institut; 2000. Znachenie Lichinochnykh Priznakov I Zhilkovaniya Krylev V Sistematike Elateroidea (Coleoptera) [A Role of Larval and Wing Venation Characters in the Systematics of Elateroidea (Coleoptera)]
Kusy D., Motyka M., Bocak L. Click beetle mitogenomics with the definition of a new subfamily Hapatesinae from Australasia (Coleoptera: Elateridae) Insects. 2020;12:17. PubMed PMC
Neboiss A. The genera Hapatesus Candèze and Toorongus, gen. nov. (Coleoptera: Elateridae) Aust. J. Zool. 1957;5:496–520.
Neboiss A. Genus Hapatesus from Austro-Malayan sub-region (Coleoptera: Elateridae) Proc. R. Soc. Vict. 1958;70:169–174.
Costa C. Systematics and evolution of the tribes Pyrophorini and Heligmini, with description of Campyloxeninae, new subfamily (Coleoptera, Elateridae) Arq. Zool. (Sao Paulo) 1975;26:49–190.
Hyslop J.A. The phylogeny of the Elateridae based on larval characters. Ann. Entomol. Soc. Am. 1917;10:241–263.
Calder A.A. Notes on Parablax Schwarz and the subfamily Pityobiinae with description of Parablax ossa sp. n. from Tasmania (Coleoptera: Elateridae) Aust. J. Entomol. 1992;31:143–158.
Crowson R.A. On some new characters of classificatory importance in adults of Elateridae (Coleoptera) Entomol. Month. Mag. 1961;96:158–161.
Dolin V.G. Wing venation in click-beetles and its significance for the taxonomy of the family. Zool. Zhurn. 1975;54:1618–1633.
Arias-Bohart E.T., Elgueta M. Description of Sharon gen. nov. for the Chilean species Asaphes amoenus Philippi, 1861 (Coleoptera: Elateridae) Eur. J. Taxon. 2015;142:1–15.
Johnson P.J. In: Elateridae Leach 1815. American Beetles, Arnett R.H., Thomas M.C., Skelley P.E., Frank J.H., editors. CrC Press; 2002. pp. 160–173.
Douglas H. Phylogenetic relationships of Elateridae inferred from adult morphology, with special reference to the position of Cardiophorinae. Zootaxa. 2011;2900:1–45.
Kundrata R., Bocakova M., Bocak L. The comprehensive phylogeny of the superfamily Elateroidea (Coleoptera: Elateriformia) Mol. Phyl. Evol. 2014;76:162–171. PubMed
Bocak L., Barton C., Crampton-Platt A., Chesters D., Ahrens D., Vogler A.P. Building the Coleoptera tree-of-life for > 8000 species: composition of public DNA data and fit with Linnaean classification. Syst. Entomol. 2014;39:97–110.
McKenna D.D., Shin S., Ahrens D., Balke M., Beza-Beza C., Clarke D.J., Donath A., Escalona H.E., Friedrich F., Letsch H., et al. The evolution and genomic basis of beetle diversity. Proc. Natl. Acad. Sci. USA. 2019;116:24729–24737. PubMed PMC
McKenna D.D., Wild A.L., Kanda K., Bellamy C.L., Beutel R.G., Caterino M.S., Farnum C.W., Hawks D.C., Ivie M.A., Jameson M.L., et al. The beetle tree of life reveals that Coleoptera survived end-Permian mass extinction to diversify during the Cretaceous terrestrial revolution. Syst. Entomol. 2015;40:835–880.
Arias-Bohart E. Malalcahuello ocaresi gen. & sp. n. (Elateridae, Campyloxeninae) ZooKeys. 2015;508:1–13. PubMed PMC
Whalley P.E.S. The systematic and palaeogeography of the Lower Jurassic insects from Dorset, England. Bull. Brit. Mus. Nat. Hist. (Geol.) 1985;39:107–189.
Dolin V.G. To the systematics of the Mesozoic click-beetles (Coleoptera, Elateridae) Paleontol. J. 1975;4:51–62.
Dolin V.G. In: Iskopaemye nasekomye mezozoya [Fossil insects of the Mesozoic] Dolin V.G., Panfilov D.V., Ponomarenko A.G., Pritkyna L.N., editors. Naukova Dumka; 1980. Click beetles (Coleoptera, Elateridae) from the Upper Jurassic of Karatau. [40]+136 pp.+121 pls.
Chang H., Kirejtshuk A., Ren D. New fossil elaterids (Coleoptera: Polyphaga: Elateridae) from Jehol Biota in China. Ann. Entomol. Soc. Am. 2010;103:866–874.
Chang H., Ren D., Shih C. New fossil elaterid (Coleoptera: Polyphaga: Elateridae) from Yixian Formation of western Liaoning, China. Progr. Nat. Sci. 2007;17:1244–1249.
Sohn J.C., Nam G.S., Choi S.W., Ren D. New fossils of Elateridae (Insecta, Coleoptera) from Early Cretaceous Jinju Formation (South Korea) with their implications to evolutionary diversity of extinct Protagrypninae. PLoS One. 2019;14 PubMed PMC
Kirejtschuk A.G., Ponomarenko A.G. Catalogue of fossil Coleoptera. 2023. https://www.zin.ru/Animalia/Coleoptera/eng/paleosys.htm
Alexeev A.V. New click beetles (Coleoptera: Elateridae) from the Cretaceous of Russia and Kazakhstan. Paleontol. J. 2011;45:423–431.
Kirejtshuk A.G., Azar D. Current knowledge of Coleoptera (Insecta) from the Lower Cretaceous Lebanese amber and taxonomical notes for some Mesozoic groups. Terr. Arthropod Rev. 2013;6:103–134.
Otto R.L. Descriptions of two new elateroid beetles (Coleoptera: Eucnemidae, Elateridae) from Burmese amber. Insecta Mundi. 2019;702:1–6.
Sanmartín I., Ronquist F. Southern Hemisphere biogeography inferred by event-based models: Plant versus animal patterns. Syst. Biol. 2004;53:216–243. PubMed
Fallon T.R., Lower S.E., Chang C.H., Bessho-Uehara M., Martin G.J., Bewick A.J., Behringer M., Debat H.J., Wong I., Day J.C., et al. Firefly genomes illuminate parallel origins of bioluminescence in beetles. Elife. 2018;7 PubMed PMC
Powell G.S., Saxton N.A., Pacheco Y.M., Stanger-Hall K.F., Martin G.J., Kusy D., Felipe Lima Da Silveira L., Bocak L., Branham M.A., Bybee S.M. Beetle bioluminescence outshines extant aerial predators. Proc. Biol. Sci. 2022;289:20220821. PubMed PMC
Oba Y., Konishi K., Yano D., Shibata H., Kato D., Shirai T. Resurrecting the ancient glow of the fireflies. Sci. Adv. 2020;6:eabc5705. PubMed PMC
Oba Y., Schultz D.T. Firefly genomes illuminate the evolution of beetle bioluminescent systems. Curr. Opin. Insect Sci. 2022;50 PubMed
Zaragoza-Caballero S., Zurita-García M.L., Ramírez-Ponce A. The on-off pattern in the evolution of the presence of bioluminescence in a derived lineage from fireflies of Mexico (Coleoptera, Lampyridae) Zool. Anz. 2023;302:266–283.
Eisner T., Wiemer D.F., Haynes L.W., Meinwald J. Lucibufagins: defensive steroids from the fireflies Photinus ignitus and P. marginellus (Coleoptera: Lampyridae) Proc. Natl. Acad. Sci. USA. 1978;75:905–908. PubMed PMC
Oba Y., Inouye S. 14th International Symposium on Bioluminescence and Chemiluminescence held in San Diego, CA, Oct 15–19. 2006. Firefly luciferase arose from fatty acyl-coa synthetase by gene duplication and gene recruitment; pp. 19–21.
Martin G.J., Lord N.P., Branham M.A., Bybee S.M. Review of the firefly visual system (Coleoptera: Lampyridae) and evolution of the opsin genes underlying color vision. Org. Divers. Evol. 2015;15:513–526.
Oba Y., Furuhashi M., Bessho M., Sagawa S., Ikeya H., Inouye S. Bioluminescence of a firefly pupa: involvement of a luciferase isotype in the dim glow of pupae and eggs in the Japanese firefly, Luciola lateralis. Photochem. Photobiol. Sci. 2013;12:854–863. PubMed
Lawrence J.F., Ślipiński A., Seago A.E., Thayer M.K., Newton A.F., Marvaldi A.E. Phylogeny of the Coleoptera based on morphological characters of adults and larvae. Annal. Zool. 2011;61:1–217.
Lawrence J.F., Zhou Y.L., Lemann C., Sinclair B., Ślipiński A. The hind wing of Coleoptera (Insecta): morphology, nomenclature, and phylogenetic significance. Part 1. General discussion and Archostemata-Elateroidea. Annal. Zool. 2021;71:421–606.
Rosa S.P., Costa C. Description of the larva of Alampoides alychnus (Kirsch, 1873), the first known species with bioluminescent immatures in Euplinthini (Elateridae, Agrypninae) Pap. Avulsos Zool. (Sao Paulo) 2013;53:301–307.
Barbosa F.F. Revision and phylogeny of the genus Balgus Fleutiaux, 1920 (Coleoptera, Elateridae, Thylacosterninae) Zootaxa. 2016;4083:451–482. PubMed
Costa C. Note on the bioluminescence of Balgus schnusei (Heller, 1914) (Trixagidae, Coleoptera) Rev. Bras. Entomol. 1984;28:397–398.
Fairmaire L., Germain P. 1860. Coleoptera Chilensia (Typographie F. Malteste et cie)
Schwarz O. In: Genera Insectorum. Wytsman P., editor. P. Wytsman; 1906. Coleoptera. Fam. Elateridae; pp. 1–370.
Colepicolo-Neto P., Costa C., Bechara E.J.H. Brazilian species of luminescent Elateridae. Ins. Biochem. 1986;16:803–810.
Bocakova M., Bocak L., Hunt T., Teraväinen M., Vogler A.P. Molecular phylogenetics of Elateriformia (Coleoptera): evolution of bioluminescence and neoteny. Cladistics. 2007;23:477–496.
Calder A.A. In: Wells A., editor. Volume 29.6. CSIRO Publishing; 1998. Coleoptera: Elateroidea. (Zoological Catalogue of Australia).
Pineda C., Diéguez V.M. Nuevos taxones del género Sharon Arias-Bohart & Elgueta, 2015 y primer registro de la subfamilia Lissominae Laporte, 1835 para Chile (Coleoptera: Elateridae) Bol. Mus. nat. hist. natur. Paraguay. 2022;26:93–103.
Ulrich G.W. University of California; 1988. The Phylogeny of the Pityobiinae Based upon Larval Morphology (Elateridae: Coleoptera) Ph.D. Dissertation.
Angulo A.O. Descripción de la larva y pupa de Tibionema abdominalis (Guérin) (Coleoptera: Elateridae) Bol. Soc. Biol. Conc. 1970;42:307–311.
Bi W.X., He J.W., Chen C.C., Kundrata R., Li X.Y. Sinopyrophorinae, a new subfamily of Elateridae (Coleoptera, Elateroidea) with the first record of a luminous click beetle in Asia and evidence for multiple origins of bioluminescence in Elateridae. ZooKeys. 2019;864:79–97. PubMed PMC
Sagegami-Oba R., Oba Y., Ohira H. Phylogenetic relationships of click beetles (Coleoptera: Elateridae) inferred from 28S ribosomal DNA: Insights into the evolution of bioluminescence in Elateridae. Mol. Phyl. Evol. 2007;42:410–421. PubMed
Bocak L., Motyka M., Bocek M., Bocakova M. Incomplete sclerotization and phylogeny: The phylogenetic classification of Plastocerus (Coleoptera: Elateroidea) PLoS One. 2018;13 PubMed PMC
Steenwyk J.L., Li Y., Zhou X., Shen X.-X., Rokas A. Incongruence in the phylogenomics era. Nat. Rev. Genet. 2023;17 PubMed PMC
Klages J.P., Salzmann U., Bickert T., Hillenbrand C.D., Gohl K., Kuhn G., Bohaty S.M., Titschack J., Müller J., Frederichs T., et al. Temperate rainforests near the South Pole during peak Cretaceous warmth. Nature. 2020;580:81–86. PubMed
Hall R. Late Jurassic-Cenozoic reconstructions of the Indonesian region and the Indian Ocean. Tectonophysics. 2012;570–571:1–41.
Viviani V.R., Pelentir G.F., Bevilaqua V.R. Bioluminescence color-tuning firefly luciferases: engineering and prospects for real-time intracellular pH imaging and heavy metal biosensing. Biosensors-Basel. 2022;12:400. PubMed PMC
Timmermans M.J.T.N., Barton C., Haran J., Ahrens D., Culverwell C.L., Ollikainen A., Dodsworth S., Foster P.G., Bocak L., Vogler A.P. Family-Level sampling of mitochondrial genomes in Coleoptera: compositional heterogeneity and phylogenetics. Genome Biol. Evol. 2015;8:161–175. PubMed PMC
Linard B., Crampton-Platt A., Moriniere J., Timmermans M.J.T.N., Andújar C., Arribas P., Miller K.E., Lipecki J., Favreau E., Hunter A., et al. The contribution of mitochondrial metagenomics to large-scale data mining and phylogenetic analysis of Coleoptera. Mol. Phyl. Evol. 2018;128:1–11. PubMed
Bertkau P. Beschreibung der Larve and des Weibchen von Homalisus suturalis. Deut. Entomol. Z. 1891;1891:37–42.
Beutel R.G. Phylogenetic analysis of Elateriformia (Coleoptera: Polyphaga) based on larval characters. J. Zool. Syst. Evol. Res. 2009;33:145–171.
Burakowski B. Observations on the larval morphology and biology of Omalisus fontibellaquei Fourcroy (Coleoptera, Homalisidae) Pol. Pismo Entomol. 1988;58:571–574.
Brlik M., Bocak L. Revision of the family Omalisidae (Coleoptera, Elateroidea) Insect Syst. Evol. 2008;39:189–212.
Bocek M., Fancello L., Motyka M., Bocakova M., Bocak L. The molecular phylogeny of Omalisidae (Coleoptera) defines the family limits and demonstrates low dispersal propensity and ancient vicariance patterns. Syst. Entomol. 2018;43:250–261.
Kazantsev S.V. Protoluciola albertalleni gen. n., sp. n., a new Luciolinae firefly (Insecta: Coleoptera: Lampyridae) from Burmite amber. Russ. Entomol. J. 2015;24:281–283.
Berger A., Petschenka G., Degenkolb T., Geisthardt M., Vilcinskas A. Insect collections as an untapped source of bioactive compounds - fireflies (Coleoptera: Lampyridae) and cardiotonic steroids as a proof of concept. Insects. 2021;12:689. PubMed PMC
Machado V., Araujo A.M., Serrano J., Galián J. Phylogenetic relationships and the evolution of mimicry in the Chauliognathus yellow-black species complex (Coleoptera: Cantharidae) inferred from mitochondrial COI sequences. Genet. Mol. Biol. 2004;27:55–60.
Islami I., Nikbakhtzadeh M.R. New records of canthariphily among beetles (Coleoptera) from Iran. Turk. J. Entomol. 2009;33:243–251.
Motyka M., Kusy D., Masek M., Bocek M., Li Y., Bilkova R., Kapitán J., Yagi T., Bocak L. Conspicuousness, phylogenetic structure, and origins of Mullerian mimicry in 4000 lycid beetles from all zoogeographic regions. Sci. Rep. 2021;11:5961. PubMed PMC
Sherratt T.N. The evolution of Mullerian mimicry. Naturwissenschaften. 2008;95:681–695. PubMed PMC
Viviani V.R. Looking into luciferin. Nat. Chem. 2023;15:742. PubMed
Woods W.A., Hendrickson H., Mason J., Lewis S.M. Energy and predation costs of firefly courtship signals. Am. Nat. 2007;170:702–708. PubMed
Chen S., Zhou Y., Chen Y., Gu J. Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34:i884–i890. PubMed PMC
Bankevich A., Nurk S., Antipov D., Gurevich A.A., Dvorkin M., Kulikov A.S., Lesin V.M., Nikolenko S.I., Pham S., Prjibelski A.D., et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012;19:455–477. PubMed PMC
Stanke M., Waack S. Gene prediction with a hidden Markov model and a new intron submodel. Bioinformatics. 2003;19:II215–II225. PubMed
Manni M., Berkeley M.R., Seppey M., Simão F.A., Zdobnov E.M. BUSCO update: novel and streamlined workflows along with broader and deeper phylogenetic coverage for scoring of eukaryotic, prokaryotic, and viral genomes. Mol. Biol. Evol. 2021;38:4647–4654. PubMed PMC
Petersen M., Meusemann K., Donath A., Dowling D., Liu S., Peters R.S., Podsiadlowski L., Vasilikopoulos A., Zhou X., Misof B., Niehuis O. Orthograph: a versatile tool for mapping coding nucleotide sequences to clusters of orthologous genes. BMC Bioinf. 2017;18:111. PubMed PMC
Katoh K., Standley D.M. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol. Biol. Evol. 2013;30:772–780. PubMed PMC
Minh B.Q., Schmidt H.A., Chernomor O., Schrempf D., Woodhams M.D., von Haeseler A., Lanfear R. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 2020;37:1530–1534. PubMed PMC
Rambaut A., Drummond A.J., Xie D., Baele G., Suchard M.A. Posterior Summarization in Bayesian Phylogenetics Using Tracer 1.7. Syst. Biol. 2018;67:901–904. PubMed PMC
Zdobnov E.M., Tegenfeldt F., Kuznetsov D., Waterhouse R.M., Simão F.A., Ioannidis P., Seppey M., Loetscher A., Kriventseva E.V. OrthoDB v9.1: cataloging evolutionary and functional annotations for animal, fungal, plant, archaeal, bacterial and viral orthologs. Nucl. Acids Res. 2017;45:D744–D749. PubMed PMC
Zhang S.Q., Che L.H., Li Y., Liang D., Pang H., Ślipiński A., Zhang P. Evolutionary history of Coleoptera revealed by extensive sampling of genes and species. Nat. Commun. 2018;9:205. PubMed PMC
Zhang C., Rabiee M., Sayyari E., Mirarab S. ASTRAL-III: polynomial time species tree reconstruction from partially resolved gene trees. BMC Bioinf. 2018;19:153. PubMed PMC
Shimodaira H. An approximately unbiased test of phylogenetic tree selection. Syst. Biol. 2002;51:492–508. PubMed
Kishino H., Hasegawa M. Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA-sequence data, and the branching order in Hominoidea. J. Mol. Evol. 1989;29:170–179. PubMed
Shimodaira H., Hasegawa M. Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Mol. Biol. Evol. 1999;16:1114–1116.
Strimmer K., Rambaut A. Inferring confidence sets of possibly misspecified gene trees. Proc. Biol. Sci. 2002;269:137–142. PubMed PMC
Kishino H., Miyata T., Hasegawa M. Maximum-likelihood inference of protein phylogeny and the origin of chloroplasts. J. Mol. Evol. 1990;31:151–160.
Strimmer K., von Haeseler A. Likelihood-mapping: A simple method to visualize phylogenetic content of a sequence alignment. Proc. Natl. Acad. Sci. USA. 1997;94:6815–6819. PubMed PMC
Brower A.V. Rapid morphological radiation and convergence among races of the butterfly Heliconius-erato inferred from patterns of mitochondrial DNA evolution. Proc. Natl. Acad. Sci. USA. 1994;91:6491–6495. PubMed PMC
figshare
10.6084/m9.figshare.24316531