Anchored Phylogenomics, Evolution and Systematics of Elateridae: Are All Bioluminescent Elateroidea Derived Click Beetles?
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
J-001564
Government of Canada
J-002279
Government of Canada
PubMed
34063961
PubMed Central
PMC8224040
DOI
10.3390/biology10060451
PII: biology10060451
Knihovny.cz E-zdroje
- Klíčová slova
- Elateridae, Lampyridae, Phengodidae, Rhagophthalmidae, Sinopyrophoridae, anchored hybrid enrichment, baitset, classification, four-cluster likelihood mapping, phylogenomics,
- Publikační typ
- časopisecké články MeSH
Click-beetles (Coleoptera: Elateridae) are an abundant, diverse, and economically important beetle family that includes bioluminescent species. To date, molecular phylogenies have sampled relatively few taxa and genes, incompletely resolving subfamily level relationships. We present a novel probe set for anchored hybrid enrichment of 2260 single-copy orthologous genes in Elateroidea. Using these probes, we undertook the largest phylogenomic study of Elateroidea to date (99 Elateroidea, including 86 Elateridae, plus 5 non-elateroid outgroups). We sequenced specimens from 88 taxa to test the monophyly of families, subfamilies and tribes. Maximum likelihood and coalescent phylogenetic analyses produced well-resolved topologies. Notably, the included non-elaterid bioluminescent families (Lampyridae + Phengodidae + Rhagophthalmidae) form a clade within the otherwise monophyletic Elateridae, and Sinopyrophoridae may not warrant recognition as a family. All analyses recovered the elaterid subfamilies Elaterinae, Agrypninae, Cardiophorinae, Negastriinae, Pityobiinae, and Tetralobinae as monophyletic. Our results were conflicting on whether the hypnoidines are sister to Dendrometrinae or Cardiophorinae + Negastriinae. Moreover, we show that fossils with the eucnemid-type frons and elongate cylindrical shape may belong to Eucnemidae, Elateridae: Thylacosterninae, ancestral hard-bodied cantharoids or related extinct groups. Proposed taxonomic changes include recognition of Plastocerini as a tribe in Dendrometrinae and Hypnoidinae stat. nov. as a subfamily within Elateridae.
Zobrazit více v PubMed
Costa C., Lawrence J.F., Rosa S.P. Elateridae Leach, 1815. In: Leschen R.A.B., Beutel R.G., Lawrence J.F., editors. Handbook of Zoology, Arthropoda: Insecta: Coleoptera Beetles. Volume 2. Walter de Gruyter GmbH & Co.; Berlin, Germany: 2010. pp. 75–103. Morphology and Systematics (Elateroidea, Bostrichiformia, Cucujiformia partim)
McKenna D.D., Shin S., Ahrens D., Balke M., Beza-Beza C., Clarke D.J., Donath A., Escalona H.E., Friedrich F., Letsch H., et al. The evolution and genomic basis of beetle diversity. Proc. Natl. Acad. Sci. USA. 2019;116:24729–24737. doi: 10.1073/pnas.1909655116. PubMed DOI PMC
McKenna D.D., Wild A.L., Kanda K., Bellamy C.L., Beutel R.G., Caterino M.S., Farnum C.W., Hawks D.C., Ivie M.A., Jameson M.L., et al. The beetle tree of life reveals that Coleoptera survived end-Permian mass extinction to diversify during the Cretaceous terrestrial revolution. Syst. Entomol. 2015;40:835–880. doi: 10.1111/syen.12132. DOI
Kundrata R., Packova G., Hoffmannova J. Fossil genera in Elateridae (Insecta, Coleoptera): A Triassic origin and Jurassic diversification. Insects. 2020;11:394. doi: 10.3390/insects11060394. PubMed DOI PMC
Kundrata R., Packova G., Prosvirov A., Hoffmannova J. The fossil record of Elateridae (Coleoptera: Elateroidea): Described species, current problems and future prospects. Insects. 2021;12:286. doi: 10.3390/insects12040286. PubMed DOI PMC
Kusy D., He J.-W., Bybee S.M., Motyka M., Bi W.-X., Podsiadlowski L., Li X.-Y., Bocak L. Phylogenomic relationships of bio-luminescent elateroids define the ‘lampyroid’ clade with clicking Sinopyrophoridae as its earliest member. Syst. Entomol. 2021;46:111–123. doi: 10.1111/syen.12451. DOI
Bouchard P., Smith A.B.T., Douglas H.B., Gimmel M.L., Brunke A.J., Kanda K. Biodiversity of Coleoptera. In: Foottit R.G., Adler P.H., editors. Insect Biodiversity: Science and Society. 2nd ed. John Wiley and Sons Ltd.; West Sussex, UK: 2017. pp. 337–417.
Calder A.A., Lawrence J.F., Trueman J.W.H. Austrelater, gen. nov. (Coleoptera: Elateridae), with a description of the larva and comments on elaterid relationships. Invertebr. Taxon. 1993;7:1349–1394. doi: 10.1071/IT9931349. DOI
Douglas H. Phylogenetic relationships of Elateridae inferred from adult morphology, with special reference to the position of Cardiophorinae. Zootaxa. 2011;2900:1–45. doi: 10.11646/zootaxa.2900.1.1. DOI
Kundrata R., Bocak L. The phylogeny and limits of Elateridae (Insecta, Coleoptera): Is there a common tendency of click beetles to soft-bodiedness and neoteny? Zool. Scr. 2011;40:364–378. doi: 10.1111/j.1463-6409.2011.00476.x. DOI
Kundrata R., Bocakova M., Bocak L. The comprehensive phylogeny of the superfamily Elateroidea (Coleoptera: Elateriformia) Mol. Phylogenet. Evol. 2014;76:162–171. doi: 10.1016/j.ympev.2014.03.012. PubMed DOI
Kundrata R., Gunter N.L., Douglas H., Bocak L. Next step toward a molecular phylogeny of click-beetles (Coleoptera: Elateridae): Redefinition of Pityobiinae, with a description of a new subfamily Parablacinae from the Australasian Region. Austral. Entomol. 2016;55:291–302. doi: 10.1111/aen.12185. DOI
Kundrata R., Gunter N.L., Janosikova D., Bocak L. Molecular evidence for the subfamilial status of Tetralobinae (Coleoptera: Elateridae), with comments on parallel evolution of some phenotypic characters. Arthropod. Syst. Phyl. 2018;76:137–145.
Bocak L., Motyka M., Bocek M., Bocakova M. Incomplete sclerotization and phylogeny: The phylogenetic classification of Plastocerus (Coleoptera: Elateroidea) PLoS ONE. 2018;13:e0194026. doi: 10.1371/journal.pone.0194026. PubMed DOI PMC
Bi W.-X., He J.-W., Chen C.-C., Kundrata R., Li X.-Y. Sinopyrophorinae, a new subfamily of Elateridae (Coleoptera, Elateroidea) with the first record of a luminous click beetle in Asia and evidence for multiple origins of bioluminescence in Elateridae. ZooKeys. 2019;864:79–97. doi: 10.3897/zookeys.864.26689. PubMed DOI PMC
Kusy D., Motyka M., Bocek M., Vogler A.P., Bocak L. Genome sequences identify three families of Coleoptera as morphologically derived click beetles (Elateridae) Sci. Rep. 2018;8:1–9. doi: 10.1038/s41598-018-35328-0. PubMed DOI PMC
Martin G.J., Stanger-Hall K.F., Branham M.A., Da Silveira L.F.L., Lower S.E., Hall D.W., Li X.-Y., Lemmon A.R., Lemmon E.M., Bybee S.M. Higher-level phylogeny and reclassification of Lampyridae (Coleoptera: Elateroidea) Insect Syst. Divers. 2019;3:1–15. doi: 10.1093/isd/ixz024. DOI
Douglas H.B. World reclassification of the Cardiophorinae (Coleoptera, Elateridae), based on phylogenetic analyses of morpho-logical characters. ZooKeys. 2017;655:1–130. doi: 10.3897/zookeys.655.11894. PubMed DOI PMC
Kusy D., Motyka M., Bocak L. Click Beetle mitogenomics with the definition of a new subfamily Hapatesinae from Australasia (Coleoptera: Elateridae) Insects. 2021;12:17. doi: 10.3390/insects12010017. PubMed DOI PMC
Sagegami-Oba R., Oba Y., Ôhira H. Phylogenetic relationships of click beetles (Coleoptera: Elateridae) inferred from 28S ribosomal DNA: Insights into the evolution of bioluminescence in Elateridae. Mol. Phylogenet. Evol. 2007;42:410–421. doi: 10.1016/j.ympev.2006.07.017. PubMed DOI
Hamilton C.A., Lemmon A.R., Lemmon E.M., Bond J.E. Expanding anchored hybrid enrichment to resolve both deep and shallow relationships within the spider tree of life. BMC Evol. Biol. 2016;16:212. doi: 10.1186/s12862-016-0769-y. PubMed DOI PMC
Dietrich C.H., Allen J.M., Lemmon A.R., Lemmon E.M., Takiya D.M., Evangelista O., Walden K.K.O., Grady P.G.S., Johnson K.P. Anchored hybrid enrichment-based phylogenomics of leafhoppers and treehoppers (Hemiptera: Cicadomorpha: Membracoidea) Insect Syst. Divers. 2017;1:57–72. doi: 10.1093/isd/ixx003. DOI
Haddad S., Shin S., Lemmon A.R., Lemmon E.M., Svacha P., Farrell B., Ślipiński A., Windsor D., McKenna D.D. Anchored hybrid enrichment provides new insights into the phylogeny and evolution of Longhorned Beetles (Cerambycidae) Syst. Entomol. 2017;43:68–89. doi: 10.1111/syen.12257. DOI
Shin S., Clarke D.J., Lemmon A.R., Lemmon E.M., Aitken A.L., Haddad S., Farrell B.D., Marvaldi A.E., Oberprieler R.G., McKenna D.D. Phylogenomic data yield new and robust insights into the phylogeny and evolution of Weevils. Mol. Biol. Evol. 2018;35:823–836. doi: 10.1093/molbev/msx324. PubMed DOI
Bouchard P., Bousquet Y., Davies A.E., Alonso-Zarazaga M.A., Lawrence J.F., Lyal C.H.C., Newton A.F., Reid C.A.M., Schmitt M., Ślipiński S.A., et al. Family-group names in Coleoptera (Insecta) ZooKeys. 2011;88:1–972. doi: 10.3897/zookeys.88.807. PubMed DOI PMC
Rosa S.P. Phylogenetic analysis and taxonomic revision of Physodactylinae (Coleoptera, Elateridae) Pap. Avulsos Zool. 2014;54:217–292. doi: 10.1590/0031-1049.2014.54.18. DOI
Petersen M., Meusemann K., Donath A., Dowling D., Liu S., Peters R.S., Podsiadlowski L., Vasilikopoulos A., Zhou X., Misof B., et al. Orthograph: A versatile tool for mapping coding nucleotide sequences to clusters of orthologous genes. BMC Bioinform. 2017;18:1–10. doi: 10.1186/s12859-017-1529-8. PubMed DOI PMC
Kriventseva E.V., Kuznetsov D., Tegenfeldt F., Manni M., Dias R., Simão F.A., Zdobnov E.M. OrthoDB v10: Sampling the diversity of animal, plant, fungal, protist, bacterial and viral genomes for evolutionary and functional annotations of orthologs. Nucleic Acids Res. 2019;47:D807–D811. doi: 10.1093/nar/gky1053. PubMed DOI PMC
Magis C., Taly J.F., Bussotti G., Chang J.M., Di Tommaso P., Erb I., Espinosa-Carrasco J., Notredame C. T-coffee: Tree-based consistency objective function for alignment evaluation. Methods Mol. Biol. 2014;1079:117–129. PubMed
Rice P., Longden I., Bleasby A. EMBOSS: The European Molecular Biology Open Software Suite. Trends Genet. 2000;16:276–277. doi: 10.1016/S0168-9525(00)02024-2. PubMed DOI
Faircloth B.C. PHYLUCE is a software package for the analysis of conserved genomic loci. Bioinformatics. 2016;32:786–788. doi: 10.1093/bioinformatics/btv646. PubMed DOI
Köster J., Rahmann S. Snakemake—A scalable bioinformatics workflow engine. Bioinformatics. 2012;28:2520–2522. doi: 10.1093/bioinformatics/bts480. PubMed DOI
Bushnell B., Rood J., Singer E. BBMerge—Accurate Paired Shotgun Read Merging via Overlap. PLoS ONE. 2017;12:e0185056. doi: 10.1371/journal.pone.0185056. PubMed DOI PMC
Jackman S.D., Vandervalk B.P., Mohamadi H., Chu J., Yeo S., Hammond S.A., Jahesh G., Khan H., Coombe L., Warren R.L., et al. ABySS 2.0: Resource-efficient assembly of large genomes using a Bloom filter. Genome Res. 2017;27:768–777. doi: 10.1101/gr.214346.116. PubMed DOI PMC
Nurk S., Bankevich A., Antipov D., Gurevich A.A., Korobeynikov A., Lapidus A., Prjibelski A.D., Pyshkin A., Sirotkin A., Sirotkin Y., et al. Assembling single-cell genomes and mini-metagenomes from chimeric MDA products. J. Comput. Biol. 2013;20:714–737. doi: 10.1089/cmb.2013.0084. PubMed DOI PMC
Bushmanova E., Antipov D., Lapidus A., Prjibelski A.D. rnaSPAdes: A de novo transcriptome assembler and its application to RNA-Seq data. GigaScience. 2019;8 doi: 10.1093/gigascience/giz100. PubMed DOI PMC
Hedin M., Derkarabetian S., Ramírez M.J., Vink C., Bond J.E. Phylogenomic reclassification of the world’s most venomous spiders (Mygalomorphae, Atracinae), with implications for venom evolution. Sci. Rep. 2018;8:1–7. doi: 10.1038/s41598-018-19946-2. PubMed DOI PMC
Katoh K., Misawa K., Kuma K., Miyata T. Mafft: A novel method for rapid multiple sequence alignment based on fast fourier transform. Nucleic Acids Res. 2002;30:3059–3066. doi: 10.1093/nar/gkf436. PubMed DOI PMC
Talavera G., Castresana J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst. Biol. 2007;56:564–577. doi: 10.1080/10635150701472164. PubMed DOI
Borowiec M.L. AMAS: A fast tool for alignment manipulation and computing of summary statistics. PeerJ. 2016;4:e1660. doi: 10.7717/peerj.1660. PubMed DOI PMC
Nguyen L.-T., Schmidt H.A., Von Haeseler A., Minh B.Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015;32:268–274. doi: 10.1093/molbev/msu300. PubMed DOI PMC
Lanfear R., Frandsen P.B., Wright A.M., Senfeld T., Calcott B. PartitionFinder 2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. 2017;34:772–773. doi: 10.1093/molbev/msw260. PubMed DOI
Lanfear R., Calcott B., Kainer D., Mayer C., Stamatakis A. Selecting optimal partitioning schemes for phylogenomic datasets. BMC Evol. Biol. 2014;14:82. doi: 10.1186/1471-2148-14-82. PubMed DOI PMC
Stamatakis A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–1313. doi: 10.1093/bioinformatics/btu033. PubMed DOI PMC
Espeland M., Breinholt J., Willmott K.R., Warren A.D., Vila R., Toussaint E.F., Maunsell S.C., Aduse-Poku K., Talavera G., Eastwood R., et al. A comprehensive and dated phylogenomic analysis of butterflies. Curr. Biol. 2018;28:770–778.e5. doi: 10.1016/j.cub.2018.01.061. PubMed DOI
Gough H.M., Allen J.M., A Toussaint E.F., Storer C.G., Kawahara A.Y. Transcriptomics illuminate the phylogenetic backbone of tiger beetles. Biol. J. Linn. Soc. 2020;129:740–751. doi: 10.1093/biolinnean/blz195. DOI
Duchêne D., Tong K.J., Foster C.S.P., Duchêne S., Lanfear R., Ho S.Y.W. Linking branch lengths across sets of loci provides the highest statistical support for phylogenetic inference. Mol. Biol. Evol. 2019;37:1202–1210. doi: 10.1093/molbev/msz291. PubMed DOI
Hoang D.T., Chernomor O., Von Haeseler A., Minh B.Q., Vinh L.S. UFBoot2: Improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 2018;35:518–522. doi: 10.1093/molbev/msx281. PubMed DOI PMC
Guindon S., Dufayard J.-F., Lefort V., Anisimova M., Hordijk W., Gascuel O. New algorithms and methods to estimate maxi-mum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Syst. Biol. 2010;59:307–321. doi: 10.1093/sysbio/syq010. PubMed DOI
Zhang C., Rabiee M., Sayyari E., Mirarab S. ASTRAL-III: Polynomial time species tree reconstruction from partially resolved gene trees. BMC Bioinform. 2018;19:15–30. doi: 10.1186/s12859-018-2129-y. PubMed DOI PMC
Miller M.A., Pfeiffer W., Schwartz T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees; Proceedings of the 2010 Gateway Computing Environments Workshop (GCE); New Orleans, LA, USA. 14 November 2010; pp. 1–8. DOI
Strimmer K., von Haeseler A. Likelihood-mapping: A simple method to visualize phylogenetic content of a sequence alignment. Proc. Natl. Acad. Sci. USA. 1997;94:6815–6819. doi: 10.1073/pnas.94.13.6815. PubMed DOI PMC
Misof B., Liu S., Meusemann K., Peters R.S., Donath A., Mayer C., Frandsen P.B., Ware J., Flouri T., Beutel R.G., et al. Phylogenomics resolves the timing and pattern of insect evolution. Science. 2014;346:763–767. doi: 10.1126/science.1257570. PubMed DOI
Vasilikopoulos A., Balke M., Beutel R.G., Donath A., Podsiadlowski L., Pflug J.M., Waterhouse R., Meusemann K., Peters R.S., Escalona H.E., et al. Phylogenomics of the superfamily Dytiscoidea (Coleoptera: Adephaga) with an evaluation of phylogenetic conflict and systematic error. Mol. Phylogenet. Evol. 2019;135:270–285. doi: 10.1016/j.ympev.2019.02.022. PubMed DOI
Brunke A.J., Hansen A.K., Salnitska M., Kypke J.L., Predeus A.V., Escalona H., Chapados J.T., Eyres J., Richter R., Smetana A., et al. The limits of Quediini at last (Staphylinidae: Staphylininae): A rove beetle mega-radiation resolved by comprehensive sampling and anchored phylogenomics. Syst. Entomol. 2021;46:396–421. doi: 10.1111/syen.12468. DOI
Molloy E.K., Warnow T. To include or not to include: The impact of gene filtering on species tree estimation methods. Syst. Biol. 2017;67:285–303. doi: 10.1093/sysbio/syx077. PubMed DOI
Beutel R.G. Phylogenetic analysis of Elateriformia (Coleoptera: Polyphaga) based on larval characters. J. Zool. Syst. Evol. Res. 1995;33:145–171. doi: 10.1111/j.1439-0469.1995.tb00969.x. DOI
Fallon T.R., Lower S.E., Chang C.-H., Bessho-Uehara M., Martin G.J., Bewick A.J., Behringer M., Debat H.J., Wong I., Day J.C., et al. Firefly genomes illuminate parallel origins of bioluminescence in beetles. eLife. 2018;7 doi: 10.7554/eLife.36495. PubMed DOI PMC
Costa C. Note on the bioluminescence of Balgus schnusei (Heller, 1974) (Trixagidae, Coleoptera) Rev. Bras. Entomol. 1984;28:397–398.
Oba Y., Konishi K., Yano D., Shibata H., Kato D., Shirai T. Resurrecting the ancient glow of the fireflies. Sci. Adv. 2020;6:eabc5705. doi: 10.1126/sciadv.abc5705. PubMed DOI PMC
Traugott M., Benefer C.M., Blackshaw R.P., Van Herk W.G., Vernon R.S. Biology, ecology, and control of Elaterid Beetles in agricultural land. Annu. Rev. Entomol. 2015;60:313–334. doi: 10.1146/annurev-ento-010814-021035. PubMed DOI
Baalbergen E., Schelfhorst R., Schilthuizen M. Drilus larvae in the Netherlands (Coleoptera: Elateridae: Drilini) Entomol. Bericht. 2016;76:165–173.
Kondo A., Tanaka F. An experimental study of predation by the larvae of the firefly, Luciola lateralis Motschulsky (Coleoptera: Lampyridae) on the apple snail, Pomacea canaliculata Lamarck (Mesogastropoda: Pilidae) Jpn. J. Appl. Entomol. Zoöl. 1989;33:211–216. doi: 10.1303/jjaez.33.211. DOI
Symondson W.O.C. Coleoptera (Carabidae, Staphylinidae, Lampyridae, Drilidae and Silphidae) as predators of terrestrial gastro-pods. In: Barker G.M., editor. Natural Enemies of Terrestrial Molluscs. Landcare Research; Hamilton, New Zealand: 2004. pp. 37–84.
Traugott M., Pázmándi C., Kaufmann R., Juen A. Evaluating 15N/14N and 13C/12C isotope ratio analysis to investigate trophic relationships of elaterid larvae (Coleoptera: Elateridae) Soil Biol. Biochem. 2007;39:1023–1030. doi: 10.1016/j.soilbio.2006.11.012. DOI
Fleutiaux E. Les élatérides de l’indochine Française. Huitième et dernière partie. Ann. Soc. Entomol. Fr. 1940;109:19–40. (In French)
Muona J., Chang H., Ren D. The clicking Elateroidea from Chinese Mesozoic deposits (Insecta, Coleoptera) Insects. 2020;11:875. doi: 10.3390/insects11120875. PubMed DOI PMC
Hyslop J.A. The phylogeny of the Elateridae based on larval characters. Ann. Entomol. Soc. Am. 1917;10:241–263. doi: 10.1093/aesa/10.3.241. DOI
Ôhira H. Morphological and Taxonomic Study on the Larvae of Elateridae in Japan (Coleoptera) Entomological Laboratory Aichi Gakugei University; Okazaki, Japan: 1962. pp. 1–179.
Stibick J.N.L. Classification of the Elateridae (Coleoptera). Relationships and classification of the subfamilies and tribes. Pac. Insects. 1979;20:145–186.
Johnson P.J. New species of Dioxypterus Fairmaire from Tonga and Fiji, with new distribution records, a tribal reassignment, and key to the species of the region (Coleoptera: Elateridae) Pan Pac. Entomol. 1997;73:156–167.
Dolin V.G. Wing venation of click beetles (Coleoptera, Elateridae) and its importance for taxonomy of the family. Zool. Zhur. 1975;54:1618–1633.
Calder A.A. Click Beetles: Genera of the Australian Elateridae (Coleoptera). Monographs on Invertebrate Taxonomy. Volume 2. CSIRO; Canberra, Australia: 1996. pp. 1–401.
Kundrata R., Kubaczkova M., Prosvirov A.S., Douglas H.B., Fojtikova A., Costa C., Bousquet Y., Alonso-Zarazaga M.A., Bouchard P. World catalogue of the genus-group names in Elateridae (Insecta, Coleoptera). Part I: Agrypninae, Campyloxeninae, Hemiopinae, Lissominae, Oestodinae, Parablacinae, Physodactylinae, Pityobiinae, Subprotelaterinae, Tetralobinae. ZooKeys. 2019;839:83–154. doi: 10.3897/zookeys.839.33279. PubMed DOI PMC
Kundrata R., Bocak L. Molecular phylogeny reveals the gradual evolutionary transition to soft-bodiedness in click-beetles and identifies sub-Saharan Africa as a cradle of diversity for Drilini (Coleoptera: Elateridae) Zoöl. J. Linn. Soc. 2019;187:413–452. doi: 10.1093/zoolinnean/zlz033. DOI
Dajoz R. Anatomie et importance taxinomique des voies génitales femelles d’origine ectodermique chez les Elateridae (Insectes, Coléoptères) Cah. Nat. Bull. Nat. Paris. 1964;20:55–72. (In French)
Rosa S.P., Németh T., Kundrata R. Comparative morphology of immature stages of Ludioctenus cyprius (Baudi di Selve, 1871) (Coleoptera: Elateridae: Agrypninae), with discussion on the monophyly of Hemirhipini. Zool. Anz. 2019;283:33–39. doi: 10.1016/j.jcz.2019.08.002. DOI
Cate P.C. Elateridae Leach, 1815 (- Cebrioninae, Lissominae, Subprotelaterinae) In: Löbl I., Smetana A., editors. Catalogue of Palaearctic Coleoptera. Volume 4. Apollo Books; Stenstrup, Denmark: 2007. pp. 89–209.
Von Hayek C.M.F. A reclassification of the subfamily Agrypninae (Coleoptera: Elateridae) Bull. Brit. Mus. Nat. Hist. 1973;20:1–309.
Johnson P.J. Elateridae Leach 1815. In: Arnett R.H., Thomas M.C., Skelley P.E., Frank J.H., editors. American Beetles. Polyphaga: Scarabaeoidea through Curculionoidea. Volume 2. CRC Press; Boca Raton, FL, USA: 2002. pp. 160–173.
Schimmel R., Tarnawski D., Han T., Platia G. Monograph of the new tribe Selatosomini from China (Elateridae: Denticollinae). Part I: Genera Pristilophus Latreille, 1834 stat. nov., Selatosomus Stephens, 1830, Warchalowskia (Tarnawski, 1995) stat. nov., and Sinophotistus gen. nov. Pol. Entomol. Monogr. 2015;11:1–328.
Li Y.-D., Kundrata R., Tihelka E., Liu Z., Huang D., Cai C. Cretophengodidae, a new Cretaceous beetle family, sheds light on the evolution of bioluminescence. Proc. R. Soc. B Biol. Sci. 2021;288:20202730. doi: 10.1098/rspb.2020.2730. PubMed DOI PMC
Click beetle larvae from Cretaceous Burmese amber represent an ancient Gondwanan lineage
Beetle bioluminescence outshines extant aerial predators
Integrated phylogenomics and fossil data illuminate the evolution of beetles
An unusual elateroid lineage from mid-Cretaceous Burmese amber (Coleoptera: Elateroidea)