Anchored Phylogenomics, Evolution and Systematics of Elateridae: Are All Bioluminescent Elateroidea Derived Click Beetles?

. 2021 May 21 ; 10 (6) : . [epub] 20210521

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34063961

Grantová podpora
J-001564 Government of Canada
J-002279 Government of Canada

Click-beetles (Coleoptera: Elateridae) are an abundant, diverse, and economically important beetle family that includes bioluminescent species. To date, molecular phylogenies have sampled relatively few taxa and genes, incompletely resolving subfamily level relationships. We present a novel probe set for anchored hybrid enrichment of 2260 single-copy orthologous genes in Elateroidea. Using these probes, we undertook the largest phylogenomic study of Elateroidea to date (99 Elateroidea, including 86 Elateridae, plus 5 non-elateroid outgroups). We sequenced specimens from 88 taxa to test the monophyly of families, subfamilies and tribes. Maximum likelihood and coalescent phylogenetic analyses produced well-resolved topologies. Notably, the included non-elaterid bioluminescent families (Lampyridae + Phengodidae + Rhagophthalmidae) form a clade within the otherwise monophyletic Elateridae, and Sinopyrophoridae may not warrant recognition as a family. All analyses recovered the elaterid subfamilies Elaterinae, Agrypninae, Cardiophorinae, Negastriinae, Pityobiinae, and Tetralobinae as monophyletic. Our results were conflicting on whether the hypnoidines are sister to Dendrometrinae or Cardiophorinae + Negastriinae. Moreover, we show that fossils with the eucnemid-type frons and elongate cylindrical shape may belong to Eucnemidae, Elateridae: Thylacosterninae, ancestral hard-bodied cantharoids or related extinct groups. Proposed taxonomic changes include recognition of Plastocerini as a tribe in Dendrometrinae and Hypnoidinae stat. nov. as a subfamily within Elateridae.

Zobrazit více v PubMed

Costa C., Lawrence J.F., Rosa S.P. Elateridae Leach, 1815. In: Leschen R.A.B., Beutel R.G., Lawrence J.F., editors. Handbook of Zoology, Arthropoda: Insecta: Coleoptera Beetles. Volume 2. Walter de Gruyter GmbH & Co.; Berlin, Germany: 2010. pp. 75–103. Morphology and Systematics (Elateroidea, Bostrichiformia, Cucujiformia partim)

McKenna D.D., Shin S., Ahrens D., Balke M., Beza-Beza C., Clarke D.J., Donath A., Escalona H.E., Friedrich F., Letsch H., et al. The evolution and genomic basis of beetle diversity. Proc. Natl. Acad. Sci. USA. 2019;116:24729–24737. doi: 10.1073/pnas.1909655116. PubMed DOI PMC

McKenna D.D., Wild A.L., Kanda K., Bellamy C.L., Beutel R.G., Caterino M.S., Farnum C.W., Hawks D.C., Ivie M.A., Jameson M.L., et al. The beetle tree of life reveals that Coleoptera survived end-Permian mass extinction to diversify during the Cretaceous terrestrial revolution. Syst. Entomol. 2015;40:835–880. doi: 10.1111/syen.12132. DOI

Kundrata R., Packova G., Hoffmannova J. Fossil genera in Elateridae (Insecta, Coleoptera): A Triassic origin and Jurassic diversification. Insects. 2020;11:394. doi: 10.3390/insects11060394. PubMed DOI PMC

Kundrata R., Packova G., Prosvirov A., Hoffmannova J. The fossil record of Elateridae (Coleoptera: Elateroidea): Described species, current problems and future prospects. Insects. 2021;12:286. doi: 10.3390/insects12040286. PubMed DOI PMC

Kusy D., He J.-W., Bybee S.M., Motyka M., Bi W.-X., Podsiadlowski L., Li X.-Y., Bocak L. Phylogenomic relationships of bio-luminescent elateroids define the ‘lampyroid’ clade with clicking Sinopyrophoridae as its earliest member. Syst. Entomol. 2021;46:111–123. doi: 10.1111/syen.12451. DOI

Bouchard P., Smith A.B.T., Douglas H.B., Gimmel M.L., Brunke A.J., Kanda K. Biodiversity of Coleoptera. In: Foottit R.G., Adler P.H., editors. Insect Biodiversity: Science and Society. 2nd ed. John Wiley and Sons Ltd.; West Sussex, UK: 2017. pp. 337–417.

Calder A.A., Lawrence J.F., Trueman J.W.H. Austrelater, gen. nov. (Coleoptera: Elateridae), with a description of the larva and comments on elaterid relationships. Invertebr. Taxon. 1993;7:1349–1394. doi: 10.1071/IT9931349. DOI

Douglas H. Phylogenetic relationships of Elateridae inferred from adult morphology, with special reference to the position of Cardiophorinae. Zootaxa. 2011;2900:1–45. doi: 10.11646/zootaxa.2900.1.1. DOI

Kundrata R., Bocak L. The phylogeny and limits of Elateridae (Insecta, Coleoptera): Is there a common tendency of click beetles to soft-bodiedness and neoteny? Zool. Scr. 2011;40:364–378. doi: 10.1111/j.1463-6409.2011.00476.x. DOI

Kundrata R., Bocakova M., Bocak L. The comprehensive phylogeny of the superfamily Elateroidea (Coleoptera: Elateriformia) Mol. Phylogenet. Evol. 2014;76:162–171. doi: 10.1016/j.ympev.2014.03.012. PubMed DOI

Kundrata R., Gunter N.L., Douglas H., Bocak L. Next step toward a molecular phylogeny of click-beetles (Coleoptera: Elateridae): Redefinition of Pityobiinae, with a description of a new subfamily Parablacinae from the Australasian Region. Austral. Entomol. 2016;55:291–302. doi: 10.1111/aen.12185. DOI

Kundrata R., Gunter N.L., Janosikova D., Bocak L. Molecular evidence for the subfamilial status of Tetralobinae (Coleoptera: Elateridae), with comments on parallel evolution of some phenotypic characters. Arthropod. Syst. Phyl. 2018;76:137–145.

Bocak L., Motyka M., Bocek M., Bocakova M. Incomplete sclerotization and phylogeny: The phylogenetic classification of Plastocerus (Coleoptera: Elateroidea) PLoS ONE. 2018;13:e0194026. doi: 10.1371/journal.pone.0194026. PubMed DOI PMC

Bi W.-X., He J.-W., Chen C.-C., Kundrata R., Li X.-Y. Sinopyrophorinae, a new subfamily of Elateridae (Coleoptera, Elateroidea) with the first record of a luminous click beetle in Asia and evidence for multiple origins of bioluminescence in Elateridae. ZooKeys. 2019;864:79–97. doi: 10.3897/zookeys.864.26689. PubMed DOI PMC

Kusy D., Motyka M., Bocek M., Vogler A.P., Bocak L. Genome sequences identify three families of Coleoptera as morphologically derived click beetles (Elateridae) Sci. Rep. 2018;8:1–9. doi: 10.1038/s41598-018-35328-0. PubMed DOI PMC

Martin G.J., Stanger-Hall K.F., Branham M.A., Da Silveira L.F.L., Lower S.E., Hall D.W., Li X.-Y., Lemmon A.R., Lemmon E.M., Bybee S.M. Higher-level phylogeny and reclassification of Lampyridae (Coleoptera: Elateroidea) Insect Syst. Divers. 2019;3:1–15. doi: 10.1093/isd/ixz024. DOI

Douglas H.B. World reclassification of the Cardiophorinae (Coleoptera, Elateridae), based on phylogenetic analyses of morpho-logical characters. ZooKeys. 2017;655:1–130. doi: 10.3897/zookeys.655.11894. PubMed DOI PMC

Kusy D., Motyka M., Bocak L. Click Beetle mitogenomics with the definition of a new subfamily Hapatesinae from Australasia (Coleoptera: Elateridae) Insects. 2021;12:17. doi: 10.3390/insects12010017. PubMed DOI PMC

Sagegami-Oba R., Oba Y., Ôhira H. Phylogenetic relationships of click beetles (Coleoptera: Elateridae) inferred from 28S ribosomal DNA: Insights into the evolution of bioluminescence in Elateridae. Mol. Phylogenet. Evol. 2007;42:410–421. doi: 10.1016/j.ympev.2006.07.017. PubMed DOI

Hamilton C.A., Lemmon A.R., Lemmon E.M., Bond J.E. Expanding anchored hybrid enrichment to resolve both deep and shallow relationships within the spider tree of life. BMC Evol. Biol. 2016;16:212. doi: 10.1186/s12862-016-0769-y. PubMed DOI PMC

Dietrich C.H., Allen J.M., Lemmon A.R., Lemmon E.M., Takiya D.M., Evangelista O., Walden K.K.O., Grady P.G.S., Johnson K.P. Anchored hybrid enrichment-based phylogenomics of leafhoppers and treehoppers (Hemiptera: Cicadomorpha: Membracoidea) Insect Syst. Divers. 2017;1:57–72. doi: 10.1093/isd/ixx003. DOI

Haddad S., Shin S., Lemmon A.R., Lemmon E.M., Svacha P., Farrell B., Ślipiński A., Windsor D., McKenna D.D. Anchored hybrid enrichment provides new insights into the phylogeny and evolution of Longhorned Beetles (Cerambycidae) Syst. Entomol. 2017;43:68–89. doi: 10.1111/syen.12257. DOI

Shin S., Clarke D.J., Lemmon A.R., Lemmon E.M., Aitken A.L., Haddad S., Farrell B.D., Marvaldi A.E., Oberprieler R.G., McKenna D.D. Phylogenomic data yield new and robust insights into the phylogeny and evolution of Weevils. Mol. Biol. Evol. 2018;35:823–836. doi: 10.1093/molbev/msx324. PubMed DOI

Bouchard P., Bousquet Y., Davies A.E., Alonso-Zarazaga M.A., Lawrence J.F., Lyal C.H.C., Newton A.F., Reid C.A.M., Schmitt M., Ślipiński S.A., et al. Family-group names in Coleoptera (Insecta) ZooKeys. 2011;88:1–972. doi: 10.3897/zookeys.88.807. PubMed DOI PMC

Rosa S.P. Phylogenetic analysis and taxonomic revision of Physodactylinae (Coleoptera, Elateridae) Pap. Avulsos Zool. 2014;54:217–292. doi: 10.1590/0031-1049.2014.54.18. DOI

Petersen M., Meusemann K., Donath A., Dowling D., Liu S., Peters R.S., Podsiadlowski L., Vasilikopoulos A., Zhou X., Misof B., et al. Orthograph: A versatile tool for mapping coding nucleotide sequences to clusters of orthologous genes. BMC Bioinform. 2017;18:1–10. doi: 10.1186/s12859-017-1529-8. PubMed DOI PMC

Kriventseva E.V., Kuznetsov D., Tegenfeldt F., Manni M., Dias R., Simão F.A., Zdobnov E.M. OrthoDB v10: Sampling the diversity of animal, plant, fungal, protist, bacterial and viral genomes for evolutionary and functional annotations of orthologs. Nucleic Acids Res. 2019;47:D807–D811. doi: 10.1093/nar/gky1053. PubMed DOI PMC

Magis C., Taly J.F., Bussotti G., Chang J.M., Di Tommaso P., Erb I., Espinosa-Carrasco J., Notredame C. T-coffee: Tree-based consistency objective function for alignment evaluation. Methods Mol. Biol. 2014;1079:117–129. PubMed

Rice P., Longden I., Bleasby A. EMBOSS: The European Molecular Biology Open Software Suite. Trends Genet. 2000;16:276–277. doi: 10.1016/S0168-9525(00)02024-2. PubMed DOI

Faircloth B.C. PHYLUCE is a software package for the analysis of conserved genomic loci. Bioinformatics. 2016;32:786–788. doi: 10.1093/bioinformatics/btv646. PubMed DOI

Köster J., Rahmann S. Snakemake—A scalable bioinformatics workflow engine. Bioinformatics. 2012;28:2520–2522. doi: 10.1093/bioinformatics/bts480. PubMed DOI

Bushnell B., Rood J., Singer E. BBMerge—Accurate Paired Shotgun Read Merging via Overlap. PLoS ONE. 2017;12:e0185056. doi: 10.1371/journal.pone.0185056. PubMed DOI PMC

Jackman S.D., Vandervalk B.P., Mohamadi H., Chu J., Yeo S., Hammond S.A., Jahesh G., Khan H., Coombe L., Warren R.L., et al. ABySS 2.0: Resource-efficient assembly of large genomes using a Bloom filter. Genome Res. 2017;27:768–777. doi: 10.1101/gr.214346.116. PubMed DOI PMC

Nurk S., Bankevich A., Antipov D., Gurevich A.A., Korobeynikov A., Lapidus A., Prjibelski A.D., Pyshkin A., Sirotkin A., Sirotkin Y., et al. Assembling single-cell genomes and mini-metagenomes from chimeric MDA products. J. Comput. Biol. 2013;20:714–737. doi: 10.1089/cmb.2013.0084. PubMed DOI PMC

Bushmanova E., Antipov D., Lapidus A., Prjibelski A.D. rnaSPAdes: A de novo transcriptome assembler and its application to RNA-Seq data. GigaScience. 2019;8 doi: 10.1093/gigascience/giz100. PubMed DOI PMC

Hedin M., Derkarabetian S., Ramírez M.J., Vink C., Bond J.E. Phylogenomic reclassification of the world’s most venomous spiders (Mygalomorphae, Atracinae), with implications for venom evolution. Sci. Rep. 2018;8:1–7. doi: 10.1038/s41598-018-19946-2. PubMed DOI PMC

Katoh K., Misawa K., Kuma K., Miyata T. Mafft: A novel method for rapid multiple sequence alignment based on fast fourier transform. Nucleic Acids Res. 2002;30:3059–3066. doi: 10.1093/nar/gkf436. PubMed DOI PMC

Talavera G., Castresana J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst. Biol. 2007;56:564–577. doi: 10.1080/10635150701472164. PubMed DOI

Borowiec M.L. AMAS: A fast tool for alignment manipulation and computing of summary statistics. PeerJ. 2016;4:e1660. doi: 10.7717/peerj.1660. PubMed DOI PMC

Nguyen L.-T., Schmidt H.A., Von Haeseler A., Minh B.Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015;32:268–274. doi: 10.1093/molbev/msu300. PubMed DOI PMC

Lanfear R., Frandsen P.B., Wright A.M., Senfeld T., Calcott B. PartitionFinder 2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. 2017;34:772–773. doi: 10.1093/molbev/msw260. PubMed DOI

Lanfear R., Calcott B., Kainer D., Mayer C., Stamatakis A. Selecting optimal partitioning schemes for phylogenomic datasets. BMC Evol. Biol. 2014;14:82. doi: 10.1186/1471-2148-14-82. PubMed DOI PMC

Stamatakis A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–1313. doi: 10.1093/bioinformatics/btu033. PubMed DOI PMC

Espeland M., Breinholt J., Willmott K.R., Warren A.D., Vila R., Toussaint E.F., Maunsell S.C., Aduse-Poku K., Talavera G., Eastwood R., et al. A comprehensive and dated phylogenomic analysis of butterflies. Curr. Biol. 2018;28:770–778.e5. doi: 10.1016/j.cub.2018.01.061. PubMed DOI

Gough H.M., Allen J.M., A Toussaint E.F., Storer C.G., Kawahara A.Y. Transcriptomics illuminate the phylogenetic backbone of tiger beetles. Biol. J. Linn. Soc. 2020;129:740–751. doi: 10.1093/biolinnean/blz195. DOI

Duchêne D., Tong K.J., Foster C.S.P., Duchêne S., Lanfear R., Ho S.Y.W. Linking branch lengths across sets of loci provides the highest statistical support for phylogenetic inference. Mol. Biol. Evol. 2019;37:1202–1210. doi: 10.1093/molbev/msz291. PubMed DOI

Hoang D.T., Chernomor O., Von Haeseler A., Minh B.Q., Vinh L.S. UFBoot2: Improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 2018;35:518–522. doi: 10.1093/molbev/msx281. PubMed DOI PMC

Guindon S., Dufayard J.-F., Lefort V., Anisimova M., Hordijk W., Gascuel O. New algorithms and methods to estimate maxi-mum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Syst. Biol. 2010;59:307–321. doi: 10.1093/sysbio/syq010. PubMed DOI

Zhang C., Rabiee M., Sayyari E., Mirarab S. ASTRAL-III: Polynomial time species tree reconstruction from partially resolved gene trees. BMC Bioinform. 2018;19:15–30. doi: 10.1186/s12859-018-2129-y. PubMed DOI PMC

Miller M.A., Pfeiffer W., Schwartz T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees; Proceedings of the 2010 Gateway Computing Environments Workshop (GCE); New Orleans, LA, USA. 14 November 2010; pp. 1–8. DOI

Strimmer K., von Haeseler A. Likelihood-mapping: A simple method to visualize phylogenetic content of a sequence alignment. Proc. Natl. Acad. Sci. USA. 1997;94:6815–6819. doi: 10.1073/pnas.94.13.6815. PubMed DOI PMC

Misof B., Liu S., Meusemann K., Peters R.S., Donath A., Mayer C., Frandsen P.B., Ware J., Flouri T., Beutel R.G., et al. Phylogenomics resolves the timing and pattern of insect evolution. Science. 2014;346:763–767. doi: 10.1126/science.1257570. PubMed DOI

Vasilikopoulos A., Balke M., Beutel R.G., Donath A., Podsiadlowski L., Pflug J.M., Waterhouse R., Meusemann K., Peters R.S., Escalona H.E., et al. Phylogenomics of the superfamily Dytiscoidea (Coleoptera: Adephaga) with an evaluation of phylogenetic conflict and systematic error. Mol. Phylogenet. Evol. 2019;135:270–285. doi: 10.1016/j.ympev.2019.02.022. PubMed DOI

Brunke A.J., Hansen A.K., Salnitska M., Kypke J.L., Predeus A.V., Escalona H., Chapados J.T., Eyres J., Richter R., Smetana A., et al. The limits of Quediini at last (Staphylinidae: Staphylininae): A rove beetle mega-radiation resolved by comprehensive sampling and anchored phylogenomics. Syst. Entomol. 2021;46:396–421. doi: 10.1111/syen.12468. DOI

Molloy E.K., Warnow T. To include or not to include: The impact of gene filtering on species tree estimation methods. Syst. Biol. 2017;67:285–303. doi: 10.1093/sysbio/syx077. PubMed DOI

Beutel R.G. Phylogenetic analysis of Elateriformia (Coleoptera: Polyphaga) based on larval characters. J. Zool. Syst. Evol. Res. 1995;33:145–171. doi: 10.1111/j.1439-0469.1995.tb00969.x. DOI

Fallon T.R., Lower S.E., Chang C.-H., Bessho-Uehara M., Martin G.J., Bewick A.J., Behringer M., Debat H.J., Wong I., Day J.C., et al. Firefly genomes illuminate parallel origins of bioluminescence in beetles. eLife. 2018;7 doi: 10.7554/eLife.36495. PubMed DOI PMC

Costa C. Note on the bioluminescence of Balgus schnusei (Heller, 1974) (Trixagidae, Coleoptera) Rev. Bras. Entomol. 1984;28:397–398.

Oba Y., Konishi K., Yano D., Shibata H., Kato D., Shirai T. Resurrecting the ancient glow of the fireflies. Sci. Adv. 2020;6:eabc5705. doi: 10.1126/sciadv.abc5705. PubMed DOI PMC

Traugott M., Benefer C.M., Blackshaw R.P., Van Herk W.G., Vernon R.S. Biology, ecology, and control of Elaterid Beetles in agricultural land. Annu. Rev. Entomol. 2015;60:313–334. doi: 10.1146/annurev-ento-010814-021035. PubMed DOI

Baalbergen E., Schelfhorst R., Schilthuizen M. Drilus larvae in the Netherlands (Coleoptera: Elateridae: Drilini) Entomol. Bericht. 2016;76:165–173.

Kondo A., Tanaka F. An experimental study of predation by the larvae of the firefly, Luciola lateralis Motschulsky (Coleoptera: Lampyridae) on the apple snail, Pomacea canaliculata Lamarck (Mesogastropoda: Pilidae) Jpn. J. Appl. Entomol. Zoöl. 1989;33:211–216. doi: 10.1303/jjaez.33.211. DOI

Symondson W.O.C. Coleoptera (Carabidae, Staphylinidae, Lampyridae, Drilidae and Silphidae) as predators of terrestrial gastro-pods. In: Barker G.M., editor. Natural Enemies of Terrestrial Molluscs. Landcare Research; Hamilton, New Zealand: 2004. pp. 37–84.

Traugott M., Pázmándi C., Kaufmann R., Juen A. Evaluating 15N/14N and 13C/12C isotope ratio analysis to investigate trophic relationships of elaterid larvae (Coleoptera: Elateridae) Soil Biol. Biochem. 2007;39:1023–1030. doi: 10.1016/j.soilbio.2006.11.012. DOI

Fleutiaux E. Les élatérides de l’indochine Française. Huitième et dernière partie. Ann. Soc. Entomol. Fr. 1940;109:19–40. (In French)

Muona J., Chang H., Ren D. The clicking Elateroidea from Chinese Mesozoic deposits (Insecta, Coleoptera) Insects. 2020;11:875. doi: 10.3390/insects11120875. PubMed DOI PMC

Hyslop J.A. The phylogeny of the Elateridae based on larval characters. Ann. Entomol. Soc. Am. 1917;10:241–263. doi: 10.1093/aesa/10.3.241. DOI

Ôhira H. Morphological and Taxonomic Study on the Larvae of Elateridae in Japan (Coleoptera) Entomological Laboratory Aichi Gakugei University; Okazaki, Japan: 1962. pp. 1–179.

Stibick J.N.L. Classification of the Elateridae (Coleoptera). Relationships and classification of the subfamilies and tribes. Pac. Insects. 1979;20:145–186.

Johnson P.J. New species of Dioxypterus Fairmaire from Tonga and Fiji, with new distribution records, a tribal reassignment, and key to the species of the region (Coleoptera: Elateridae) Pan Pac. Entomol. 1997;73:156–167.

Dolin V.G. Wing venation of click beetles (Coleoptera, Elateridae) and its importance for taxonomy of the family. Zool. Zhur. 1975;54:1618–1633.

Calder A.A. Click Beetles: Genera of the Australian Elateridae (Coleoptera). Monographs on Invertebrate Taxonomy. Volume 2. CSIRO; Canberra, Australia: 1996. pp. 1–401.

Kundrata R., Kubaczkova M., Prosvirov A.S., Douglas H.B., Fojtikova A., Costa C., Bousquet Y., Alonso-Zarazaga M.A., Bouchard P. World catalogue of the genus-group names in Elateridae (Insecta, Coleoptera). Part I: Agrypninae, Campyloxeninae, Hemiopinae, Lissominae, Oestodinae, Parablacinae, Physodactylinae, Pityobiinae, Subprotelaterinae, Tetralobinae. ZooKeys. 2019;839:83–154. doi: 10.3897/zookeys.839.33279. PubMed DOI PMC

Kundrata R., Bocak L. Molecular phylogeny reveals the gradual evolutionary transition to soft-bodiedness in click-beetles and identifies sub-Saharan Africa as a cradle of diversity for Drilini (Coleoptera: Elateridae) Zoöl. J. Linn. Soc. 2019;187:413–452. doi: 10.1093/zoolinnean/zlz033. DOI

Dajoz R. Anatomie et importance taxinomique des voies génitales femelles d’origine ectodermique chez les Elateridae (Insectes, Coléoptères) Cah. Nat. Bull. Nat. Paris. 1964;20:55–72. (In French)

Rosa S.P., Németh T., Kundrata R. Comparative morphology of immature stages of Ludioctenus cyprius (Baudi di Selve, 1871) (Coleoptera: Elateridae: Agrypninae), with discussion on the monophyly of Hemirhipini. Zool. Anz. 2019;283:33–39. doi: 10.1016/j.jcz.2019.08.002. DOI

Cate P.C. Elateridae Leach, 1815 (- Cebrioninae, Lissominae, Subprotelaterinae) In: Löbl I., Smetana A., editors. Catalogue of Palaearctic Coleoptera. Volume 4. Apollo Books; Stenstrup, Denmark: 2007. pp. 89–209.

Von Hayek C.M.F. A reclassification of the subfamily Agrypninae (Coleoptera: Elateridae) Bull. Brit. Mus. Nat. Hist. 1973;20:1–309.

Johnson P.J. Elateridae Leach 1815. In: Arnett R.H., Thomas M.C., Skelley P.E., Frank J.H., editors. American Beetles. Polyphaga: Scarabaeoidea through Curculionoidea. Volume 2. CRC Press; Boca Raton, FL, USA: 2002. pp. 160–173.

Schimmel R., Tarnawski D., Han T., Platia G. Monograph of the new tribe Selatosomini from China (Elateridae: Denticollinae). Part I: Genera Pristilophus Latreille, 1834 stat. nov., Selatosomus Stephens, 1830, Warchalowskia (Tarnawski, 1995) stat. nov., and Sinophotistus gen. nov. Pol. Entomol. Monogr. 2015;11:1–328.

Li Y.-D., Kundrata R., Tihelka E., Liu Z., Huang D., Cai C. Cretophengodidae, a new Cretaceous beetle family, sheds light on the evolution of bioluminescence. Proc. R. Soc. B Biol. Sci. 2021;288:20202730. doi: 10.1098/rspb.2020.2730. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Click beetle larvae from Cretaceous Burmese amber represent an ancient Gondwanan lineage

. 2025 Jan 07 ; 15 (1) : 1125. [epub] 20250107

Enigmatic Campyloxenus: Shedding light on the delayed origin of bioluminescence in ancient Gondwanan click beetles

. 2023 Dec 15 ; 26 (12) : 108440. [epub] 20231114

Rhagophthalmidae Olivier, 1907 (Coleoptera, Elateroidea): described genera and species, current problems, and prospects for the bioluminescent and paedomorphic beetle lineage

. 2022 ; 1126 () : 55-130. [epub] 20221101

Diversity of the Paedomorphic Snail-Eating Click-Beetle Genus Malacogaster Bassi, 1834 (Elateridae: Agrypninae: Drilini) in the Mediterranean

. 2022 Oct 13 ; 11 (10) : . [epub] 20221013

Beetle bioluminescence outshines extant aerial predators

. 2022 Jul 27 ; 289 (1979) : 20220821. [epub] 20220720

Dominican amber net-winged beetles suggest stable paleoenvironment as a driver for conserved morphology in a paedomorphic lineage

. 2022 Apr 06 ; 12 (1) : 5820. [epub] 20220406

Nothotytthonyx, a new genus of Malthininae (Coleoptera, Cantharidae) from mid-Cretaceous amber of northern Myanmar

. 2022 ; 1092 () : 19-30. [epub] 20220404

Integrated phylogenomics and fossil data illuminate the evolution of beetles

. 2022 Mar ; 9 (3) : 211771. [epub] 20220323

Functional Morphology of the Thorax of the Click Beetle Campsosternus auratus (Coleoptera, Elateridae), with an Emphasis on Its Jumping Mechanism

. 2022 Feb 28 ; 13 (3) : . [epub] 20220228

The first mainland European Mesozoic click-beetle (Coleoptera: Elateridae) revealed by X-ray micro-computed tomography scanning of an Upper Cretaceous amber from Hungary

. 2022 Jan 07 ; 12 (1) : 24. [epub] 20220107

An unusual elateroid lineage from mid-Cretaceous Burmese amber (Coleoptera: Elateroidea)

. 2021 Nov 09 ; 11 (1) : 21985. [epub] 20211109

Notes on the Morphology and Systematic Position of Archaeolus Lin, 1986, from the Jurassic of South China (Coleoptera: Elateroidea)

. 2021 Sep 27 ; 12 (10) : . [epub] 20210927

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...