Click Beetle Mitogenomics with the Definition of a New Subfamily Hapatesinae from Australasia (Coleoptera: Elateridae)
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
14942S
Grantova agentura Ceske Republiky
PrF-2020
IGA UP Olomouc
PubMed
33383651
PubMed Central
PMC7859858
DOI
10.3390/insects12010017
PII: insects12010017
Knihovny.cz E-zdroje
- Klíčová slova
- Australian region, Gondwana, mitochondrial genomes, new status, new subfamily, phylogeny, taxonomy,
- Publikační typ
- časopisecké články MeSH
Elateridae is a taxon with very unstable classification and a number of conflicting phylogenetic hypotheses have been based on morphology and molecular data. We assembled eight complete mitogenomes for seven elaterid subfamilies and merged these taxa with an additional 22 elaterids and an outgroup. The structure of the newly produced mitogenomes showed a very similar arrangement with regard to all earlier published mitogenomes for the Elateridae. The maximum likelihood and Bayesian analyses indicated that Hapatesus Candèze, 1863, is a sister of Parablacinae and Pityobiinae. Therefore, Hapatesinae, a new subfamily, is proposed for the Australian genera Hapatesus (21 spp.) and Toorongus Neboiss, 1957 (4 spp.). Parablacinae, Pityobiinae, and Hapatesinae have a putative Gondwanan origin as the constituent genera are known from the Australian region (9 genera) and Neotropical region (Tibionema Solier, 1851), and only Pityobius LeConte, 1853, occurs in the Nearctic region. Another putative Gondwanan lineage, the Afrotropical Morostomatinae, forms either a serial paraphylum with the clade of Parablacinae, Pityobiinae, and Hapatesinae or is rooted in a more terminal position, but always as an independent lineage. An Eudicronychinae lineage was either recovered as a sister to Melanotini or as a deep split inside Elaterinae and we herein transfer the group to Elaterinae as Eudicronychini, a new status. The mitochondrial genomes provide a sufficient signal for the placement of most lineages, but the deep bipartitions need to be compared with phylogenomic analyses.
Zobrazit více v PubMed
Costa C., Lawrence J.F., Rosa S.P. Elateridae Leach, 1815. In: Leschen R.A.B., Beutel R.G., Lawrence J.F., editors. Handbook of Zoology, Vol. 2, Coleoptera, Beetles. Walter de Gruyter GmbH & Co.; Berlin, Germany: New York, NY, USA: 2010. pp. 75–103.
Bocakova M., Bocak L., Hunt T., Teräväinen M., Vogler A.P. Molecular phylogenetics of Elateriformia (Coleoptera): Evolution of bioluminescence and neoteny. Cladistics. 2007;23:477–496. doi: 10.1111/j.1096-0031.2007.00164.x. DOI
Ribak G., Weihs D. Jumping without Using Legs: The jump of the click-beetles (Elateridae) is morphologically constrained. PLoS ONE. 2011;6:e20871. doi: 10.1371/journal.pone.0020871. PubMed DOI PMC
Bolmin O., Wei L.H., Hazel A.M., Dunn A.C., Wissa A., Alleyne M. Latching of the click beetle (Coleoptera: Elateridae) thoracic hinge enabled by the morphology and mechanics of conformal structures. J. Exp. Biol. 2019;222:jeb196683. doi: 10.1242/jeb.196683. PubMed DOI
Whalley P.E.S. The systematics and palaeogeography of the lower Jurassic insects of Dorset, England. Bull. Brit. Mus. Nat. Hist. 1985;39:107–189.
Doludenko M.P., Ponomarenko A.G., Sakulina G.V. La Géologie du Gisement Unique de la Faune et de la Flore du Jurassique Supérieur d’Aulié (Karatau, Kazakhstan du Sud) Académie des Sciences de l’URSS, Institut Géologique; Moscow, Russia: 1990.
Chang H.L., Kirejtshuk A.G., Ren D., Shih C.K. First fossil click beetles from the Middle Jurassic of Inner Mongolia, China (Coleoptera: Elateridae) Ann. Zool. 2009;59:7–14. doi: 10.3161/000345409X432547. DOI
Sohn J.C., Nam G.S., Choi S.W., Ren D. New fossils of Elateridae (Insecta, Coleoptera) from Early Cretaceous Jinju Formation (South Korea) with their implications to evolutionary diversity of extinct Protagrypninae. PLoS ONE. 2019;14:e0225502. doi: 10.1371/journal.pone.0225502. PubMed DOI PMC
Bouchard P., Bousquet Y., Davies A.E., Alonso-Zarazaga M.A., Lawrence J.F., Lyal C.H.C., Newton A.F., Reid C.A.M., Schmitt M., Ślipiński S.A., et al. Family-group names in Coleoptera (Insecta) Zookeys. 2011;88:1–972. doi: 10.3897/zookeys.88.807. PubMed DOI PMC
Douglas H. Phylogenetic relationships of Elateridae inferred from adult morphology, with special reference to the position of Cardiophorinae. Zootaxa. 2011;2900:1–45. doi: 10.11646/zootaxa.2900.1.1. DOI
Lawrence J.F., Ślipiński S.A., Seago A.E., Thayer M.K., Newton A.F., Marvaldi A.E. Phylogeny of the Coleoptera based on morphological characters of adults and larvae. Ann. Zool. 2011;61:1–217. doi: 10.3161/000345411X576725. DOI
Crowson R.A. A review of the classification of Cantharoidea (Coleoptera), with definition of two new families Cneoglossidae and Omethidae. Rev. Univ. Madrid. 1972;21:35–77.
Kundrata R., Bocak L. The phylogeny and limits of Elateridae (Insecta, Coleoptera): Is there a common tendency of click beetles to soft-bodiedness and neoteny? Zool. Scr. 2011;40:364–378. doi: 10.1111/j.1463-6409.2011.00476.x. DOI
Kundrata R., Bocakova M., Bocak L. The comprehensive phylogeny of the superfamily Elateroidea (Coleoptera: Elateriformia) Mol. Phylogenet. Evol. 2014;76:162–171. doi: 10.1016/j.ympev.2014.03.012. PubMed DOI
Bocak L., Motyka M., Bocek M., Bocakova M. Incomplete sclerotization and phylogeny: The phylogenetic classification of Plastocerus (Coleoptera: Elateroidea) PLoS ONE. 2018;13:e0194026. doi: 10.1371/journal.pone.0194026. PubMed DOI PMC
Sagegami-Oba R., Oba Y., Ôhira H. Phylogenetic relationships of click-beetles (Coleoptera: Elateridae) inferred from 28S ribosomal DNA: Insights into the evolution of bioluminescence in Elateridae. Mol. Phylogenet. Evol. 2007;42:410–421. doi: 10.1016/j.ympev.2006.07.017. PubMed DOI
Kovalev A.V., Kirejtshuk A.G., Shapovalov A.M. Drilorhinus, a new genus of the family Drilidae Lacordaire, 1857 (Coleoptera: Elateroidea) from Iran. Zootaxa. 2019;4577:187–194. doi: 10.11646/zootaxa.4577.1.12. PubMed DOI
Muona J., Taräväinen M. A re-evaluation of the Eucnemidae larval characters. Papeis Avul. Zool. Spec. Issue. 2020;60 doi: 10.11606/1807-0205/2020.60.special-issue.28. DOI
Bocak L., Kusy D., Motyka M., Bocek M. Drilidae Blanchard, 1845: Multi-gene molecular phylogenies versus morphological similarity. An answer to Kovalev et al. Zootaxa. 2019;4674:142–146. doi: 10.11646/zootaxa.4674.1.8. PubMed DOI
Kundrata R., Gunter N.L., Douglas H., Bocak L. Next step toward a molecular phylogeny of click-beetles (Coleoptera: Elateridae): Redefinition of Pityobiinae, with a description of a new subfamily, Parablacinae, from the Australasian Region. Austral Entomol. 2016;55:291–302. doi: 10.1111/aen.12185. DOI
McKenna D.D., Wild A.L., Kanda K., Bellamy C.L., Beutel R.G., Caterino M.S., Farnum C.W., Hawks D.C., Ivie M.A., Jameson M.L., et al. The beetle tree of life reveals that Coleoptera survived end-Permian mass extinction to diversify during the Cretaceous terrestrial revolution. Syst. Entomol. 2015;40:835–880. doi: 10.1111/syen.12132. DOI
Zhang S.Q., Che L.H., Li Y., Dan L., Pang H., Ślipiński A., Zhang P. Evolutionary history of Coleoptera revealed by extensive sampling of genes and species. Nat. Commun. 2018;9:205. doi: 10.1038/s41467-017-02644-4. PubMed DOI PMC
Kusy D., Motyka M., Andújar C., Bocek M., Masek M., Sklenarova K., Kokas F., Bocakova M., Vogler A.P., Bocak L. Genome sequencing of Rhinorhipus Lawrence exposes an early branch of the Coleoptera. Front. Zool. 2018;15:21. doi: 10.1186/s12983-018-0262-0. PubMed DOI PMC
McKenna D.D., Shin S., Ahrens D., Balke M., Beza-Beza C., Clarke D.J., Donath A., Escalona H.E., Friedrich F., Letsch H., et al. The evolution and genomic basis of beetle diversity. Proc. Natl Acad. Sci. USA. 2019;116:24729–24737. doi: 10.1073/pnas.1909655116. PubMed DOI PMC
Kusy D., Motyka M., Bocek M., Vogler A.P., Bocak L. Genome sequences identify three families of Coleoptera as morphologically derived click beetles (Elateridae) Sci. Rep. 2018;8:17084. doi: 10.1038/s41598-018-35328-0. PubMed DOI PMC
Kusy D., He J.W., Bybee S.M., Motyka M., Bi W.X., Podsiadlowski L., Li X.Y., Bocak L. Phylogenomic relationships of bioluminescent elateroids define the ‘lampyroid’ clade with clicking Sinopyrophoridae as its earliest member. Syst. Entomol. 2021 doi: 10.1111/syen.12451. DOI
Davis A.L.V., Scholtz C.H., Philips T.K. Historical biogeography of scarabaeine dung beetles. J. Biogeogr. 2002;29:1217–1256. doi: 10.1046/j.1365-2699.2002.00776.x. DOI
Chen S., Zhou Y., Chen Y., Gu J. Fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34:i884–i890. doi: 10.1093/bioinformatics/bty560. PubMed DOI PMC
Dierckxsens N., Mardulyn P., Smits G. NOVOPlasty: De novo assembly of organelle genomes from whole genome data. Nucl. Acids Res. 2017;45:e18. doi: 10.1093/nar/gkw955. PubMed DOI PMC
Bernt M., Donath A., Jühling F., Externbrink F., Florentz C., Fritzsch G., Pütz J., Middendorf M., Stadler P.F. MITOS: Improved de novo metazoan mitochondrial genome annotation. Mol. Phylogenet. Evol. 2013;69:313–319. doi: 10.1016/j.ympev.2012.08.023. PubMed DOI
Laslett D., Canbäck B. ARWEN, a program to detect tRNA genes in metazoan mitochondrial nucleotide sequences. Bioinformatics. 2008;24:172–175. doi: 10.1093/bioinformatics/btm573. PubMed DOI
Greiner S., Lehwark P., Bock R. OrganellarGenomeDRAW (OGDRAW) version 1.3.1: Expanded toolkit for the graphical visualization of organellar genomes. Nucl. Acids Res. 2019;47:W59–W64. doi: 10.1093/nar/gkz238. PubMed DOI PMC
Timmermans M.J.T.N., Dodsworth S., Culverwell C.L., Bocak L., Ahrens D., Littlewood D.T.J., Pons J., Vogler A.P. Why barcode? High-throughput multiplex sequencing of mitochondrial genomes for molecular systematics. Nucl. Acids Res. 2010;38:e197. doi: 10.1093/nar/gkq807. PubMed DOI PMC
Timmermans M.J.T.N., Barton C., Haran J., Ahrens D., Ollikainen A., Culverwell L.C., Dodsworth S., Foster P.G., Bocak L., Vogler A.P. Family-level sampling of mitochondrial genomes in Coleoptera: Compositional heterogeneity and phylogenetics. Genome Biol. Evol. 2016;8:161–175. doi: 10.1093/gbe/evv241. PubMed DOI PMC
Linard B., Crampton-Platt A., Moriniere J., Timmermans M.J.T.N., Andujar C., Arribas P., Miller K.E., Lipecki J., Favreau E., Hunter A., et al. The contribution of mitochondrial metagenomics to large-scale data mining and phylogenetic analysis of Coleoptera. Mol. Phylogenet. Evol. 2018;128:1–11. doi: 10.1016/j.ympev.2018.07.008. PubMed DOI
He J.W., Bi W., Dong Z., Liu G., Zhao R., Wang W., He X.L. The mitochondrial genome of the first luminous click-beetle (Coleoptera: Elateridae) recorded in Asia. Mitochondr. DNA Part B. 2019;4:565–567. doi: 10.1080/23802359.2018.1555019. DOI
Amaral D.T., Mitani Y., Ohmiya Y., Viviani V.R. Organization and comparative analysis of the mitochondrial genomes of bioluminescent Elateroidea (Coleoptera: Polyphaga) Gene. 2016;586:254–262. doi: 10.1016/j.gene.2016.04.009. PubMed DOI
Bininda-Emonds O. TransAlign: Using amino acids to facilitate the multiple alignment of protein-coding DNA sequences. BMC Bioinform. 2005;6:156. doi: 10.1186/1471-2105-6-156. PubMed DOI PMC
Katoh K., Standley D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013;30:772–780. doi: 10.1093/molbev/mst010. PubMed DOI PMC
Kück P., Longo G.C. FASconCAT-G: Extensive functions for multiple sequence alignment preparations concerning phylogenetic studies. Front. Zool. 2014;11:81. doi: 10.1186/s12983-014-0081-x. PubMed DOI PMC
Kück P., Meid S.A., Gross C., Wägele J.W., Misof B. AliGROOVE—Visualization of heterogeneous sequence divergence within multiple sequence alignments and detection of inflated branch support. BMC Bioinform. 2014;15:294. doi: 10.1186/1471-2105-15-294. PubMed DOI PMC
Jermiin L.S., Jayaswal V., Ababneh F., Robinson J. Phylogenetic model evaluation. In: Keith J., editor. Bioinformatics, Data, Sequence Analysis and Evolution. Volume 1. Humana Press; Totowa, NJ, USA: 2008. pp. 331–363. PubMed
Minh B.Q., Schmidt H.A., Chernomor O., Schrempf D., Woodhams M.D., von Haeseler A., Lanfear R. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 2020;37:1530–1534. doi: 10.1093/molbev/msaa015. PubMed DOI PMC
Lartillot N., Rodrigue N., Stubbs D., Richer J. PhyloBayes MPI: Phylogenetic reconstruction with infinite mixtures of profiles in a parallel environment. Syst. Biol. 2013;62:611–615. doi: 10.1093/sysbio/syt022. PubMed DOI
Chernomor O., von Haeseler A., Minh B.Q. Terrace aware data structure for phylogenomic inference from supermatrices. Syst. Biol. 2016;65:997–1008. doi: 10.1093/sysbio/syw037. PubMed DOI PMC
Kalyaanamoorthy S., Minh B.Q., Wong T.K.F., von Haeseler A., Jermiin L.S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Meth. 2017;14:587–589. doi: 10.1038/nmeth.4285. PubMed DOI PMC
Hoang D.T., Chernomor O., von Haeseler A., Minh B.Q., Vinh L.S. UFBoot2: Improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 2018;35:518–522. doi: 10.1093/molbev/msx281. PubMed DOI PMC
Shimodaira H. An Approximately unbiased test of phylogenetic tree selection. Syst. Biol. 2002;51:492–508. doi: 10.1080/10635150290069913. PubMed DOI
Shimodaira H., Hasegawa M. Multiple Comparisons of log-likelihoods with applications to phylogenetic inference. Mol. Biol. Evol. 1999;16:1114. doi: 10.1093/oxfordjournals.molbev.a026201. DOI
Kishino H., Hasegawa M. Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in hominoidea. J. Mol. Evol. 1989;29:170–179. doi: 10.1007/BF02100115. PubMed DOI
Strimmer K., Rambaut A. Inferring confidence sets of possibly misspecified gene trees. Proc. Biol. Sci. 2002;269:137–142. doi: 10.1098/rspb.2001.1862. PubMed DOI PMC
Kishino H., Miyata T., Hasegawa M. Maximum likelihood inference of protein phylogeny and the origin of chloroplasts. J. Mol. Evol. 1990;31:151–160. doi: 10.1007/BF02109483. DOI
Calder A.A. Coleoptera: Elateroidea. In: Wells A., editor. Zoological Catalogue of Australia. Volume 29.6. CSIRO Publishing; Melbourne, Australia: 1998. p. 248.
Neboiss A. The genera Hapatesus Candèze and Toorongus, gen. nov. (Coleoptera: Elateridae) Austr. J. Zool. 1957;5:496–520. doi: 10.1071/ZO9570496. DOI
Tarnawski D. A world catalogue of Ctenicerini Fleutiaux, 1936. Part II (Coleoptera: Elateridae: Athoinae) Genus. 2001;12:277–323.
Neboiss A. Genus Hapatesus from Austro-Malayan sub-region (Coleoptera: Elateridae) Proc. R. Soc. Vict. 1958;70:169–174.
Girard C. Les Coléoptères Elateridae de Lamto (Côte d’Ivoire) Bull. l’Inst. Fond. Afr. Noire. 1971;23:449–650.
Girard C. Sept nouvelles espèces afrotropicales de Dicronychidae du genre Eudicronychus Méquignon (Coleoptera) Bull. Soc. Entomol. Fr. 1991;96:145–154.
Girard C. Sept nouvelles espèces afrotropicales du genre Eudicronychus Méquignon, 1931 (Coleoptera, Eudicronychidae) Bull. Soc. Entomol. Fr. 2011;116:135–146.
Girard C. Deux espeèces nouvelles du genre Anisomerus Schwarz, 1897 (Coleoptera, Eudicronychidae) Bull. Soc. Entomol. Fr. 2017;122:475–478. doi: 10.32475/bsef_1865. DOI
Schwarz O.C.E. Über die Systematische der Elateriden-Gattungen Dicronychus Castelnau, und Tarsalgus Candèze. Dtsch. Entomol. Zeit. 1897;1897:9–16.
Dolin V.G. Zhilkovanie kry’lev zhukov-shchelkunov (Coleoptera, Elateridae) i ego znachenie dlya sistematiki semeistva. Zool. Zhurnal. 1975;54:1618–1633.
Bocak L., Barton C., Crampton-Platt A., Chesters D., Ahrens D., Vogler A.P. Building the Coleoptera tree-of-life for >8000 species: Composition of public DNA data and fit with Linnaean classification. Syst. Entomol. 2014;39:97–110. doi: 10.1111/syen.12037. DOI
Stibick J.N.L. Classification of the Elateridae (Coleoptera). Relation- ships and classification of the subfamilies and tribes. Pacif. Insects. 1979;20:145–186.
Dolin V. Meetings in Memory of N.A. Cholodovsky. Zoological Institute RAS; St. Peterburg, Russian: 2000. A role of larval and wing venation characters in the systematics of Elateroidea (Coleoptera) p. 50. Lecture at the 52nd Annual Meeting. 1 April 1999.
Schwarz O.C.E. Genera Insectorum. Volume 46. P Wytsman; Brussels, Belgium: 1906. Coleoptera, fam. Elateridae; pp. 1–224.
Dolin W.G., Girard C. Zur Kenntnis der Schnellkäfer-Gattung Diplophoenicus Candèze, 1893, aus Madagascar (Coleoptera, Elateridae) Bull. Soc. Entomol. Fr. 2003;108:55–60.
Liu Y., Song F., Jiang P., Wilson J.J., Cai W., Li H. Compositional heterogeneity in true bug mitochondrial phylogenomics. Mol. Phylogenet. Evol. 2018;118:135–144. doi: 10.1016/j.ympev.2017.09.025. PubMed DOI
Yang H., Li T., Dang K., Bu W. Compositional and mutational rate heterogeneity in mitochondrial genomes and its effect on the phylogenetic inferences of Cimicomorpha (Hemiptera: Heteroptera) BMC Genom. 2018;19:264. doi: 10.1186/s12864-018-4650-9. PubMed DOI PMC
Song F., Li H., Jiang P., Zhou X.-G., Liu J.-P., Sun C.-H., Vogler A.P., Cai W.-Z. Capturing the phylogeny of holometabola with mitochondrial genome data and Bayesian site-heterogeneous mixture models. Genome Biol. Evol. 2016;8:1411–1426. doi: 10.1093/gbe/evw086. PubMed DOI PMC
Nie R., Vogler A.P., Yang X.-K., Lin M. Higher-level phylogeny of longhorn beetles (Coleoptera: Chrysomeloidea) inferred from mitochondrial genomes. Syst. Entomol. 2021 doi: 10.1111/syen.12447. DOI
Shen X.X., Li Y., Hittinger C.T., Chen X.X., Rokas A. An investigation of irreproducibility in maximum likelihood phylogenetic inference. Nat. Commun. 2020;11:6090. doi: 10.1038/s41467-020-20005-6. PubMed DOI PMC