Genome sequences identify three families of Coleoptera as morphologically derived click beetles (Elateridae)
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
18-14942S
Grantová Agentura České Republiky (Grant Agency of the Czech Republic) - International
18-14942S
Grantová Agentura České Republiky (Grant Agency of the Czech Republic) - International
18-14924S
Grantová Agentura České Republiky (Grant Agency of the Czech Republic) - International
18-14942S
Grantová Agentura České Republiky (Grant Agency of the Czech Republic) - International
F/00696/P
Leverhulme Trust - International
PubMed
30459416
PubMed Central
PMC6244081
DOI
10.1038/s41598-018-35328-0
PII: 10.1038/s41598-018-35328-0
Knihovny.cz E-zdroje
- MeSH
- anotace sekvence MeSH
- brouci klasifikace genetika MeSH
- fylogeneze MeSH
- genom hmyzu * MeSH
- hmyzí proteiny genetika MeSH
- křídla zvířecí anatomie a histologie metabolismus MeSH
- regulace genové exprese * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- hmyzí proteiny MeSH
Plastoceridae Crowson, 1972, Drilidae Blanchard, 1845 and Omalisidae Lacordaire, 1857 (Elateroidea) are families of the Coleoptera with obscure phylogenetic relationships and modified morphology showing neotenic traits such as soft bodies, reduced wing cases and larviform females. We shotgun sequenced genomes of Plastocerus, Drilus and Omalisus and incorporated them into data matrices of 66 and 4202 single-copy nuclear genes representing Elateroidea. Phylogenetic analyses indicate their terminal positions within the broadly defined well-sclerotized and fully metamorphosed Elateridae and thus Omalisidae should now be considered as Omalisinae stat. nov. in Elateridae Leach, 1815. The results support multiple independent origins of incomplete metamorphosis in Elateridae and indicate the parallel evolution of morphological and ecological traits. Unlike other neotenic elateroids derived from the supposedly pre-adapted aposematically coloured and unpalatable soft-bodied elateroids, such as fireflies (Lampyridae) and net-winged beetles (Lycidae), omalisids and drilids evolved from well-sclerotized click beetles. These findings suggest sudden morphological shifts through incomplete metamorphosis, with important implications for macroevolution, including reduced speciation rate and high extinction risk in unstable habitats. Precise phylogenetic placement is necessary for studies of the molecular mechanisms of ontogenetic shifts leading to profoundly changed morphology.
Department of Life Science Natural History Museum Cromwell Road London SW7 5BD UK
Department of Life Science Silwood Park Campus Imperial College London Ascot London SL5 7BD UK
Zobrazit více v PubMed
Crowson RA. A review of the classification of Cantharoidea (Coleoptera), with definition of two new families Cneoglossidae and Omethidae. Rev. Univ. Madrid. 1972;21:35–77.
Lawrence JF. Rhinorhipidae, a new beetle family from Australia, with comments on the phylogeny of the Elateriformia. Invertebr. Taxon. 1988;2:1–53. doi: 10.1071/IT9880001. DOI
Beutel RG. Phylogenetic analysis of Elateriformia (Coleoptera: Polyphaga) based on larval characters. J. Zool. Syst. Evol. Res. 1995;33:145–171. doi: 10.1111/j.1439-0469.1995.tb00222.x. DOI
Branham MA, Wenzel JW. The evolution of photic behaviour and the evolution of sexual communication in fireflies (Coleoptera: Lampyridae) Cladistics. 2003;84:565–586. PubMed
Lawrence JF, et al. Phylogeny of the Coleoptera based on morphological characters of adults and larvae. Ann. Zool. 2011;61:1–217. doi: 10.3161/000345411X576725. DOI
Bocakova M, Bocak L, Hunt T, Teravainen M, Vogler AP. Molecular phylogenetics of Elateriformia (Coleoptera): evolution of bioluminescence and neoteny. Cladistics. 2007;23:477–496. doi: 10.1111/j.1096-0031.2007.00164.x. DOI
Kundrata R, Bocakova M, Bocak L. The comprehensive phylogeny of the superfamily Elateroidea (Coleoptera: Elateriformia) Mol. Phyl. Evol. 2014;76:162–171. doi: 10.1016/j.ympev.2014.03.012. PubMed DOI
McKenna DD, et al. The beetle tree of life reveals that Coleoptera survived end-Permian mass extinction to diversify during the Cretaceous terrestrial revolution. Syst. Entomol. 2015;40:835–880. doi: 10.1111/syen.12132. DOI
Timmermans MJTN, et al. Family-Level Sampling of Mitochondrial Genomes in Coleoptera: Compositional Heterogeneity and Phylogenetics. Genome Biol. Evol. 2016;8:161–175. doi: 10.1093/gbe/evv241. PubMed DOI PMC
Zhang SQ, et al. Evolutionary history of Coleoptera revealed by extensive sampling of genes and species. Nat. Comm. 2018;9:205. doi: 10.1038/s41467-017-02644-4. PubMed DOI PMC
Kusy D, et al. Genome sequencing of Rhinorhipus Lawrence exposes an early branch of the Coleoptera. Front. Zool. 2018;15:21. doi: 10.1186/s12983-018-0262-0. PubMed DOI PMC
Hunt T, et al. A comprehensive phylogeny of beetles reveals the evolutionary origins of a superradiation. Science. 2007;318:1913–1916. doi: 10.1126/science.1146954. PubMed DOI
Kundrata R, Bocak L. The phylogeny and limits of Elateridae (Insecta, Coleoptera): is there a common tendency of click beetles to soft-bodiedness and neoteny? Zool. Scr. 2011;40:364–378. doi: 10.1111/j.1463-6409.2011.00476.x. DOI
Bocak L, Motyka M, Bocek M, Bocakova M. Incomplete sclerotization and phylogeny: The phylogenetic classification of Plastocerus (Coleoptera: Elateroidea) PLoS One. 2018;13:e0194026. doi: 10.1371/journal.pone.0194026. PubMed DOI PMC
Beutel, R. G. & Leschen, R. A. B. Coleoptera, Beetles; Volume 1: Morphology and Systematics (Archostemata, Adephaga, Myxophaga, Polyphaga partim) 2nd edition. In: Kristensen N. P. & Beutel R. G., eds. Handbook of Zoology, Arthropoda: Insecta. Berlin/New York: Walter de Gruyter GmbH & Co. (2016).
Amaral DT, et al. Transcriptional comparison of the photogenic and non-photogenic tissues of Phrixothrix hirtus (Coleoptera: Phengodidae) and non-luminescent Chauliognathus flavipes (Coleoptera: Cantharidae) give insights on the origin of lanterns in railroad worms. Gene Rep. 2017;7:78–86. doi: 10.1016/j.genrep.2017.02.004. DOI
Toussaint E, et al. The peril of dating beetles. Syst. Entomol. 2017;42:1–10. doi: 10.1111/syen.12198. DOI
Martin GJ, Branham M, Whiting MF, Bybee SM. Total evidence phylogeny and the evolution of adult bioluminescence in fireflies (Coleoptera: Lampyridae) Mol. Phyl. Evol. 2017;107:564–575. doi: 10.1016/j.ympev.2016.12.017. PubMed DOI
Bocak L, Bocakova M, Hunt T, Vogler AP. Multiple ancient origins of neoteny in Lycidae (Coleoptera): consequences for ecology and macroevolution. Proc. R. Soc. B. 2008;275:2015–2023. doi: 10.1098/rspb.2008.0476. PubMed DOI PMC
McMahon DP, Hayward A. Why grow up? A perspective on insect strategies to avoid metamorphosis. Ecol. Entomol. 2016;41:505–515. doi: 10.1111/een.12313. DOI
Gould, S. J. Ontogeny and Phylogeny. Cambridge: Harvard University Press (1977).
Pollock DA, Normark BB. The life cycle of Micromalthus debilis LeConte (1878) (Coleoptera: Archostemata: Micromalthidae): historical review and evolutionary perspective. J. Zool. Syst. Evol. Res. 2002;40:105–112. doi: 10.1046/j.1439-0469.2002.00183.x. DOI
Jordal BH, Beaver RA, Normark BB, Farrell BD. Extraordinary sex ratios and the evolution of male neoteny in sib-mating Ozopemon beetles. Biol. J. Linn. Soc. 2002;75:353–360. doi: 10.1111/j.1095-8312.2002.tb02076.x. DOI
Kiselyova T, McHugh JV. A phylogenetic study of Dermestidae (Coleoptera) based on larval morphology. Syst. Entomol. 2006;31:469–507. doi: 10.1111/j.1365-3113.2006.00335.x. DOI
Bocak L, Grebennikov VV, Masek M. A new species of Dexoris (Coleoptera: Lycidae) and parallel evolution of brachyptery in the soft-bodied elateroid beetles. Zootaxa. 2013;3721:495–500. doi: 10.11646/zootaxa.3721.5.5. PubMed DOI
Naoki T, Bocak L, Ghani IA. Discovery of a new species of the brachelytrous net-winged beetle genus Alyculus (Coleoptera: Lycidae) from Peninsular Malaysia. Zootaxa. 2015;4144:145–150. PubMed
Wong ATC. A new species of neotenous beetle, Duliticola hoiseni (Insecta: Coleoptera: Cantharoidea: Lycidae) from Peninsular Malaysia and Singapore. Raffl. Bull. Zool. 1996;44:173–187.
Cicero JM. Ontophylogenetics of cantharoid larviforms (Coleoptera: Cantharoidea) Coleopt. Bull. 1988;42:105–151.
Miller, R. S. A revision of the Leptolycini (Coleoptera: Lycidae) with a discussion of paedomorphosis. PhD Thesis. Columbus: The Ohio State University (1991).
Jeng, M. L. Comprehensive phylogenetics, systematics, and evolution of neoteny of Lampyridae (Insecta: Coleoptera). PhD thesis, Lawrence: University of Kansas (2008).
Bocak L, Brlik M. Revision of the family Omalisidae (Coleoptera, Elateroidea) Ins. Syst. Evol. 2008;39:189–212. doi: 10.1163/187631208788784101. DOI
Masek M, Ivie MA, Palata V, Bocak L. Molecular phylogeny and classification of Lyropaeini (Coleoptera: Lycidae) with description of larvae and new species of Lyropaeus. Raffl. Bull. Zool. 2014;62:136–145.
Masek M, Palata V, Bray TC, Bocak L. Molecular phylogeny reveals high diversity, geographic structure and limited ranges in neotenic net-winged beetles Platerodrilus (Coleoptera: Lycidae) PLoS One. 2015;10:e0123855. doi: 10.1371/journal.pone.0123855. PubMed DOI PMC
Bocek M, Fancello L, Motyka M, Bocakova M, Bocak L. The molecular phylogeny of Omalisidae (Coleoptera) defines the family limits and demonstrates low dispersal propensity and the ancient vicariance patterns. Syst. Entomol. 2018;43:250–261. doi: 10.1111/syen.12271. DOI
Bourgeois J. Monographie des Lycides de l’ancien-monde. L’Abeille. 1882;20:1–120.
Bocak L, Kundrata R, Andújar-Fernández C, Vogler AP. The discovery of Iberobaeniidae (Coleoptera: Elateroidea): a new family of beetles from Spain, with immatures detected by environmental DNA sequencing. Proc. R. Soc. B. 2016;283:20152350. doi: 10.1098/rspb.2015.2350. PubMed DOI PMC
Bocak L, et al. Building the Coleoptera tree- of-life for >8000 species: composition of public DNA data and fit with Linnaean classification. Syst. Entomol. 2014;39:97–110. doi: 10.1111/syen.12037. DOI
Reddy S, et al. Why do phylogenomic data sets yield conflicting trees? Data type influences the avian tree of life more than taxon sampling. Syst. Biol. 2017;66:857–879. doi: 10.1093/sysbio/syx041. PubMed DOI
Jarvis ED, et al. Whole-genome analyses resolve early branches in the tree of life of modern birds. Science. 2014;346:1320–1331. doi: 10.1126/science.1253451. PubMed DOI PMC
Prum RO, et al. A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. Nature. 2015;526:569–573. doi: 10.1038/nature15697. PubMed DOI
Bray TC, Bocak L. Slowly dispersing neotenic beetles can speciate on a penny coin and generate space-limited diversity in the tropical mountains. Sci. Rep. 2016;6:33579. doi: 10.1038/srep33579. PubMed DOI PMC
Kundrata R, Bocak L. Taxonomic review of Drilini (Elateridae: Agrypninae) in Cameroon reveals high morphological diversity, including the discovery of five new genera. Ins. Syst. Evol. 2017;48:441–492.
Ponomarenko, A. G. The geological history of beetles. Pp. 155–171. In Biology, Phylogeny, and Classification of Coleoptera: Papers Celebrating the 80th Birthday of Roy A. Crowson (eds by Pakaluk, J. and Slipinski, S. A.). Warszawa: Muzeum i Instytut Zoologii PAN (1995).
Doludenko, M. P., Ponomarenko, A. G. & Sakulina, G. V. La géologie du gisement unique de la faune et de la flore du jurassique supérieur d’Aulié (Karatau, Kazakhstan du Sud). Moscow: Academie des Sciences de l’URSS, Inst. Géologique (1990).
Moore BP, Brown WV. Identification of warning odour components, bitter principles and antifeedants in an aposematic beetle–Metriorrhynchus rhipidium (Coleoptera: Lycidae) Ins. Biochem. 1981;15:493–499. doi: 10.1016/0020-1790(81)90016-0. DOI
Eisner T, et al. Defensive chemistry of lycid beetles and of mimetic cerambycid beetles that feed on them. Chemoecology. 2008;18:109–119. doi: 10.1007/s00049-007-0398-4. PubMed DOI PMC
Motyka M, Kampova L, Bocak L. Phylogeny and evolution of Müllerian mimicry in aposematic Dilophotes: evidence for advergence and size-constraints in evolution of mimetic sexual dimorphism. Sci. Rep. 2018;8:3744. doi: 10.1038/s41598-018-22155-6. PubMed DOI PMC
Riddiford LM. How does juvenile hormone control insect metamorphosis and reproduction? Gen. Comp. Endocrin. 2012;179:477–484. doi: 10.1016/j.ygcen.2012.06.001. PubMed DOI
Jindra M, Palli SR, Riddiford LM. The Juvenile Hormone Signaling Pathway in InsectDevelopment. Ann. Rev. Entomol. 2013;58:181–204. doi: 10.1146/annurev-ento-120811-153700. PubMed DOI
Gould, S. J. Wonderful Life: The Burgess Shale and the Nature of History. New York: Norton (1989).
Beatty J. Replaying Life’s Tape. J. Philos. 2006;103:336–362. doi: 10.5840/jphil2006103716. DOI
Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor, https://www.biorxiv.org/content/biorxiv/early/2018/04/09/274100.full.pdf (accessed on April 30th, 2018) (2018). PubMed PMC
Marcais G, Kingsford C. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics. 2011;27:764–770. doi: 10.1093/bioinformatics/btr011. PubMed DOI PMC
Vurture GW, et al. GenomeScope: Fast reference-free genome profiling from short reads. Bioinformatics. 2017;33:2202–2204. doi: 10.1093/bioinformatics/btx153. PubMed DOI PMC
Li D, Liu C, Luo R, Sadakane K, Lam T. MEGAHIT: An ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics. 2015;31:1674–1676. doi: 10.1093/bioinformatics/btv033. PubMed DOI
Li D, et al. MEGAHITv1.0: A fast and scalable metagenome assembler driven by advanced methodologies and community practices. Methods. 2016;102:3–11. doi: 10.1016/j.ymeth.2016.02.020. PubMed DOI
Bankevich A, et al. SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing. J. Comput. Biol. 2012;19:455–477. doi: 10.1089/cmb.2012.0021. PubMed DOI PMC
Stanke M, Waack S. Gene prediction with a hidden Markov model and a new intron submodel. Bioinformatics. 2003;19(Suppl. 2):215–225. PubMed
Waterhouse RM, et al. BUSCO Applications from Quality Assessments to Gene Prediction and Phylogenomics. Mol. Biol. Evol. 2017;35:543–548. doi: 10.1093/molbev/msx319. PubMed DOI PMC
Petersen M, et al. Orthograph: a versatile tool for mapping coding nucleotide sequences to clusters of orthologous genes. BMC Bioinformatics. 2017;18:111. doi: 10.1186/s12859-017-1529-8. PubMed DOI PMC
Ye B, Zhang Y, Shu J, Wu H, Wang H. RNA-sequencing analysis of fungi-induced transcripts from the bamboo wireworm Melanotus cribricollis (Coleoptera: Elateridae) larvae. PLoS One. 2018;13:e019118. PubMed PMC
Wang K, Hong W, Jiao H, Zhao H. Transcriptome sequencing and phylogenetic analysis of four species of luminescent beetles. Sci. Rep. 2017;7:1814. doi: 10.1038/s41598-017-01835-9. PubMed DOI PMC
Amaral DT, Mitani Y, Ohmiya Y, Viviani VR. Organization and comparative analysis of the mitochondrial genomes of bioluminescent Elateroidea (Coleoptera: Polyphaga) Gene. 2016;586:254–262. doi: 10.1016/j.gene.2016.04.009. PubMed DOI
Fallon, T. R. et al. 2017 Firefly genomes illuminate parallel origins of bioluminescence in beetles, https://www.biorxiv.org/content/biorxiv/early/2018/02/25/237586.full.pdf. Accessed on June 22nd, 2018. PubMed PMC
Fallon TR, Li F, Vicent MA, Weng J. Sulfoluciferin is Biosynthesized by a Specialized Luciferin Sulfotransferase in Fireflies. Biochemistry. 2016;55:3341–3344. doi: 10.1021/acs.biochem.6b00402. PubMed DOI
Zdobnov EM, et al. OrthoDBv9.1: cataloging evolutionary and functional annotations for animal, fungal, plant, archaeal, bacterial and viral orthologs. Nucleic Acids Res. 2016;45:D744–D749. doi: 10.1093/nar/gkw1119. PubMed DOI PMC
Poelchau M, et al. The i5k Workspace@NAL—enabling genomic data access, visualization and curation of arthropod genomes. Nucleic Acids Res. 2015;43(Database issue):D714–719. doi: 10.1093/nar/gku983. PubMed DOI PMC
McKenna DD, et al. Genome of the Asian longhorned beetle (Anoplophora glabripennis), a globally significant invasive species, reveals key functional and evolutionary innovations at the beetle–plant interface. Genome Biol. 2017;17:227. doi: 10.1186/s13059-016-1088-8. PubMed DOI PMC
Keeling CI, et al. Draft genome of the mountain pine beetle, Dendroctonus ponderosae Hopkins, a major forest pest. Genome Biol. 2013;14:R27. doi: 10.1186/gb-2013-14-3-r27. PubMed DOI PMC
Richards S, et al. Tribolium genome sequencing consortium). The genome of the model beetle and pest Tribolium castaneum. Nature. 2008;452:949–955. doi: 10.1038/nature06784. PubMed DOI
Shelton JM, et al. Tools and pipelines for BioNano data: molecule assembly pipeline and FASTA super scaffolding tool. BMC Genomics. 2015;16:734. doi: 10.1186/s12864-015-1911-8. PubMed DOI PMC
Katoh K, Standley DM. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol. Biol. Evol. 2013;30:772–780. doi: 10.1093/molbev/mst010. PubMed DOI PMC
Misof B, et al. Phylogenomics resolves the timing and pattern of insect evolution. Science. 2014;346:763. doi: 10.1126/science.1257570. PubMed DOI
Peters RS, et al. Evolutionary History of the Hymenoptera. Curr. Biol. 2017;27:1013–1018. doi: 10.1016/j.cub.2017.01.027. PubMed DOI
Suyama M, Torrents D, Bork P. PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res. 2006;34:W609–W612. doi: 10.1093/nar/gkl315. PubMed DOI PMC
Misof B, Misof KA. Monte Carlo approach successfully identifies randomness in multiple sequence alignments: a more objective means of data exclusion. Syst. Biol. 2009;58:21–34. doi: 10.1093/sysbio/syp006. PubMed DOI
Kück P, et al. Parametric and non-parametric masking of randomness in sequence alignments can be improved and leads to better resolved trees. Front. Zool. 2010;7:10. doi: 10.1186/1742-9994-7-10. PubMed DOI PMC
Kück P, Longo GC. FASconCAT-G: extensive functions for multiple sequence alignment preparations concerning phylogenetic studies. Front. Zool. 2014;11:81. doi: 10.1186/s12983-014-0081-x. PubMed DOI PMC
Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015;32:268–274. doi: 10.1093/molbev/msu300. PubMed DOI PMC
Stamatakis A. RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 2006;22:2688–2690. doi: 10.1093/bioinformatics/btl446. PubMed DOI
Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods. 2017;14:587–589. doi: 10.1038/nmeth.4285. PubMed DOI PMC
Chernomor O, von Haeseler A, Minh BQ. Terrace aware data structure for phylogenomic inference from supermatrices. Syst. Biol. 2016;65:997–1008. doi: 10.1093/sysbio/syw037. PubMed DOI PMC
Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. UFBoot2: improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 2018;35:518–522. doi: 10.1093/molbev/msx281. PubMed DOI PMC
Strimmer K, von Haeseler A. Likelihood-mapping: a simple method to visualize phylogenetic content of a sequence alignment. Proc. Natl. Acad. Sci. 1997;94:6815–6819. doi: 10.1073/pnas.94.13.6815. PubMed DOI PMC
Grunewald Stefan, Spillner Andreas, Bastkowski Sarah, Bogershausen Anja, Moulton Vincent. SuperQ: Computing Supernetworks from Quartets. IEEE/ACM Transactions on Computational Biology and Bioinformatics. 2013;10(1):151–160. doi: 10.1109/TCBB.2013.8. PubMed DOI
Bastkowski S, et al. SPECTRE. A suite of PhylogEnetiC tools for reticulate evolution. Bioinformatics. 2017;34:1056–1057. doi: 10.1093/bioinformatics/btx740. PubMed DOI PMC
Huson DH, Bryant D. Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 2005;23:254–267. doi: 10.1093/molbev/msj030. PubMed DOI
Sayyari E, Mirarab S. Fast Coalescent-Based Computation of Local Branch Support from Quartet Frequencies. Mol. Biol. Evol. 2016;33:1654–1668. doi: 10.1093/molbev/msw079. PubMed DOI PMC
Shimodaira H. An approximately unbiased test of phylogenetic tree selection. Syst. Biol. 2002;51:492–508. doi: 10.1080/10635150290069913. PubMed DOI
Simon S, Blanke A, Meusemann K. Reanalyzing the Palaeoptera problem - The origin of insect flight remains obscure. Arthropod Struct. Dev. 2018;47:328–338. doi: 10.1016/j.asd.2018.05.002. PubMed DOI
Shen XX, Hittinger CT, Rokas A. Contentious relationships in phylogenomic studies can be driven by a handful of genes. Nature Ecol. Evol. 2017;1:126. doi: 10.1038/s41559-017-0126. PubMed DOI PMC
Click beetle larvae from Cretaceous Burmese amber represent an ancient Gondwanan lineage
Integrated phylogenomics and fossil data illuminate the evolution of beetles
Fossil Genera in Elateridae (Insecta, Coleoptera): A Triassic Origin and Jurassic Diversification