Genome sequences identify three families of Coleoptera as morphologically derived click beetles (Elateridae)

. 2018 Nov 20 ; 8 (1) : 17084. [epub] 20181120

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid30459416

Grantová podpora
18-14942S Grantová Agentura České Republiky (Grant Agency of the Czech Republic) - International
18-14942S Grantová Agentura České Republiky (Grant Agency of the Czech Republic) - International
18-14924S Grantová Agentura České Republiky (Grant Agency of the Czech Republic) - International
18-14942S Grantová Agentura České Republiky (Grant Agency of the Czech Republic) - International
F/00696/P Leverhulme Trust - International

Odkazy

PubMed 30459416
PubMed Central PMC6244081
DOI 10.1038/s41598-018-35328-0
PII: 10.1038/s41598-018-35328-0
Knihovny.cz E-zdroje

Plastoceridae Crowson, 1972, Drilidae Blanchard, 1845 and Omalisidae Lacordaire, 1857 (Elateroidea) are families of the Coleoptera with obscure phylogenetic relationships and modified morphology showing neotenic traits such as soft bodies, reduced wing cases and larviform females. We shotgun sequenced genomes of Plastocerus, Drilus and Omalisus and incorporated them into data matrices of 66 and 4202 single-copy nuclear genes representing Elateroidea. Phylogenetic analyses indicate their terminal positions within the broadly defined well-sclerotized and fully metamorphosed Elateridae and thus Omalisidae should now be considered as Omalisinae stat. nov. in Elateridae Leach, 1815. The results support multiple independent origins of incomplete metamorphosis in Elateridae and indicate the parallel evolution of morphological and ecological traits. Unlike other neotenic elateroids derived from the supposedly pre-adapted aposematically coloured and unpalatable soft-bodied elateroids, such as fireflies (Lampyridae) and net-winged beetles (Lycidae), omalisids and drilids evolved from well-sclerotized click beetles. These findings suggest sudden morphological shifts through incomplete metamorphosis, with important implications for macroevolution, including reduced speciation rate and high extinction risk in unstable habitats. Precise phylogenetic placement is necessary for studies of the molecular mechanisms of ontogenetic shifts leading to profoundly changed morphology.

Zobrazit více v PubMed

Crowson RA. A review of the classification of Cantharoidea (Coleoptera), with definition of two new families Cneoglossidae and Omethidae. Rev. Univ. Madrid. 1972;21:35–77.

Lawrence JF. Rhinorhipidae, a new beetle family from Australia, with comments on the phylogeny of the Elateriformia. Invertebr. Taxon. 1988;2:1–53. doi: 10.1071/IT9880001. DOI

Beutel RG. Phylogenetic analysis of Elateriformia (Coleoptera: Polyphaga) based on larval characters. J. Zool. Syst. Evol. Res. 1995;33:145–171. doi: 10.1111/j.1439-0469.1995.tb00222.x. DOI

Branham MA, Wenzel JW. The evolution of photic behaviour and the evolution of sexual communication in fireflies (Coleoptera: Lampyridae) Cladistics. 2003;84:565–586. PubMed

Lawrence JF, et al. Phylogeny of the Coleoptera based on morphological characters of adults and larvae. Ann. Zool. 2011;61:1–217. doi: 10.3161/000345411X576725. DOI

Bocakova M, Bocak L, Hunt T, Teravainen M, Vogler AP. Molecular phylogenetics of Elateriformia (Coleoptera): evolution of bioluminescence and neoteny. Cladistics. 2007;23:477–496. doi: 10.1111/j.1096-0031.2007.00164.x. DOI

Kundrata R, Bocakova M, Bocak L. The comprehensive phylogeny of the superfamily Elateroidea (Coleoptera: Elateriformia) Mol. Phyl. Evol. 2014;76:162–171. doi: 10.1016/j.ympev.2014.03.012. PubMed DOI

McKenna DD, et al. The beetle tree of life reveals that Coleoptera survived end-Permian mass extinction to diversify during the Cretaceous terrestrial revolution. Syst. Entomol. 2015;40:835–880. doi: 10.1111/syen.12132. DOI

Timmermans MJTN, et al. Family-Level Sampling of Mitochondrial Genomes in Coleoptera: Compositional Heterogeneity and Phylogenetics. Genome Biol. Evol. 2016;8:161–175. doi: 10.1093/gbe/evv241. PubMed DOI PMC

Zhang SQ, et al. Evolutionary history of Coleoptera revealed by extensive sampling of genes and species. Nat. Comm. 2018;9:205. doi: 10.1038/s41467-017-02644-4. PubMed DOI PMC

Kusy D, et al. Genome sequencing of Rhinorhipus Lawrence exposes an early branch of the Coleoptera. Front. Zool. 2018;15:21. doi: 10.1186/s12983-018-0262-0. PubMed DOI PMC

Hunt T, et al. A comprehensive phylogeny of beetles reveals the evolutionary origins of a superradiation. Science. 2007;318:1913–1916. doi: 10.1126/science.1146954. PubMed DOI

Kundrata R, Bocak L. The phylogeny and limits of Elateridae (Insecta, Coleoptera): is there a common tendency of click beetles to soft-bodiedness and neoteny? Zool. Scr. 2011;40:364–378. doi: 10.1111/j.1463-6409.2011.00476.x. DOI

Bocak L, Motyka M, Bocek M, Bocakova M. Incomplete sclerotization and phylogeny: The phylogenetic classification of Plastocerus (Coleoptera: Elateroidea) PLoS One. 2018;13:e0194026. doi: 10.1371/journal.pone.0194026. PubMed DOI PMC

Beutel, R. G. & Leschen, R. A. B. Coleoptera, Beetles; Volume 1: Morphology and Systematics (Archostemata, Adephaga, Myxophaga, Polyphaga partim) 2nd edition. In: Kristensen N. P. & Beutel R. G., eds. Handbook of Zoology, Arthropoda: Insecta. Berlin/New York: Walter de Gruyter GmbH & Co. (2016).

Amaral DT, et al. Transcriptional comparison of the photogenic and non-photogenic tissues of Phrixothrix hirtus (Coleoptera: Phengodidae) and non-luminescent Chauliognathus flavipes (Coleoptera: Cantharidae) give insights on the origin of lanterns in railroad worms. Gene Rep. 2017;7:78–86. doi: 10.1016/j.genrep.2017.02.004. DOI

Toussaint E, et al. The peril of dating beetles. Syst. Entomol. 2017;42:1–10. doi: 10.1111/syen.12198. DOI

Martin GJ, Branham M, Whiting MF, Bybee SM. Total evidence phylogeny and the evolution of adult bioluminescence in fireflies (Coleoptera: Lampyridae) Mol. Phyl. Evol. 2017;107:564–575. doi: 10.1016/j.ympev.2016.12.017. PubMed DOI

Bocak L, Bocakova M, Hunt T, Vogler AP. Multiple ancient origins of neoteny in Lycidae (Coleoptera): consequences for ecology and macroevolution. Proc. R. Soc. B. 2008;275:2015–2023. doi: 10.1098/rspb.2008.0476. PubMed DOI PMC

McMahon DP, Hayward A. Why grow up? A perspective on insect strategies to avoid metamorphosis. Ecol. Entomol. 2016;41:505–515. doi: 10.1111/een.12313. DOI

Gould, S. J. Ontogeny and Phylogeny. Cambridge: Harvard University Press (1977).

Pollock DA, Normark BB. The life cycle of Micromalthus debilis LeConte (1878) (Coleoptera: Archostemata: Micromalthidae): historical review and evolutionary perspective. J. Zool. Syst. Evol. Res. 2002;40:105–112. doi: 10.1046/j.1439-0469.2002.00183.x. DOI

Jordal BH, Beaver RA, Normark BB, Farrell BD. Extraordinary sex ratios and the evolution of male neoteny in sib-mating Ozopemon beetles. Biol. J. Linn. Soc. 2002;75:353–360. doi: 10.1111/j.1095-8312.2002.tb02076.x. DOI

Kiselyova T, McHugh JV. A phylogenetic study of Dermestidae (Coleoptera) based on larval morphology. Syst. Entomol. 2006;31:469–507. doi: 10.1111/j.1365-3113.2006.00335.x. DOI

Bocak L, Grebennikov VV, Masek M. A new species of Dexoris (Coleoptera: Lycidae) and parallel evolution of brachyptery in the soft-bodied elateroid beetles. Zootaxa. 2013;3721:495–500. doi: 10.11646/zootaxa.3721.5.5. PubMed DOI

Naoki T, Bocak L, Ghani IA. Discovery of a new species of the brachelytrous net-winged beetle genus Alyculus (Coleoptera: Lycidae) from Peninsular Malaysia. Zootaxa. 2015;4144:145–150. PubMed

Wong ATC. A new species of neotenous beetle, Duliticola hoiseni (Insecta: Coleoptera: Cantharoidea: Lycidae) from Peninsular Malaysia and Singapore. Raffl. Bull. Zool. 1996;44:173–187.

Cicero JM. Ontophylogenetics of cantharoid larviforms (Coleoptera: Cantharoidea) Coleopt. Bull. 1988;42:105–151.

Miller, R. S. A revision of the Leptolycini (Coleoptera: Lycidae) with a discussion of paedomorphosis. PhD Thesis. Columbus: The Ohio State University (1991).

Jeng, M. L. Comprehensive phylogenetics, systematics, and evolution of neoteny of Lampyridae (Insecta: Coleoptera). PhD thesis, Lawrence: University of Kansas (2008).

Bocak L, Brlik M. Revision of the family Omalisidae (Coleoptera, Elateroidea) Ins. Syst. Evol. 2008;39:189–212. doi: 10.1163/187631208788784101. DOI

Masek M, Ivie MA, Palata V, Bocak L. Molecular phylogeny and classification of Lyropaeini (Coleoptera: Lycidae) with description of larvae and new species of Lyropaeus. Raffl. Bull. Zool. 2014;62:136–145.

Masek M, Palata V, Bray TC, Bocak L. Molecular phylogeny reveals high diversity, geographic structure and limited ranges in neotenic net-winged beetles Platerodrilus (Coleoptera: Lycidae) PLoS One. 2015;10:e0123855. doi: 10.1371/journal.pone.0123855. PubMed DOI PMC

Bocek M, Fancello L, Motyka M, Bocakova M, Bocak L. The molecular phylogeny of Omalisidae (Coleoptera) defines the family limits and demonstrates low dispersal propensity and the ancient vicariance patterns. Syst. Entomol. 2018;43:250–261. doi: 10.1111/syen.12271. DOI

Bourgeois J. Monographie des Lycides de l’ancien-monde. L’Abeille. 1882;20:1–120.

Bocak L, Kundrata R, Andújar-Fernández C, Vogler AP. The discovery of Iberobaeniidae (Coleoptera: Elateroidea): a new family of beetles from Spain, with immatures detected by environmental DNA sequencing. Proc. R. Soc. B. 2016;283:20152350. doi: 10.1098/rspb.2015.2350. PubMed DOI PMC

Bocak L, et al. Building the Coleoptera tree- of-life for >8000 species: composition of public DNA data and fit with Linnaean classification. Syst. Entomol. 2014;39:97–110. doi: 10.1111/syen.12037. DOI

Reddy S, et al. Why do phylogenomic data sets yield conflicting trees? Data type influences the avian tree of life more than taxon sampling. Syst. Biol. 2017;66:857–879. doi: 10.1093/sysbio/syx041. PubMed DOI

Jarvis ED, et al. Whole-genome analyses resolve early branches in the tree of life of modern birds. Science. 2014;346:1320–1331. doi: 10.1126/science.1253451. PubMed DOI PMC

Prum RO, et al. A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. Nature. 2015;526:569–573. doi: 10.1038/nature15697. PubMed DOI

Bray TC, Bocak L. Slowly dispersing neotenic beetles can speciate on a penny coin and generate space-limited diversity in the tropical mountains. Sci. Rep. 2016;6:33579. doi: 10.1038/srep33579. PubMed DOI PMC

Kundrata R, Bocak L. Taxonomic review of Drilini (Elateridae: Agrypninae) in Cameroon reveals high morphological diversity, including the discovery of five new genera. Ins. Syst. Evol. 2017;48:441–492.

Ponomarenko, A. G. The geological history of beetles. Pp. 155–171. In Biology, Phylogeny, and Classification of Coleoptera: Papers Celebrating the 80th Birthday of Roy A. Crowson (eds by Pakaluk, J. and Slipinski, S. A.). Warszawa: Muzeum i Instytut Zoologii PAN (1995).

Doludenko, M. P., Ponomarenko, A. G. & Sakulina, G. V. La géologie du gisement unique de la faune et de la flore du jurassique supérieur d’Aulié (Karatau, Kazakhstan du Sud). Moscow: Academie des Sciences de l’URSS, Inst. Géologique (1990).

Moore BP, Brown WV. Identification of warning odour components, bitter principles and antifeedants in an aposematic beetle–Metriorrhynchus rhipidium (Coleoptera: Lycidae) Ins. Biochem. 1981;15:493–499. doi: 10.1016/0020-1790(81)90016-0. DOI

Eisner T, et al. Defensive chemistry of lycid beetles and of mimetic cerambycid beetles that feed on them. Chemoecology. 2008;18:109–119. doi: 10.1007/s00049-007-0398-4. PubMed DOI PMC

Motyka M, Kampova L, Bocak L. Phylogeny and evolution of Müllerian mimicry in aposematic Dilophotes: evidence for advergence and size-constraints in evolution of mimetic sexual dimorphism. Sci. Rep. 2018;8:3744. doi: 10.1038/s41598-018-22155-6. PubMed DOI PMC

Riddiford LM. How does juvenile hormone control insect metamorphosis and reproduction? Gen. Comp. Endocrin. 2012;179:477–484. doi: 10.1016/j.ygcen.2012.06.001. PubMed DOI

Jindra M, Palli SR, Riddiford LM. The Juvenile Hormone Signaling Pathway in InsectDevelopment. Ann. Rev. Entomol. 2013;58:181–204. doi: 10.1146/annurev-ento-120811-153700. PubMed DOI

Gould, S. J. Wonderful Life: The Burgess Shale and the Nature of History. New York: Norton (1989).

Beatty J. Replaying Life’s Tape. J. Philos. 2006;103:336–362. doi: 10.5840/jphil2006103716. DOI

Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor, https://www.biorxiv.org/content/biorxiv/early/2018/04/09/274100.full.pdf (accessed on April 30th, 2018) (2018). PubMed PMC

Marcais G, Kingsford C. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics. 2011;27:764–770. doi: 10.1093/bioinformatics/btr011. PubMed DOI PMC

Vurture GW, et al. GenomeScope: Fast reference-free genome profiling from short reads. Bioinformatics. 2017;33:2202–2204. doi: 10.1093/bioinformatics/btx153. PubMed DOI PMC

Li D, Liu C, Luo R, Sadakane K, Lam T. MEGAHIT: An ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics. 2015;31:1674–1676. doi: 10.1093/bioinformatics/btv033. PubMed DOI

Li D, et al. MEGAHITv1.0: A fast and scalable metagenome assembler driven by advanced methodologies and community practices. Methods. 2016;102:3–11. doi: 10.1016/j.ymeth.2016.02.020. PubMed DOI

Bankevich A, et al. SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing. J. Comput. Biol. 2012;19:455–477. doi: 10.1089/cmb.2012.0021. PubMed DOI PMC

Stanke M, Waack S. Gene prediction with a hidden Markov model and a new intron submodel. Bioinformatics. 2003;19(Suppl. 2):215–225. PubMed

Waterhouse RM, et al. BUSCO Applications from Quality Assessments to Gene Prediction and Phylogenomics. Mol. Biol. Evol. 2017;35:543–548. doi: 10.1093/molbev/msx319. PubMed DOI PMC

Petersen M, et al. Orthograph: a versatile tool for mapping coding nucleotide sequences to clusters of orthologous genes. BMC Bioinformatics. 2017;18:111. doi: 10.1186/s12859-017-1529-8. PubMed DOI PMC

Ye B, Zhang Y, Shu J, Wu H, Wang H. RNA-sequencing analysis of fungi-induced transcripts from the bamboo wireworm Melanotus cribricollis (Coleoptera: Elateridae) larvae. PLoS One. 2018;13:e019118. PubMed PMC

Wang K, Hong W, Jiao H, Zhao H. Transcriptome sequencing and phylogenetic analysis of four species of luminescent beetles. Sci. Rep. 2017;7:1814. doi: 10.1038/s41598-017-01835-9. PubMed DOI PMC

Amaral DT, Mitani Y, Ohmiya Y, Viviani VR. Organization and comparative analysis of the mitochondrial genomes of bioluminescent Elateroidea (Coleoptera: Polyphaga) Gene. 2016;586:254–262. doi: 10.1016/j.gene.2016.04.009. PubMed DOI

Fallon, T. R. et al. 2017 Firefly genomes illuminate parallel origins of bioluminescence in beetles, https://www.biorxiv.org/content/biorxiv/early/2018/02/25/237586.full.pdf. Accessed on June 22nd, 2018. PubMed PMC

Fallon TR, Li F, Vicent MA, Weng J. Sulfoluciferin is Biosynthesized by a Specialized Luciferin Sulfotransferase in Fireflies. Biochemistry. 2016;55:3341–3344. doi: 10.1021/acs.biochem.6b00402. PubMed DOI

Zdobnov EM, et al. OrthoDBv9.1: cataloging evolutionary and functional annotations for animal, fungal, plant, archaeal, bacterial and viral orthologs. Nucleic Acids Res. 2016;45:D744–D749. doi: 10.1093/nar/gkw1119. PubMed DOI PMC

Poelchau M, et al. The i5k Workspace@NAL—enabling genomic data access, visualization and curation of arthropod genomes. Nucleic Acids Res. 2015;43(Database issue):D714–719. doi: 10.1093/nar/gku983. PubMed DOI PMC

McKenna DD, et al. Genome of the Asian longhorned beetle (Anoplophora glabripennis), a globally significant invasive species, reveals key functional and evolutionary innovations at the beetle–plant interface. Genome Biol. 2017;17:227. doi: 10.1186/s13059-016-1088-8. PubMed DOI PMC

Keeling CI, et al. Draft genome of the mountain pine beetle, Dendroctonus ponderosae Hopkins, a major forest pest. Genome Biol. 2013;14:R27. doi: 10.1186/gb-2013-14-3-r27. PubMed DOI PMC

Richards S, et al. Tribolium genome sequencing consortium). The genome of the model beetle and pest Tribolium castaneum. Nature. 2008;452:949–955. doi: 10.1038/nature06784. PubMed DOI

Shelton JM, et al. Tools and pipelines for BioNano data: molecule assembly pipeline and FASTA super scaffolding tool. BMC Genomics. 2015;16:734. doi: 10.1186/s12864-015-1911-8. PubMed DOI PMC

Katoh K, Standley DM. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol. Biol. Evol. 2013;30:772–780. doi: 10.1093/molbev/mst010. PubMed DOI PMC

Misof B, et al. Phylogenomics resolves the timing and pattern of insect evolution. Science. 2014;346:763. doi: 10.1126/science.1257570. PubMed DOI

Peters RS, et al. Evolutionary History of the Hymenoptera. Curr. Biol. 2017;27:1013–1018. doi: 10.1016/j.cub.2017.01.027. PubMed DOI

Suyama M, Torrents D, Bork P. PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res. 2006;34:W609–W612. doi: 10.1093/nar/gkl315. PubMed DOI PMC

Misof B, Misof KA. Monte Carlo approach successfully identifies randomness in multiple sequence alignments: a more objective means of data exclusion. Syst. Biol. 2009;58:21–34. doi: 10.1093/sysbio/syp006. PubMed DOI

Kück P, et al. Parametric and non-parametric masking of randomness in sequence alignments can be improved and leads to better resolved trees. Front. Zool. 2010;7:10. doi: 10.1186/1742-9994-7-10. PubMed DOI PMC

Kück P, Longo GC. FASconCAT-G: extensive functions for multiple sequence alignment preparations concerning phylogenetic studies. Front. Zool. 2014;11:81. doi: 10.1186/s12983-014-0081-x. PubMed DOI PMC

Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015;32:268–274. doi: 10.1093/molbev/msu300. PubMed DOI PMC

Stamatakis A. RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 2006;22:2688–2690. doi: 10.1093/bioinformatics/btl446. PubMed DOI

Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods. 2017;14:587–589. doi: 10.1038/nmeth.4285. PubMed DOI PMC

Chernomor O, von Haeseler A, Minh BQ. Terrace aware data structure for phylogenomic inference from supermatrices. Syst. Biol. 2016;65:997–1008. doi: 10.1093/sysbio/syw037. PubMed DOI PMC

Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. UFBoot2: improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 2018;35:518–522. doi: 10.1093/molbev/msx281. PubMed DOI PMC

Strimmer K, von Haeseler A. Likelihood-mapping: a simple method to visualize phylogenetic content of a sequence alignment. Proc. Natl. Acad. Sci. 1997;94:6815–6819. doi: 10.1073/pnas.94.13.6815. PubMed DOI PMC

Grunewald Stefan, Spillner Andreas, Bastkowski Sarah, Bogershausen Anja, Moulton Vincent. SuperQ: Computing Supernetworks from Quartets. IEEE/ACM Transactions on Computational Biology and Bioinformatics. 2013;10(1):151–160. doi: 10.1109/TCBB.2013.8. PubMed DOI

Bastkowski S, et al. SPECTRE. A suite of PhylogEnetiC tools for reticulate evolution. Bioinformatics. 2017;34:1056–1057. doi: 10.1093/bioinformatics/btx740. PubMed DOI PMC

Huson DH, Bryant D. Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 2005;23:254–267. doi: 10.1093/molbev/msj030. PubMed DOI

Sayyari E, Mirarab S. Fast Coalescent-Based Computation of Local Branch Support from Quartet Frequencies. Mol. Biol. Evol. 2016;33:1654–1668. doi: 10.1093/molbev/msw079. PubMed DOI PMC

Shimodaira H. An approximately unbiased test of phylogenetic tree selection. Syst. Biol. 2002;51:492–508. doi: 10.1080/10635150290069913. PubMed DOI

Simon S, Blanke A, Meusemann K. Reanalyzing the Palaeoptera problem - The origin of insect flight remains obscure. Arthropod Struct. Dev. 2018;47:328–338. doi: 10.1016/j.asd.2018.05.002. PubMed DOI

Shen XX, Hittinger CT, Rokas A. Contentious relationships in phylogenomic studies can be driven by a handful of genes. Nature Ecol. Evol. 2017;1:126. doi: 10.1038/s41559-017-0126. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Click beetle larvae from Cretaceous Burmese amber represent an ancient Gondwanan lineage

. 2025 Jan 07 ; 15 (1) : 1125. [epub] 20250107

Enigmatic Campyloxenus: Shedding light on the delayed origin of bioluminescence in ancient Gondwanan click beetles

. 2023 Dec 15 ; 26 (12) : 108440. [epub] 20231114

Rhagophthalmidae Olivier, 1907 (Coleoptera, Elateroidea): described genera and species, current problems, and prospects for the bioluminescent and paedomorphic beetle lineage

. 2022 ; 1126 () : 55-130. [epub] 20221101

Integrated phylogenomics and fossil data illuminate the evolution of beetles

. 2022 Mar ; 9 (3) : 211771. [epub] 20220323

Phylogenomic and mitogenomic data can accelerate inventorying of tropical beetles during the current biodiversity crisis

. 2021 Dec 20 ; 10 () : . [epub] 20211220

Anchored Phylogenomics, Evolution and Systematics of Elateridae: Are All Bioluminescent Elateroidea Derived Click Beetles?

. 2021 May 21 ; 10 (6) : . [epub] 20210521

The Fossil Record of Elateridae (Coleoptera: Elateroidea): Described Species, Current Problems and Future Prospects

. 2021 Mar 25 ; 12 (4) : . [epub] 20210325

Conspicuousness, phylogenetic structure, and origins of Müllerian mimicry in 4000 lycid beetles from all zoogeographic regions

. 2021 Mar 16 ; 11 (1) : 5961. [epub] 20210316

Click Beetle Mitogenomics with the Definition of a New Subfamily Hapatesinae from Australasia (Coleoptera: Elateridae)

. 2020 Dec 29 ; 12 (1) : . [epub] 20201229

X-ray micro-computed tomography reveals a unique morphology in a new click-beetle (Coleoptera, Elateridae) from the Eocene Baltic amber

. 2020 Nov 19 ; 10 (1) : 20158. [epub] 20201119

Unlocking the mystery of the mid-Cretaceous Mysteriomorphidae (Coleoptera: Elateroidea) and modalities in transiting from gymnosperms to angiosperms

. 2020 Oct 08 ; 10 (1) : 16854. [epub] 20201008

Fossil Genera in Elateridae (Insecta, Coleoptera): A Triassic Origin and Jurassic Diversification

. 2020 Jun 26 ; 11 (6) : . [epub] 20200626

Hidden diversity in the Brazilian Atlantic rainforest: the discovery of Jurasaidae, a new beetle family (Coleoptera, Elateroidea) with neotenic females

. 2020 Jan 31 ; 10 (1) : 1544. [epub] 20200131

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...