Family-Level Sampling of Mitochondrial Genomes in Coleoptera: Compositional Heterogeneity and Phylogenetics

. 2015 Dec 08 ; 8 (1) : 161-75. [epub] 20151208

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid26645679

Mitochondrial genomes are readily sequenced with recent technology and thus evolutionary lineages can be densely sampled. This permits better phylogenetic estimates and assessment of potential biases resulting from heterogeneity in nucleotide composition and rate of change. We gathered 245 mitochondrial sequences for the Coleoptera representing all 4 suborders, 15 superfamilies of Polyphaga, and altogether 97 families, including 159 newly sequenced full or partial mitogenomes. Compositional heterogeneity greatly affected 3rd codon positions, and to a lesser extent the 1st and 2nd positions, even after RY coding. Heterogeneity also affected the encoded protein sequence, in particular in the nad2, nad4, nad5, and nad6 genes. Credible tree topologies were obtained with the nhPhyML ("nonhomogeneous") algorithm implementing a model for branch-specific equilibrium frequencies. Likelihood searches using RAxML were improved by data partitioning by gene and codon position. Finally, the PhyloBayes software, which allows different substitution processes for amino acid replacement at various sites, produced a tree that best matched known higher level taxa and defined basal relationships in Coleoptera. After rooting with Neuropterida outgroups, suborder relationships were resolved as (Polyphaga (Myxophaga (Archostemata + Adephaga))). The infraorder relationships in Polyphaga were (Scirtiformia (Elateriformia ((Staphyliniformia + Scarabaeiformia) (Bostrichiformia (Cucujiformia))))). Polyphagan superfamilies were recovered as monophyla except Staphylinoidea (paraphyletic for Scarabaeiformia) and Cucujoidea, which can no longer be considered a valid taxon. The study shows that, although compositional heterogeneity is not universal, it cannot be eliminated for some mitochondrial genes, but dense taxon sampling and the use of appropriate Bayesian analyses can still produce robust phylogenetic trees.

Zobrazit více v PubMed

Abascal F, Posada D, Zardoya R. 2007. MtArt: a new model of amino acid replacement for Arthropoda. Mol Biol Evol. 24:1–5. PubMed

Aberer AJ, Krompass D, Stamatakis A. 2013. Pruning rogue taxa improves phylogenetic accuracy: an efficient algorithm and webservice. Syst Biol. 62:162–166. PubMed PMC

Bernt M, et al. 2013. A comprehensive analysis of bilaterian mitochondrial genomes and phylogeny. Mol Phylogenet Evol. 69:352–364. PubMed

Beutel RG, Haas F. 2000. Phylogenetic relationships of the suborders of Coleoptera (Insecta). Cladistics 16:103–141. PubMed

Bininda-Emonds ORP. 2005. transAlign: using amino acids to facilitate the multiple alignment of protein-coding DNA sequences. BMC Bioinformatics 6:156. PubMed PMC

Bocak L, et al. 2014. Building the Coleoptera tree-of-life for >8000 species: composition of public DNA data and fit with Linnaean classification. Syst Entomol. 39:97–110.

Bouchard P, et al. 2011. Family-group names in Coleoptera (Insecta). ZooKeys 88:1–972. PubMed PMC

Boussau B, Gouy M. 2006. Efficient likelihood computations with nonreversible models of evolution. Syst Biol. 55:756–768. PubMed

Cameron SL. 2014. Insect mitochondrial genomics: implications for evolution and phylogeny. Ann Rev Entomol. 59:95–117. PubMed

Castoe TA, Sasa MM, Parkinson CL. 2005. Modeling nucleotide evolution at the mesoscale: the phylogeny of the Neotropical pitvipers of the Porthidium group (Viperidae: Crotalinae). Mol Phylogenet Evol. 37:881–898. PubMed

Caterino MS, Shull VL, Hammond PM, Vogler AP. 2002. The basal phylogeny of the Coleoptera inferred from 18S rDNA sequences. Zool Scripta. 31:41–49.

Crowson RA. 1960. The phylogeny of Coleoptera. Ann Rev Entomol. 5:111–134.

Crowson RA. 1970. Classification and biology. London: Heinemann Educational Books Ltd.

Foster PG. 2004. Modeling compositional heterogeneity. Syst Biol. 53:485–495. PubMed

Foster PG, Cox CJ, Embley TM. 2009. The primary divisions of life: a phylogenomic approach employing composition-heterogeneous methods. Phil Trans R Soc B. 364:2197–2207. PubMed PMC

Foster PG, Jermiin LS, Hickey DA. 1997. Nucleotide composition bias affects amino acid content in proteins coded by animal mitochondria. J Mol Evol. 44:282–288. PubMed

Friedrich F, Farrell BD, Beutel RG. 2009. The thoracic morphology of Archostemata and the relationships of the extant suborders of Coleoptera (Hexapoda). Cladistics 25:1–37. PubMed

Galtier N, Gouy M. 1998. Inferring pattern and process: maximum-likelihood implementation of a nonhomogeneous model of DNA sequence evolution for phylogenetic analysis. Mol Biol Evol. 15:871–879. PubMed

Gascuel O. 1997. BIONJ: an improved version of the NJ algorithm based on a simple model of sequence data. Mol Biol Evol. 14:685–695. PubMed

Gillett CPDT, et al. 2014. Bulk de novo mitogenome assembly from pooled total DNA elucidates the phylogeny of weevils (Coleoptera: Curculionoidea). Mol Biol Evol. 31:2223–2237. PubMed PMC

Guindon S, et al. 2010. New Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: Assessing the Performance of PhyML 3.0. Syst Biol. 59:307–321. PubMed

Guindon S, Gascuel O. 2003. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol. 52:696–704. PubMed

Gunter NL, et al. 2014. Towards a phylogeny of the Tenebrionoidea (Coleoptera). Mol Phylogenet Evol. 79:305–312. PubMed

Haran J, Timmermans MJTN, Vogler AP. 2013. Mitogenome sequences stabilize the phylogenetics of weevils (Curculionoidea) and establish the monophyly of larval ectophagy. Mol Phylogen Evol. 67:156–166. PubMed

Hassanin A. 2006. Phylogeny of Arthropoda inferred from mitochondrial sequences: strategies for limiting the misleading effects of multiple changes in pattern and rates of substitution. Mol Phylogenet Evol. 38:100–116. PubMed

Hebert PDN, Cywinska A, Ball SL, DeWaard JR. 2003. Biological identifications through DNA barcodes. Proc Biol Sci. 270:313–321. PubMed PMC

Hughes J, et al. 2006. Dense taxonomic EST sampling and its applications for molecular systematics of the Coleoptera (beetles). Mol Biol Evol. 23:268–278. PubMed

Hunt T, Vogler AP. 2008. A protocol for large-scale rRNA sequence analysis: towards a detailed phylogeny of Coleoptera. Mol Phylogenet Evol. 47:289–301. PubMed

Hunt T, et al. 2007. A comprehensive phylogeny of beetles reveals the evolutionary origins of a superradiation. Science 318:1913–1916. PubMed

Katoh K, Asimenos G, Toh H. 2009. Multiple alignment of DNA sequences with MAFFT. Methods Mol Biol. 537:39–64. PubMed

Kumar S, Gadagkar SR. 2001. Disparity index: a simple statistic to measure and test the homogeneity of substitution patterns between molecular sequences. Genetics 158:1321–1327. PubMed PMC

Lartillot N, Brinkmann H, Philippe H. 2007. Suppression of long-branch attraction artefacts in the animal phylogeny using a site-heterogeneous model. BMC Evol Biol. 7(Suppl 1):S4. PubMed PMC

Lartillot N, Lepage T, Blanquart S. 2009. PhyloBayes 3: a Bayesian software package for phylogenetic reconstruction and molecular dating. Bioinformatics 25:2286–2288. PubMed

Lartillot N, Philippe H. 2004. A Bayesian mixture model for across-site heterogeneities in the amino-acid replacement process. Mol Biol Evol. 21:1095–1109. PubMed

Lawrence JF. 2001. A new genus of Valdivian Scirtidae (Coleoptera) with comments on Scirtoidea and the beetle suborders. In: Morimoto K et al.., editors. Sukunahikona. Osaka (Japan):The Japan Coleopterological Society (Special Publication No. 1) p. 351–361.

Lawrence JF, Newton AF. 1995. Families and subfamilies of Coleoptera (with selected genera, notes, references and data on family-group names). In: Pakaluk J, Slipinski SA, editors. Biology, phylogeny, and classification of Coleoptera. Warszawa (Poland): Museum i Instytut Zoologii PAN; p. 779–1066.

Lawrence JF, et al. 2011. Phylogeny of the Coleoptera based on morphological characters of adults and larvae. Ann Zool. 61:1–217.

Li H, et al. 2015. Higher-level phylogeny of paraneopteran insects inferred from mitochondrial genome sequences. Sci Rep. 2015 Feb 23;5:8527 doi: 10.1038/srep08527. PubMed PMC

Maddison WP, Maddison DR. 2014. Mesquite: a modular system for evolutionary analyses. Version 3.0. Available from: http://mesquiteproject.org.

Marvaldi AE, Duckett CN, Kjer KM, Gillespie JJ. 2009. Structural alignment of 18S and 28S rDNA sequences provides insights into phylogeny of Phytophaga (Coleoptera: Curculionoidea and Chrysomeloidea). Zool Scripta. 38:63–77.

McKenna D, Farrell B. 2009. Coleoptera. In: Hedges S, Kumar S, editors. The Timetree of Life. Oxford: Oxford University Press; p. 278–289.

McKenna DD, Farrell BD, et al. 2015. Phylogeny and evolution of Staphyliniformia and Scarabaeiformia: forest litter as a stepping stone for diversification of nonphytophagous beetles. Syst Entomol. 40:35–60.

McKenna DD, Wild AL, et al. 2015. The beetle tree of life reveals that Coleoptera survived end-Permian mass extinction to diversify during the Cretaceous terrestrial revolution. Syst Entomol. 40:835–880.

Miller MA, Pfeiffer W, Schwartz T. 2010. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Proceedings of the Gateway Computing Environments Workshop (GCE), 14 Nov. 2010, New Orleans, LA pp 1–8.

Misof B, et al. 2014. Phylogenomics resolves the timing and pattern of insect evolution. Science 346:763–767. PubMed

Paradis E, Claude J, Strimmer K. 2004. APE: Analyses of Phylogenetics and Evolution in R language. Bioinformatics 20:289–290. PubMed

Pons J, Ribera I, Bertranpetit J, Balke M. 2010. Nucleotide substitution rates for the full set of mitochondrial protein-coding genes in Coleoptera. Mol Phylogenet Evol. 56:796–807. PubMed

Robertson JA, Whiting MF, McHugh JV. 2008. Searching for natural lineages within the Cerylonid Series (Coleoptera: Cucujoidea). Mol Phylogenet Evol. 46:193–205. PubMed

Sheffield NC, Song HJ, Cameron SL, Whiting MF. 2009. Nonstationary evolution and compositional heterogeneity in beetle mitochondrial phylogenomics. Syst Biol. 58:381–394. PubMed

Simon C, et al. 1994. Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Ann Entomol Soc Am 87:651–701.

Simon S, Hadrys H. 2013. A comparative analysis of complete mitochondrial genomes among Hexapoda. Mol Phylogenet Evol. 69:393–403. PubMed

Song HJ, Sheffield NC, Cameron SL, Miller KB, Whiting MF. 2010. When phylogenetic assumptions are violated: base compositional heterogeneity and among-site rate variation in beetle mitochondrial phylogenomics. Syst Entomol. 35:429–448.

Stamatakis A. 2006. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690. PubMed

Swofford DL. 2002. PAUP*: Phylogenetic Analysis using Parsimony. Version 4.0b. Sunderland (MA): Sinauer Associates.

Talavera G, Vila R. 2011. What is the phylogenetic signal limit from mitogenomes? The reconciliation between mitochondrial and nuclear data in the Insecta class phylogeny. BMC Evol Biol. 11:15. PubMed PMC

Tang M, et al. 2015. High-throughput monitoring of wild bee diversity and abundance via mitogenomics. Meth Ecol Evol. 6:1034–1043. PubMed PMC

Timmermans MJTN, Vogler AP. 2012. Phylogenetically informative rearrangements in mitochondrial genomes of Coleoptera, and monophyly of aquatic elateriform beetles (Dryopoidea). Mol Phylogenet Evol. 63:299–304. PubMed

Timmermans MJTN, et al. 2010. Why barcode? High-throughput multiplex sequencing of mitochondrial genomes for molecular systematics. Nucleic Acids Res. 38:e197. PubMed PMC

Tomasco IH, Lessa EP. 2011. The evolution of mitochondrial genomes in subterranean caviomorph rodents: adaptation against a background of purifying selection. Mol Phylogenet Evol. 61:64–70. PubMed

Vogler AP, Cardoso A, Barraclough TG. 2005. Exploring rate variation among and within sites in a densely sampled tree: species level phylogenetics of North American tiger beetles (genus Cicindela). Syst Biol. 54:4–20. PubMed

Wilkinson M. 1996. Majority-rule reduced consensus trees and their use in bootstrapping. Mol Biol Evol. 13:437–444. PubMed

Xia X. 2013. DAMBE5: a comprehensive software package for data analysis in molecular biology and evolution. Mol Biol Evol. 30:1720–1728. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace