The changing morphology of the ventricular walls of mouse and human with increasing gestation

. 2024 Jun ; 244 (6) : 1040-1053. [epub] 20240129

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38284175

Grantová podpora
PG/20/15/35041 British Heart Foundation - United Kingdom

That the highly trabeculated ventricular walls of the developing embryos transform to the arrangement during the fetal stages, when the mural architecture is dominated by the thickness of the compact myocardium, has been explained by the coalescence of trabeculations, often erroneously described as 'compaction'. Recent data, however, support differential rates of growth of the trabecular and compact layers as the major driver of change. Here, these processes were assessed quantitatively and visualized in standardized views. We used a larger dataset than has previously been available of mouse hearts, covering the period from embryonic day 10.5 to postnatal day 3, supported by images from human hearts. The volume of the trabecular layer increased throughout development, in contrast to what would be expected had there been 'compaction'. During the transition from embryonic to fetal life, the rapid growth of the compact layer diminished the proportion of trabeculations. Similarly, great expansion of the central cavity reduced the proportion of the total cavity made up of intertrabecular recesses. Illustrations of the hearts with the median value of left ventricular trabeculation confirm a pronounced growth of the compact wall, with prominence of the central cavity. This corresponds, in morphological terms, to a reduction in the extent of the trabecular layer. Similar observations were made in the human hearts. We conclude that it is a period of comparatively slow growth of the trabecular layer, rather than so-called compaction, that is the major determinant of the changing morphology of the ventricular walls of both mouse and human hearts.

Zobrazit více v PubMed

Anderson, R.H. & Bamforth, S.D. (2022) Morphogenesis of the mammalian aortic arch arteries. Frontiers in Cell and Development Biology, 10, 892900. PubMed PMC

Anderson, R.H. , Jensen, B. , Mohun, T.J. , Petersen, S.E. , Aung, N. , Zemrak, F. et al. (2017) Key questions relating to left ventricular noncompaction cardiomyopathy: is the emperor still wearing any clothes? The Canadian Journal of Cardiology, 33, 747–757. PubMed

Aung, N. , Doimo, S. , Ricci, F. , Sanghvi, M.M. , Pedrosa, C. , Woodbridge, S.P. et al. (2020) Prognostic significance of left ventricular noncompaction: systematic review and meta‐analysis of observational studies. Circulation Cardiovascular Imaging, 13, e009712. PubMed PMC

Axel, L. (2004) Papillary muscles do not attach directly to the solid heart wall. Circulation, 109, 3145–3148. PubMed

Blausen, B.E. , Johannes, R.S. & Hutchins, G.M. (1990) Computer‐based reconstructions of the cardiac ventricles of human embryos. American Journal of Cardiovascular Pathology, 3, 37–43. PubMed

Buffinton, C.M. , Faas, D. & Sedmera, D. (2013) Stress and strain adaptation in load‐dependent remodeling of the embryonic left ventricle. Biomechanics and Modeling in Mechanobiology, 12, 1037–1051. PubMed PMC

Chang, Y.H. , Sheftel, B.I. & Jensen, B. (2022) Anatomy of the heart with the highest heart rate. Journal of Anatomy, 241, 173–190. PubMed PMC

Chin, T.K. , Perloff, J.K. , Williams, R.G. , Jue, K. & Mohrmann, R. (1990) Isolated noncompaction of left ventricular myocardium. A Study of Eight Cases. Circulation, 82, 507–513. PubMed

de Bakker, B.S. , de Jong, K.H. , Hagoort, J. , de Bree, K. , Besselink, C.T. , de Kanter, F.E.C. et al. (2016) An interactive three‐dimensional digital atlas and quantitative database of human development. Science, 354, aag0053. PubMed

de Boer, B.A. , van den Berg, G. , de Boer, P.A. , Moorman, A.F. & Ruijter, J.M. (2012) Growth of the developing mouse heart: an interactive qualitative and quantitative 3D atlas. Developmental Biology, 368, 203–213. PubMed

de Lange, F.J. , Moorman, A.F. , Anderson, R.H. , Männer, J. , Soufan, A.T. , de Gier‐de Vries, C. et al. (2004) Lineage and morphogenetic analysis of the cardiac valves. Circulation Research, 95, 645–654. PubMed

Degenhardt, K. , Wright, A.C. , Horng, D. , Padmanabhan, A. & Epstein, J.A. (2010) Rapid 3D phenotyping of cardiovascular development in mouse embryos by micro‐CT with iodine staining. Circulation Cardiovascular Imaging, 3, 314–322. PubMed PMC

Faber, J.W. , Buijtendijk, M.F.J. , Klarenberg, H. , Vink, A.S. , Coolen, B.F. , Moorman, A.F.M. et al. (2022) Fetal tricuspid valve agenesis/atresia: testing predictions of the embryonic etiology. Pediatric Cardiology, 43, 796–806. PubMed

Faber, J.W. , D'Silva, A. , Christoffels, V.M. & Jensen, B. (2021) Lack of morphometric evidence for ventricular compaction in humans. Journal of Cardiology, 78, 397–405. PubMed

Faber, J.W. , Hagoort, J. , Moorman, A.F.M. , Christoffels, V.M. & Jensen, B. (2021) Quantified growth of the human embryonic heart. Biology Open, 10, bio057059. PubMed PMC

Faber, J.W. , Wüst, R.C.I. , Dierx, I. , Hummelink, J.A. , Kuster, D.W.D. , Nollet, E. et al. (2022) Equal force generation potential of trabecular and compact wall ventricular cardiomyocytes. iScience, 25, 105393. PubMed PMC

Finsterer, J. , Stollberger, C. & Towbin, J.A. (2017) Left ventricular noncompaction cardiomyopathy: cardiac, neuromuscular, and genetic factors. Nature Reviews Cardiology, 14, 224–237. PubMed

Gerger, D. , Stollberger, C. , Grassberger, M. , Gerecke, B. , Andresen, H. , Engberding, R. et al. (2013) Pathomorphologic findings in left ventricular hypertrabeculation/noncompaction of adults in relation to neuromuscular disorders. International Journal of Cardiology, 169, 249–253. PubMed

Geyer, S.H. , Mohun, T.J. & Weninger, W.J. (2009) Visualizing vertebrate embryos with episcopic 3D imaging techniques. ScientificWorldJournal, 9, 1423–1437. PubMed PMC

Gifford, C.A. , Ranade, S.S. , Samarakoon, R. , Salunga, H.T. , de Soysa, T.Y. , Huang, Y. et al. (2019) Oligogenic inheritance of a human heart disease involving a genetic modifier. Science, 364, 865–870. PubMed PMC

Gould, S.J. (1966) Allometry and size in ontogeny and phylogeny. Biological Reviews of the Cambridge Philosophical Society, 41, 587–640. PubMed

Gregorovicova, M. , Bartos, M. , Jensen, B. , Janacek, J. , Minne, B. , Moravec, J. et al. (2022) Anguimorpha as a model group for studying the comparative heart morphology among Lepidosauria: evolutionary window on the ventricular septation. Ecology and Evolution, 12, e9476. PubMed PMC

Grothoff, M. , Pachowsky, M. , Hoffmann, J. , Posch, M. , Klaassen, S. , Lehmkuhl, L. et al. (2012) Value of cardiovascular MR in diagnosing left ventricular non‐compaction cardiomyopathy and in discriminating between other cardiomyopathies. European Radiology, 22, 2699–2709. PubMed PMC

Gundersen, H.J. , Bendtsen, T.F. , Korbo, L. , Marcussen, N. , Møller, A. , Nielsen, K. et al. (1988) Some new, simple and efficient stereological methods and their use in pathological research and diagnosis. APMIS, 96, 379–394. PubMed

Hanemaaijer, J. , Gregorovicova, M. , Nielsen, J.M. , Moorman, A.F.M. , Wang, T. , Planken, R.N. et al. (2019) Identification of the building blocks of ventricular septation in monitor lizards (Varanidae). Development, 146, dev177121. PubMed

Henderson, D.J. & Anderson, R.H. (2009) The development and structure of the ventricles in the human heart. Pediatric Cardiology, 30, 588–596. PubMed

Hussein, A. , Karimianpour, A. , Collier, P. & Krasuski, R.A. (2015) Isolated noncompaction of the left ventricle in adults. Journal of the American College of Cardiology, 66, 578–585. PubMed

Ishiwata, T. , Nakazawa, M. , Pu, W.T. , Tevosian, S.G. & Izumo, S. (2003) Developmental changes in ventricular diastolic function correlate with changes in ventricular myoarchitecture in normal mouse embryos. Circulation Research, 93, 857–865. PubMed

Jensen, B. , Agger, P. , de Boer, B.A. , Oostra, R.J. , Pedersen, M. , van der Wal, A.C. et al. (2016) The hypertrabeculated (noncompacted) left ventricle is different from the ventricle of embryos and ectothermic vertebrates. Biochimica et Biophysica Acta, 1863, 1696–1706. PubMed

Jensen, B. & Petersen, S.E. (2022) Making less of a mess of the trabecular mesh. Radiology: Cardiothoracic Imaging, 4, e220227. PubMed PMC

Jensen, B. , Salvatori, D. , Schouten, J. , Meijborg, V.M.F. , Lauridsen, H. & Agger, P. (2024) Trabeculations of the Porcine and Human Cardiac Ventricles Are Different in Number but Similar in Total Volume. Clinical Anatomy. 10.1002/ca.24135 PubMed DOI

Jensen, B. & Smith, T.H. (2018) Examples of weak, if not absent, Form‐Function Relations in the Vertebrate Heart. Journal of Cardiovascular Devlopment and Disease, 5, 46. PubMed PMC

Jensen, B. , Wang, T. , Christoffels, V.M. & Moorman, A.F. (2013) Evolution and development of the building plan of the vertebrate heart. Biochimica et Biophysica Acta, 1833, 783–794. PubMed

Luu, J.M. , Gebhard, C. , Ramasundarahettige, C. , Desai, D. , Schulze, K. , Marcotte, F. et al. (2022) Normal sex and age‐specific parameters in a multi‐ethnic population: a cardiovascular magnetic resonance study of the Canadian Alliance for healthy hearts and minds cohort. Journal of Cardiovascular Magnetic Resonance, 24, 2. PubMed PMC

Manner, J. (2022) When does the human embryonic heart start beating? A review of contemporary and historical sources of knowledge about the onset of blood circulation in man. Journal of Cardiovascular Devlopment and Disease, 9(6), 187. PubMed PMC

Moorman, A.F. & Christoffels, V.M. (2003) Cardiac chamber formation: development, genes, and evolution. Physiological Reviews, 83, 1223–1267. PubMed

Oechslin, E. & Jenni, R. (2011) Left ventricular non‐compaction revisited: a distinct phenotype with genetic heterogeneity? European Heart Journal, 32, 1446–1456. PubMed

Olejnickova, V. , Kocka, M. , Kvasilova, A. , Kolesova, H. , Dziacky, A. , Gidor, T. et al. (2021) Gap junctional communication via Connexin43 between Purkinje fibers and working myocytes explains the Epicardial activation pattern in the postnatal mouse left ventricle. International Journal of Molecular Sciences, 22(5), 2475. PubMed PMC

Petersen, S.E. , Jensen, B. , Aung, N. , Friedrich, M.G. , McMahon, C. , Mohiddin, S.A. et al. (2023) Excessive Trabeculation of the left ventricle: JACC: cardiovascular imaging expert panel paper. JACC: Cardiovascular Imaging, 16, 408–425. PubMed PMC

Polacin, M. , Karolyi, M. , Wilzeck, V. , Eberhard, M. , Gotschy, A. , Alkadhi, H. et al. (2022) Three‐dimensional whole‐heart cardiac MRI sequence for measuring Trabeculation in left ventricular noncompaction. Radiology: Cardiothoracic Imaging, 4, e220109. PubMed PMC

Riekerk, H.C.E. , Coolen, B.F. , Strijkers, G.J. et al. (2022) Higher spatial resolution improves the interpretation of the extent of ventricular trabeculation. Journal of Anatomy, 240, 357–375. PubMed PMC

Ross, S.B. , Jones, K. , Blanch, B. , Puranik, R. , McGeechan, K. , Barratt, A. et al. (2020) A systematic review and meta‐analysis of the prevalence of left ventricular non‐compaction in adults. European Heart Journal, 41, 1428–1436. PubMed

Rowlatt, U. (1990) Comparative anatomy of the heart of mammals. Zoological Journal of the Linnean Society, 98, 73–110.

Rychterova, V. (1971) Principle of growth in thickness of the heart ventricular wall in the chick embryo. Folia Morphol (Praha), 19, 262–272. PubMed

Sankova, B. , Benes, J., Jr. , Krejci, E. , Dupays, L. , Theveniau‐Ruissy, M. , Miquerol, L. et al. (2012) The effect of connexin40 deficiency on ventricular conduction system function during development. Cardiovascular Research, 95, 469–479. PubMed

Sedmera, D. , Grobety, M. , Reymond, C. , Baehler, P. , Kucera, P. & Kappenberger, L. (1999) Pacing‐induced ventricular remodeling in the chick embryonic heart. Pediatric Research, 45, 845–852. PubMed

Sedmera, D. , Reckova, M. , DeAlmeida, A. , Coppen, S.R. , Kubalak, S.W. , Gourdie, R.G. et al. (2003) Spatiotemporal pattern of commitment to slowed proliferation in the embryonic mouse heart indicates progressive differentiation of the cardiac conduction system. Anatomical Record Part A, Discoveries in Molecular, Cellular, and Evoloutionary Biology, 274, 773–777. PubMed

Shi, W. , Scialdone, A.P. , Emerson, J.I. , Mei, L. , Wasson, L.K. , Davies, H.A. et al. (2023) Missense mutation in human CHD4 causes ventricular noncompaction by repressing ADAMTS1. Circulation Research, 133, 48–67. PubMed PMC

Smerup, M. , Nielsen, E. , Agger, P. , Frandsen, J. , Vestergaard‐Poulsen, P. , Andersen, J. et al. (2009) The three‐dimensional arrangement of the myocytes aggregated together within the mammalian ventricular myocardium. Anatomical Record (Hoboken), 292, 1–11. PubMed

Tang, J. , Zhu, H. , Tian, X. , Wang, H. , Liu, S. , Liu, K. et al. (2022) Extension of endocardium‐derived vessels generate coronary arteries in neonates. Circulation Research, 130, 352–365. PubMed

Tian, X. , Li, Y. , He, L. , Zhang, H. , Huang, X. , Liu, Q. et al. (2017) Identification of a hybrid myocardial zone in the mammalian heart after birth. Nature Communications, 8, 87. PubMed PMC

Tyser, R.C.V. & Srinivas, S. (2020) The first heartbeat‐origin of cardiac contractile activity. Cold Spring Harbor Perspectives in Biology, 12(7), a037135. PubMed PMC

van der Ven, J.P.G. , Sadighy, Z. , Valsangiacomo Buechel, E.R. , Sarikouch, S. , Robbers‐Visser, D. , Kellenberger, C.J. et al. (2020) Multicentre reference values for cardiac magnetic resonance imaging derived ventricular size and function for children aged 0‐18 years. European Heart Journal Cardiovascular Imaging, 21, 102–113. PubMed PMC

Van Mierop, L.H. & Bertuch, C.J., Jr. (1967) Development of arterial blood pressure in the chick embryo. Am . The Journal of Physiology, 212, 43–48. PubMed

van Weerd, J.H. & Christoffels, V.M. (2016) The formation and function of the cardiac conduction system. Development, 143, 197–210. PubMed

Wang, J. , Liu, S. , Heallen, T. & Martin, J.F. (2018) The hippo pathway in the heart: pivotal roles in development, disease, and regeneration. Nature Reviews Cardiology, 15, 672–684. PubMed

Wilsbacher, L. & McNally, E.M. (2016) Genetics of cardiac developmental disorders: Cardiomyocyte proliferation and growth and relevance to heart failure. Annual Review of Pathology, 11, 395–419. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...