Gap Junctional Communication via Connexin43 between Purkinje Fibers and Working Myocytes Explains the Epicardial Activation Pattern in the Postnatal Mouse Left Ventricle

. 2021 Mar 01 ; 22 (5) : . [epub] 20210301

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33804428

Grantová podpora
HL141855 NIH HHS - United States
R01 HL141855 NHLBI NIH HHS - United States
R35 HL161237 NHLBI NIH HHS - United States
R01 HL056728 NHLBI NIH HHS - United States
HL56728 NIH HHS - United States

The mammalian ventricular myocardium forms a functional syncytium due to flow of electrical current mediated in part by gap junctions localized within intercalated disks. The connexin (Cx) subunit of gap junctions have direct and indirect roles in conduction of electrical impulse from the cardiac pacemaker via the cardiac conduction system (CCS) to working myocytes. Cx43 is the dominant isoform in these channels. We have studied the distribution of Cx43 junctions between the CCS and working myocytes in a transgenic mouse model, which had the His-Purkinje portion of the CCS labeled with green fluorescence protein. The highest number of such connections was found in a region about one-third of ventricular length above the apex, and it correlated with the peak proportion of Purkinje fibers (PFs) to the ventricular myocardium. At this location, on the septal surface of the left ventricle, the insulated left bundle branch split into the uninsulated network of PFs that continued to the free wall anteriorly and posteriorly. The second peak of PF abundance was present in the ventricular apex. Epicardial activation maps correspondingly placed the site of the first activation in the apical region, while some hearts presented more highly located breakthrough sites. Taken together, these results increase our understanding of the physiological pattern of ventricular activation and its morphological underpinning through detailed CCS anatomy and distribution of its gap junctional coupling to the working myocardium.

Zobrazit více v PubMed

Volgyi B., Kovacs-Oller T., Atlasz T., Wilhelm M., Gabriel R. Gap junctional coupling in the vertebrate retina: Variations on one theme? Prog. Retin. Eye Res. 2013;34:1–18. doi: 10.1016/j.preteyeres.2012.12.002. PubMed DOI

Van Kempen M.J., Fromaget C., Gros D., Moorman A.F., Lamers W.H. Spatial distribution of connexin43, the major cardiac gap junction protein, in the developing and adult rat heart. Circ. Res. 1991;68:1638–1651. doi: 10.1161/01.RES.68.6.1638. PubMed DOI

Hoagland D.T., Santos W., Poelzing S., Gourdie R.G. The role of the gap junction perinexus in cardiac conduction: Potential as a novel anti-arrhythmic drug target. Prog. Biophys. Mol. Biol. 2019;144:41–50. doi: 10.1016/j.pbiomolbio.2018.08.003. PubMed DOI PMC

Gu H., Ek-Vitorin J.F., Taffet S.M., Delmar M. Coexpression of connexins 40 and 43 enhances the pH sensitivity of gap junctions: A model for synergistic interactions among connexins. Circ. Res. 2000;86:E98–E103. doi: 10.1161/01.RES.86.10.e98. PubMed DOI

Rackauskas M., Kreuzberg M.M., Pranevicius M., Willecke K., Verselis V.K., Bukauskas F.F. Gating properties of heterotypic gap junction channels formed of connexins 40, 43, and 45. Biophys. J. 2007;92:1952–1965. doi: 10.1529/biophysj.106.099358. PubMed DOI PMC

Rackauskas M., Verselis V.K., Bukauskas F.F. Permeability of homotypic and heterotypic gap junction channels formed of cardiac connexins mCx30.2, Cx40, Cx43, and Cx45. Am. J. Physiol. Heart Circ. Physiol. 2007;293:H1729–H1736. doi: 10.1152/ajpheart.00234.2007. PubMed DOI PMC

Desplantez T. Cardiac Cx43, Cx40 and Cx45 co-assembling: Involvement of connexins epitopes in formation of hemichannels and Gap junction channels. BMC Cell Biol. 2017;18(Suppl. 1):3. doi: 10.1186/s12860-016-0118-4. PubMed DOI PMC

Ek-Vitorin J.F., King T.J., Heyman N.S., Lampe P.D., Burt J.M. Selectivity of connexin 43 channels is regulated through protein kinase C-dependent phosphorylation. Circ. Res. 2006;98:1498–1505. doi: 10.1161/01.RES.0000227572.45891.2c. PubMed DOI PMC

Solan J.L., Lampe P.D. Spatio-temporal regulation of connexin43 phosphorylation and gap junction dynamics. Biochim. Biophys. Acta Biomembr. 2018;1860:83–90. doi: 10.1016/j.bbamem.2017.04.008. PubMed DOI PMC

Van Veen A.A., van Rijen H.V., Opthof T. Cardiac gap junction channels: Modulation of expression and channel properties. Cardiovasc. Res. 2001;51:217–229. doi: 10.1016/S0008-6363(01)00324-8. PubMed DOI

Axelsen L.N., Calloe K., Holstein-Rathlou N.H., Nielsen M.S. Managing the complexity of communication: Regulation of gap junctions by post-translational modification. Front. Pharm. 2013;4:130. doi: 10.3389/fphar.2013.00130. PubMed DOI PMC

Axelsen L.N., Stahlhut M., Mohammed S., Larsen B.D., Nielsen M.S., Holstein-Rathlou N.H., Andersen S., Jensen O.N., Hennan J.K., Kjolbye A.L. Identification of ischemia-regulated phosphorylation sites in connexin43: A possible target for the antiarrhythmic peptide analogue rotigaptide (ZP123) J. Mol. Cell. Cardiol. 2006;40:790–798. doi: 10.1016/j.yjmcc.2006.03.005. PubMed DOI

Kohutova J., Elsnicova B., Holzerova K., Neckar J., Sebesta O., Jezkova J., Vecka M., Vebr P., Hornikova D., Szeiffova Bacova B., et al. Anti-arrhythmic Cardiac Phenotype Elicited by Chronic Intermittent Hypoxia Is Associated With Alterations in Connexin-43 Expression, Phosphorylation, and Distribution. Front. Endocrinol. 2018;9:789. doi: 10.3389/fendo.2018.00789. PubMed DOI PMC

Sedmera D., Neckar J., Benes J., Jr., Pospisilova J., Petrak J., Sedlacek K., Melenovsky V. Changes in Myocardial Composition and Conduction Properties in Rat Heart Failure Model Induced by Chronic Volume Overload. Front. Physiol. 2016;7:367. doi: 10.3389/fphys.2016.00367. PubMed DOI PMC

Remo B.F., Qu J., Volpicelli F.M., Giovannone S., Shin D., Lader J., Liu F.Y., Zhang J., Lent D.S., Morley G.E., et al. Phosphatase-resistant gap junctions inhibit pathological remodeling and prevent arrhythmias. Circ. Res. 2011;108:1459–1466. doi: 10.1161/CIRCRESAHA.111.244046. PubMed DOI PMC

Howarth F.C., Chandler N.J., Kharche S., Tellez J.O., Greener I.D., Yamanushi T.T., Billeter R., Boyett M.R., Zhang H., Dobrzynski H. Effects of streptozotocin-induced diabetes on connexin43 mRNA and protein expression in ventricular muscle. Mol. Cell Biochem. 2008;319:105–114. doi: 10.1007/s11010-008-9883-5. PubMed DOI

Lin H., Ogawa K., Imanaga I., Tribulova N. Remodeling of connexin 43 in the diabetic rat heart. Mol. Cell Biochem. 2006;290:69–78. doi: 10.1007/s11010-006-9166-y. PubMed DOI

Boulaksil M., Winckels S.K., Engelen M.A., Stein M., van Veen T.A., Jansen J.A., Linnenbank A.C., Bierhuizen M.F., Groenewegen W.A., van Oosterhout M.F., et al. Heterogeneous Connexin43 distribution in heart failure is associated with dispersed conduction and enhanced susceptibility to ventricular arrhythmias. Eur. J. Heart Fail. 2010;12:913–921. doi: 10.1093/eurjhf/hfq092. PubMed DOI

Kostin S., Rieger M., Dammer S., Hein S., Richter M., Klovekorn W.P., Bauer E.P., Schaper J. Gap junction remodeling and altered connexin43 expression in the failing human heart. Mol. Cell Biochem. 2003;242:135–144. doi: 10.1023/A:1021154115673. PubMed DOI

Andelova K., Egan Benova T., Szeiffova Bacova B., Sykora M., Prado N.J., Diez E.R., Hlivak P., Tribulova N. Cardiac Connexin-43 Hemichannels and Pannexin1 Channels: Provocative Antiarrhythmic Targets. Int. J. Mol. Sci. 2020;22:260. doi: 10.3390/ijms22010260. PubMed DOI PMC

Van der Velden H.M., van Kempen M.J., Wijffels M.C., van Zijverden M., Groenewegen W.A., Allessie M.A., Jongsma H.J. Altered pattern of connexin40 distribution in persistent atrial fibrillation in the goat. J. Cardiovasc. Electrophysiol. 1998;9:596–607. doi: 10.1111/j.1540-8167.1998.tb00940.x. PubMed DOI

Van der Velden H.M., Jongsma H.J. Cardiac gap junctions and connexins: Their role in atrial fibrillation and potential as therapeutic targets. Cardiovasc. Res. 2002;54:270–279. doi: 10.1016/S0008-6363(01)00557-0. PubMed DOI

Franco D., Icardo J.M. Molecular characterization of the ventricular conduction system in the developing mouse heart: Topographical correlation in normal and congenitally malformed hearts. Cardiovasc. Res. 2001;49:417–429. doi: 10.1016/S0008-6363(00)00252-2. PubMed DOI

Gourdie R.G., Green C.R., Severs N.J., Anderson R.H., Thompson R.P. Evidence for a distinct gap-junctional phenotype in ventricular conduction tissues of the developing and mature avian heart. Circ. Res. 1993;72:278–289. doi: 10.1161/01.RES.72.2.278. PubMed DOI

Severs N.J., Bruce A.F., Dupont E., Rothery S. Remodelling of gap junctions and connexin expression in diseased myocardium. Cardiovasc. Res. 2008;80:9–19. doi: 10.1093/cvr/cvn133. PubMed DOI PMC

Coppen S.R., Severs N.J., Gourdie R.G. Connexin45 (alpha 6) expression delineates an extended conduction system in the embryonic and mature rodent heart. Dev. Genet. 1999;24:82–90. doi: 10.1002/(SICI)1520-6408(1999)24:1/2<82::AID-DVG9>3.0.CO;2-1. PubMed DOI

Kumai M., Nishii K., Nakamura K., Takeda N., Suzuki M., Shibata Y. Loss of connexin45 causes a cushion defect in early cardiogenesis. Development. 2000;127:3501–3512. PubMed

Gros D., Theveniau-Ruissy M., Bernard M., Calmels T., Kober F., Sohl G., Willecke K., Nargeot J., Jongsma H.J., Mangoni M.E. Connexin 30 is expressed in the mouse sino-atrial node and modulates heart rate. Cardiovasc. Res. 2010;85:45–55. doi: 10.1093/cvr/cvp280. PubMed DOI

Van Weerd J.H., Christoffels V.M. The formation and function of the cardiac conduction system. Development. 2016;143:197–210. doi: 10.1242/dev.124883. PubMed DOI

Benes J., Jr., Ammirabile G., Sankova B., Campione M., Krejci E., Kvasilova A., Sedmera D. The role of connexin40 in developing atrial conduction. FEBS Lett. 2014;588:1465–1469. doi: 10.1016/j.febslet.2014.01.032. PubMed DOI

Becker D.L., Cook J.E., Davies C.S., Evans W.H., Gourdie R.G. Expression of major gap junction connexin types in the working myocardium of eight chordates. Cell Biol. Int. 1998;22:527–543. doi: 10.1006/cbir.1998.0295. PubMed DOI

Ai X., Pogwizd S.M. Connexin 43 downregulation and dephosphorylation in nonischemic heart failure is associated with enhanced colocalized protein phosphatase type 2A. Circ. Res. 2005;96:54–63. doi: 10.1161/01.RES.0000152325.07495.5a. PubMed DOI

Akar F.G., Nass R.D., Hahn S., Cingolani E., Shah M., Hesketh G.G., DiSilvestre D., Tunin R.S., Kass D.A., Tomaselli G.F. Dynamic changes in conduction velocity and gap junction properties during development of pacing-induced heart failure. Am. J. Physiol. Heart Circ. Physiol. 2007;293:H1223–H1230. doi: 10.1152/ajpheart.00079.2007. PubMed DOI

Jensen B., Boukens B.J., Crossley D.A., 2nd, Conner J., Mohan R.A., van Duijvenboden K., Postma A.V., Gloschat C.R., Elsey R.M., Sedmera D., et al. Specialized impulse conduction pathway in the alligator heart. eLife. 2018;7:e32120. doi: 10.7554/eLife.32120. PubMed DOI PMC

Kvasilova A., Olejnickova V., Jensen B., Christoffels V.M., Kolesova H., Sedmera D., Gregorovicova M. The formation of the atrioventricular conduction axis is linked in development to ventricular septation. Pt 19J. Exp. Biol. 2020;223 doi: 10.1242/jeb.229278. PubMed DOI

Miquerol L., Meysen S., Mangoni M., Bois P., van Rijen H.V., Abran P., Jongsma H., Nargeot J., Gros D. Architectural and functional asymmetry of the His-Purkinje system of the murine heart. Cardiovasc. Res. 2004;63:77–86. doi: 10.1016/j.cardiores.2004.03.007. PubMed DOI

Sankova B., Benes J., Jr., Krejci E., Dupays L., Theveniau-Ruissy M., Miquerol L., Sedmera D. The effect of connexin40 deficiency on ventricular conduction system function during development. Cardiovasc. Res. 2012;95:469–479. doi: 10.1093/cvr/cvs210. PubMed DOI

Martinez M.E., Walton R.D., Bayer J.D., Haissaguerre M., Vigmond E.J., Hocini M., Bernus O. Role of the Purkinje-Muscle Junction on the Ventricular Repolarization Heterogeneity in the Healthy and Ischemic Ovine Ventricular Myocardium. Front. Physiol. 2018;9:718. doi: 10.3389/fphys.2018.00718. PubMed DOI PMC

Boyden P.A., Hirose M., Dun W. Cardiac Purkinje cells. Heart Rhythm. 2010;7:127–135. doi: 10.1016/j.hrthm.2009.09.017. PubMed DOI

Rentschler S., Vaidya D.M., Tamaddon H., Degenhardt K., Sassoon D., Morley G.E., Jalife J., Fishman G.I. Visualization and functional characterization of the developing murine cardiac conduction system. Development. 2001;128:1785–1792. PubMed PMC

Morley G.E., Vaidya D. Understanding conduction of electrical impulses in the mouse heart using high-resolution video imaging technology. Microsc. Res. Tech. 2001;52:241–250. doi: 10.1002/1097-0029(20010201)52:3<241::AID-JEMT1010>3.0.CO;2-3. PubMed DOI

Sedmera D., Gourdie R.G. Why do we have Purkinje fibers deep in our heart? Physiol. Res. 2014;63(Suppl. 1):S9–S18. doi: 10.33549/physiolres.932686. PubMed DOI

Krishnamoorthi S., Perotti L.E., Borgstrom N.P., Ajijola O.A., Frid A., Ponnaluri A.V., Weiss J.N., Qu Z., Klug W.S., Ennis D.B., et al. Simulation Methods and Validation Criteria for Modeling Cardiac Ventricular Electrophysiology. PLoS ONE. 2014;9:e114494. doi: 10.1371/journal.pone.0114494. PubMed DOI PMC

Wiegerinck R.F., van Veen T.A., Belterman C.N., Schumacher C.A., Noorman M., de Bakker J.M., Coronel R. Transmural dispersion of refractoriness and conduction velocity is associated with heterogeneously reduced connexin43 in a rabbit model of heart failure. Heart Rhythm. 2008;5:1178–1185. doi: 10.1016/j.hrthm.2008.04.026. PubMed DOI

Akar F.G., Spragg D.D., Tunin R.S., Kass D.A., Tomaselli G.F. Mechanisms underlying conduction slowing and arrhythmogenesis in nonischemic dilated cardiomyopathy. Circ. Res. 2004;95:717–725. doi: 10.1161/01.RES.0000144125.61927.1c. PubMed DOI

Glukhov A.V., Fedorov V.V., Lou Q., Ravikumar V.K., Kalish P.W., Schuessler R.B., Moazami N., Efimov I.R. Transmural dispersion of repolarization in failing and nonfailing human ventricle. Circ. Res. 2010;106:981–991. doi: 10.1161/CIRCRESAHA.109.204891. PubMed DOI PMC

Tawara S. Reizleitungssystem des Säugetierherzens—Eine anatomisch—Pathlogische Studie Über das Atrioventrikularbündel und die Purkinjeschen Fäden. Verlag von Gustav Fischer; Jena, Germany: 1906. p. 252.

Ryu S., Yamamoto S., Andersen C.R., Nakazawa K., Miyake F., James T.N. Intramural Purkinje cell network of sheep ventricles as the terminal pathway of conduction system. Anat. Rec. 2009;292:12–22. doi: 10.1002/ar.20827. PubMed DOI

Gourdie R.G., Mima T., Thompson R.P., Mikawa T. Terminal diversification of the myocyte lineage generates Purkinje fibers of the cardiac conduction system. Development. 1995;121:1423–1431. PubMed

Takebayashi-Suzuki K., Yanagisawa M., Gourdie R.G., Kanzawa N., Mikawa T. In vivo induction of cardiac Purkinje fiber differentiation by coexpression of preproendothelin-1 and endothelin converting enzyme-1. Development. 2000;127:3523–3532. PubMed

Durrer D., van Dam R.T., Freud G.E., Janse M.J., Meijler F.L., Arzbaecher R.C. Total excitation of the isolated human heart. Circulation. 1970;41:899–912. doi: 10.1161/01.CIR.41.6.899. PubMed DOI

Choquet C., Kelly R.G., Miquerol L. Nkx2-5 defines distinct scaffold and recruitment phases during formation of the murine cardiac Purkinje fiber network. Nat. Commun. 2020;11:5300. doi: 10.1038/s41467-020-19150-9. PubMed DOI PMC

Angst B.D., Khan L.U., Severs N.J., Whitely K., Rothery S., Thompson R.P., Magee A.I., Gourdie R.G. Dissociated spatial patterning of gap junctions and cell adhesion junctions during postnatal differentiation of ventricular myocardium. Circ. Res. 1997;80:88–94. doi: 10.1161/01.RES.80.1.88. PubMed DOI

Litchenberg W.H., Norman L.W., Holwell A.K., Martin K.L., Hewett K.W., Gourdie R.G. The rate and anisotropy of impulse propagation in the postnatal terminal crest are correlated with remodeling of Cx43 gap junction pattern. Cardiovasc. Res. 2000;45:379–387. doi: 10.1016/S0008-6363(99)00363-6. PubMed DOI

Kolesova H., Capek M., Radochova B., Janacek J., Sedmera D. Comparison of different tissue clearing methods and 3D imaging techniques for visualization of GFP-expressing mouse embryos and embryonic hearts. Histochem. Cell Biol. 2016;146:141–152. doi: 10.1007/s00418-016-1441-8. PubMed DOI

Miquerol L., Moreno-Rascon N., Beyer S., Dupays L., Meilhac S.M., Buckingham M.E., Franco D., Kelly R.G. Biphasic development of the Mammalian ventricular conduction system. Circ. Res. 2010;107:153–161. doi: 10.1161/CIRCRESAHA.110.218156. PubMed DOI

Vaidya D., Tamaddon H.S., Lo C.W., Taffet S.M., Delmar M., Morley G.E., Jalife J. Null mutation of connexin43 causes slow propagation of ventricular activation in the late stages of mouse embryonic development. Circ. Res. 2001;88:1196–1202. doi: 10.1161/hh1101.091107. PubMed DOI

Olejnickova V., Sankova B., Sedmera D., Janacek J. Trabecular Architecture Determines Impulse Propagation through the Early Embryonic Mouse Heart. Front. Physiol. 2018;9:1876. doi: 10.3389/fphys.2018.01876. PubMed DOI PMC

Scher A.M., Young A.C., Malmgren A.L., Erickson R.V. Activation of the interventricular septum. Circ. Res. 1955;3:56–64. doi: 10.1161/01.RES.3.1.56. PubMed DOI

Eckhardt A., Kulhava L., Miksik I., Pataridis S., Hlavackova M., Vasinova J., Kolar F., Sedmera D., Ostadal B. Proteomic analysis of cardiac ventricles: Baso-apical differences. Mol. Cell Biochem. 2018;445:211–219. doi: 10.1007/s11010-017-3266-8. PubMed DOI

Wessels A., Sedmera D. Developmental anatomy of the heart: A tale of mice and man. Physiol. Genom. 2003;15:165–176. doi: 10.1152/physiolgenomics.00033.2003. PubMed DOI

Sedmera D., Grobety M., Reymond C., Baehler P., Kucera P., Kappenberger L. Pacing-induced ventricular remodeling in the chick embryonic heart. Pediatr. Res. 1999;45:845–852. doi: 10.1203/00006450-199906000-00011. PubMed DOI

Sedmera D., Pexieder T., Vuillemin M., Thompson R.P., Anderson R.H. Developmental patterning of the myocardium. Anat. Rec. 2000;258:319–337. doi: 10.1002/(SICI)1097-0185(20000401)258:4<319::AID-AR1>3.0.CO;2-O. PubMed DOI

Kajstura J., Urbanek K., Perl S., Hosoda T., Zheng H., Ogorek B., Ferreira-Martins J., Goichberg P., Rondon-Clavo C., Sanada F., et al. Cardiomyogenesis in the adult human heart. Circ. Res. 2010;107:305–315. doi: 10.1161/CIRCRESAHA.110.223024. PubMed DOI PMC

Li F., Wang X., Bunger P.C., Gerdes A.M. Formation of binucleated cardiac myocytes in rat heart: I. Role of actin-myosin contractile ring. J. Mol. Cell. Cardiol. 1997;29:1541–1551. doi: 10.1006/jmcc.1997.0381. PubMed DOI

Li F., Wang X., Capasso J.M., Gerdes A.M. Rapid transition of cardiac myocytes from hyperplasia to hypertrophy during postnatal development. J. Mol. Cell. Cardiol. 1996;28:1737–1746. doi: 10.1006/jmcc.1996.0163. PubMed DOI

Greiner J., Sankarankutty A.C., Seemann G., Seidel T., Sachse F.B. Confocal Microscopy-Based Estimation of Parameters for Computational Modeling of Electrical Conduction in the Normal and Infarcted Heart. Front. Physiol. 2018;9:239. doi: 10.3389/fphys.2018.00239. PubMed DOI PMC

Pallante B.A., Giovannone S., Fang-Yu L., Zhang J., Liu N., Kang G., Dun W., Boyden P.A., Fishman G.I. Contactin-2 expression in the cardiac Purkinje fiber network. Circ. Arrhythm. Electrophysiol. 2010;3:186–194. doi: 10.1161/CIRCEP.109.928820. PubMed DOI PMC

Veeraraghavan R., Hoeker G.S., Alvarez-Laviada A., Hoagland D., Wan X., King D.R., Sanchez-Alonso J., Chen C., Jourdan J., Isom L.L., et al. The adhesion function of the sodium channel beta subunit (beta1) contributes to cardiac action potential propagation. eLife. 2018;7:e37610. doi: 10.7554/eLife.37610. PubMed DOI PMC

Gourdie R.G. The Cardiac Gap Junction has Discrete Functions in Electrotonic and Ephaptic Coupling. Anat. Rec. 2019;302:93–100. doi: 10.1002/ar.24036. PubMed DOI PMC

Sedmera D., Thompson R.P., Kolar F. Effect of increased pressure loading on heart growth in neonatal rats. J. Mol. Cell. Cardiol. 2003;35:301–309. doi: 10.1016/S0022-2828(03)00011-7. PubMed DOI

De la Rosa A.J., Dominguez J.N., Sedmera D., Sankova B., Hove-Madsen L., Franco D., Aranega A. Functional suppression of Kcnq1 leads to early sodium channel remodeling and cardiac conduction system dysmorphogenesis. Cardiovasc. Res. 2013;98:504–514. doi: 10.1093/cvr/cvt076. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace