Gap Junctional Communication via Connexin43 between Purkinje Fibers and Working Myocytes Explains the Epicardial Activation Pattern in the Postnatal Mouse Left Ventricle
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
HL141855
NIH HHS - United States
R01 HL141855
NHLBI NIH HHS - United States
R35 HL161237
NHLBI NIH HHS - United States
R01 HL056728
NHLBI NIH HHS - United States
HL56728
NIH HHS - United States
PubMed
33804428
PubMed Central
PMC7957598
DOI
10.3390/ijms22052475
PII: ijms22052475
Knihovny.cz E-zdroje
- Klíčová slova
- cardiac conduction system, connexin, immunohistochemistry, myocardium, optical mapping,
- MeSH
- konexin 43 fyziologie MeSH
- mezerový spoj fyziologie MeSH
- mezibuněčná komunikace * MeSH
- myši MeSH
- perikard cytologie fyziologie MeSH
- Purkyňova vlákna cytologie fyziologie MeSH
- srdeční komory patologie MeSH
- svalové buňky cytologie fyziologie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- GJA1 protein, mouse MeSH Prohlížeč
- konexin 43 MeSH
The mammalian ventricular myocardium forms a functional syncytium due to flow of electrical current mediated in part by gap junctions localized within intercalated disks. The connexin (Cx) subunit of gap junctions have direct and indirect roles in conduction of electrical impulse from the cardiac pacemaker via the cardiac conduction system (CCS) to working myocytes. Cx43 is the dominant isoform in these channels. We have studied the distribution of Cx43 junctions between the CCS and working myocytes in a transgenic mouse model, which had the His-Purkinje portion of the CCS labeled with green fluorescence protein. The highest number of such connections was found in a region about one-third of ventricular length above the apex, and it correlated with the peak proportion of Purkinje fibers (PFs) to the ventricular myocardium. At this location, on the septal surface of the left ventricle, the insulated left bundle branch split into the uninsulated network of PFs that continued to the free wall anteriorly and posteriorly. The second peak of PF abundance was present in the ventricular apex. Epicardial activation maps correspondingly placed the site of the first activation in the apical region, while some hearts presented more highly located breakthrough sites. Taken together, these results increase our understanding of the physiological pattern of ventricular activation and its morphological underpinning through detailed CCS anatomy and distribution of its gap junctional coupling to the working myocardium.
Department of Pediatric Cardiology Motol University Hospital 150 06 Prague Czech Republic
Fralin Biomedical Research Institute Virginia Tech Roanoke VA 24016 USA
Institute of Anatomy 1st Faculty of Medicine Charles University 128 00 Prague Czech Republic
Zobrazit více v PubMed
Volgyi B., Kovacs-Oller T., Atlasz T., Wilhelm M., Gabriel R. Gap junctional coupling in the vertebrate retina: Variations on one theme? Prog. Retin. Eye Res. 2013;34:1–18. doi: 10.1016/j.preteyeres.2012.12.002. PubMed DOI
Van Kempen M.J., Fromaget C., Gros D., Moorman A.F., Lamers W.H. Spatial distribution of connexin43, the major cardiac gap junction protein, in the developing and adult rat heart. Circ. Res. 1991;68:1638–1651. doi: 10.1161/01.RES.68.6.1638. PubMed DOI
Hoagland D.T., Santos W., Poelzing S., Gourdie R.G. The role of the gap junction perinexus in cardiac conduction: Potential as a novel anti-arrhythmic drug target. Prog. Biophys. Mol. Biol. 2019;144:41–50. doi: 10.1016/j.pbiomolbio.2018.08.003. PubMed DOI PMC
Gu H., Ek-Vitorin J.F., Taffet S.M., Delmar M. Coexpression of connexins 40 and 43 enhances the pH sensitivity of gap junctions: A model for synergistic interactions among connexins. Circ. Res. 2000;86:E98–E103. doi: 10.1161/01.RES.86.10.e98. PubMed DOI
Rackauskas M., Kreuzberg M.M., Pranevicius M., Willecke K., Verselis V.K., Bukauskas F.F. Gating properties of heterotypic gap junction channels formed of connexins 40, 43, and 45. Biophys. J. 2007;92:1952–1965. doi: 10.1529/biophysj.106.099358. PubMed DOI PMC
Rackauskas M., Verselis V.K., Bukauskas F.F. Permeability of homotypic and heterotypic gap junction channels formed of cardiac connexins mCx30.2, Cx40, Cx43, and Cx45. Am. J. Physiol. Heart Circ. Physiol. 2007;293:H1729–H1736. doi: 10.1152/ajpheart.00234.2007. PubMed DOI PMC
Desplantez T. Cardiac Cx43, Cx40 and Cx45 co-assembling: Involvement of connexins epitopes in formation of hemichannels and Gap junction channels. BMC Cell Biol. 2017;18(Suppl. 1):3. doi: 10.1186/s12860-016-0118-4. PubMed DOI PMC
Ek-Vitorin J.F., King T.J., Heyman N.S., Lampe P.D., Burt J.M. Selectivity of connexin 43 channels is regulated through protein kinase C-dependent phosphorylation. Circ. Res. 2006;98:1498–1505. doi: 10.1161/01.RES.0000227572.45891.2c. PubMed DOI PMC
Solan J.L., Lampe P.D. Spatio-temporal regulation of connexin43 phosphorylation and gap junction dynamics. Biochim. Biophys. Acta Biomembr. 2018;1860:83–90. doi: 10.1016/j.bbamem.2017.04.008. PubMed DOI PMC
Van Veen A.A., van Rijen H.V., Opthof T. Cardiac gap junction channels: Modulation of expression and channel properties. Cardiovasc. Res. 2001;51:217–229. doi: 10.1016/S0008-6363(01)00324-8. PubMed DOI
Axelsen L.N., Calloe K., Holstein-Rathlou N.H., Nielsen M.S. Managing the complexity of communication: Regulation of gap junctions by post-translational modification. Front. Pharm. 2013;4:130. doi: 10.3389/fphar.2013.00130. PubMed DOI PMC
Axelsen L.N., Stahlhut M., Mohammed S., Larsen B.D., Nielsen M.S., Holstein-Rathlou N.H., Andersen S., Jensen O.N., Hennan J.K., Kjolbye A.L. Identification of ischemia-regulated phosphorylation sites in connexin43: A possible target for the antiarrhythmic peptide analogue rotigaptide (ZP123) J. Mol. Cell. Cardiol. 2006;40:790–798. doi: 10.1016/j.yjmcc.2006.03.005. PubMed DOI
Kohutova J., Elsnicova B., Holzerova K., Neckar J., Sebesta O., Jezkova J., Vecka M., Vebr P., Hornikova D., Szeiffova Bacova B., et al. Anti-arrhythmic Cardiac Phenotype Elicited by Chronic Intermittent Hypoxia Is Associated With Alterations in Connexin-43 Expression, Phosphorylation, and Distribution. Front. Endocrinol. 2018;9:789. doi: 10.3389/fendo.2018.00789. PubMed DOI PMC
Sedmera D., Neckar J., Benes J., Jr., Pospisilova J., Petrak J., Sedlacek K., Melenovsky V. Changes in Myocardial Composition and Conduction Properties in Rat Heart Failure Model Induced by Chronic Volume Overload. Front. Physiol. 2016;7:367. doi: 10.3389/fphys.2016.00367. PubMed DOI PMC
Remo B.F., Qu J., Volpicelli F.M., Giovannone S., Shin D., Lader J., Liu F.Y., Zhang J., Lent D.S., Morley G.E., et al. Phosphatase-resistant gap junctions inhibit pathological remodeling and prevent arrhythmias. Circ. Res. 2011;108:1459–1466. doi: 10.1161/CIRCRESAHA.111.244046. PubMed DOI PMC
Howarth F.C., Chandler N.J., Kharche S., Tellez J.O., Greener I.D., Yamanushi T.T., Billeter R., Boyett M.R., Zhang H., Dobrzynski H. Effects of streptozotocin-induced diabetes on connexin43 mRNA and protein expression in ventricular muscle. Mol. Cell Biochem. 2008;319:105–114. doi: 10.1007/s11010-008-9883-5. PubMed DOI
Lin H., Ogawa K., Imanaga I., Tribulova N. Remodeling of connexin 43 in the diabetic rat heart. Mol. Cell Biochem. 2006;290:69–78. doi: 10.1007/s11010-006-9166-y. PubMed DOI
Boulaksil M., Winckels S.K., Engelen M.A., Stein M., van Veen T.A., Jansen J.A., Linnenbank A.C., Bierhuizen M.F., Groenewegen W.A., van Oosterhout M.F., et al. Heterogeneous Connexin43 distribution in heart failure is associated with dispersed conduction and enhanced susceptibility to ventricular arrhythmias. Eur. J. Heart Fail. 2010;12:913–921. doi: 10.1093/eurjhf/hfq092. PubMed DOI
Kostin S., Rieger M., Dammer S., Hein S., Richter M., Klovekorn W.P., Bauer E.P., Schaper J. Gap junction remodeling and altered connexin43 expression in the failing human heart. Mol. Cell Biochem. 2003;242:135–144. doi: 10.1023/A:1021154115673. PubMed DOI
Andelova K., Egan Benova T., Szeiffova Bacova B., Sykora M., Prado N.J., Diez E.R., Hlivak P., Tribulova N. Cardiac Connexin-43 Hemichannels and Pannexin1 Channels: Provocative Antiarrhythmic Targets. Int. J. Mol. Sci. 2020;22:260. doi: 10.3390/ijms22010260. PubMed DOI PMC
Van der Velden H.M., van Kempen M.J., Wijffels M.C., van Zijverden M., Groenewegen W.A., Allessie M.A., Jongsma H.J. Altered pattern of connexin40 distribution in persistent atrial fibrillation in the goat. J. Cardiovasc. Electrophysiol. 1998;9:596–607. doi: 10.1111/j.1540-8167.1998.tb00940.x. PubMed DOI
Van der Velden H.M., Jongsma H.J. Cardiac gap junctions and connexins: Their role in atrial fibrillation and potential as therapeutic targets. Cardiovasc. Res. 2002;54:270–279. doi: 10.1016/S0008-6363(01)00557-0. PubMed DOI
Franco D., Icardo J.M. Molecular characterization of the ventricular conduction system in the developing mouse heart: Topographical correlation in normal and congenitally malformed hearts. Cardiovasc. Res. 2001;49:417–429. doi: 10.1016/S0008-6363(00)00252-2. PubMed DOI
Gourdie R.G., Green C.R., Severs N.J., Anderson R.H., Thompson R.P. Evidence for a distinct gap-junctional phenotype in ventricular conduction tissues of the developing and mature avian heart. Circ. Res. 1993;72:278–289. doi: 10.1161/01.RES.72.2.278. PubMed DOI
Severs N.J., Bruce A.F., Dupont E., Rothery S. Remodelling of gap junctions and connexin expression in diseased myocardium. Cardiovasc. Res. 2008;80:9–19. doi: 10.1093/cvr/cvn133. PubMed DOI PMC
Coppen S.R., Severs N.J., Gourdie R.G. Connexin45 (alpha 6) expression delineates an extended conduction system in the embryonic and mature rodent heart. Dev. Genet. 1999;24:82–90. doi: 10.1002/(SICI)1520-6408(1999)24:1/2<82::AID-DVG9>3.0.CO;2-1. PubMed DOI
Kumai M., Nishii K., Nakamura K., Takeda N., Suzuki M., Shibata Y. Loss of connexin45 causes a cushion defect in early cardiogenesis. Development. 2000;127:3501–3512. PubMed
Gros D., Theveniau-Ruissy M., Bernard M., Calmels T., Kober F., Sohl G., Willecke K., Nargeot J., Jongsma H.J., Mangoni M.E. Connexin 30 is expressed in the mouse sino-atrial node and modulates heart rate. Cardiovasc. Res. 2010;85:45–55. doi: 10.1093/cvr/cvp280. PubMed DOI
Van Weerd J.H., Christoffels V.M. The formation and function of the cardiac conduction system. Development. 2016;143:197–210. doi: 10.1242/dev.124883. PubMed DOI
Benes J., Jr., Ammirabile G., Sankova B., Campione M., Krejci E., Kvasilova A., Sedmera D. The role of connexin40 in developing atrial conduction. FEBS Lett. 2014;588:1465–1469. doi: 10.1016/j.febslet.2014.01.032. PubMed DOI
Becker D.L., Cook J.E., Davies C.S., Evans W.H., Gourdie R.G. Expression of major gap junction connexin types in the working myocardium of eight chordates. Cell Biol. Int. 1998;22:527–543. doi: 10.1006/cbir.1998.0295. PubMed DOI
Ai X., Pogwizd S.M. Connexin 43 downregulation and dephosphorylation in nonischemic heart failure is associated with enhanced colocalized protein phosphatase type 2A. Circ. Res. 2005;96:54–63. doi: 10.1161/01.RES.0000152325.07495.5a. PubMed DOI
Akar F.G., Nass R.D., Hahn S., Cingolani E., Shah M., Hesketh G.G., DiSilvestre D., Tunin R.S., Kass D.A., Tomaselli G.F. Dynamic changes in conduction velocity and gap junction properties during development of pacing-induced heart failure. Am. J. Physiol. Heart Circ. Physiol. 2007;293:H1223–H1230. doi: 10.1152/ajpheart.00079.2007. PubMed DOI
Jensen B., Boukens B.J., Crossley D.A., 2nd, Conner J., Mohan R.A., van Duijvenboden K., Postma A.V., Gloschat C.R., Elsey R.M., Sedmera D., et al. Specialized impulse conduction pathway in the alligator heart. eLife. 2018;7:e32120. doi: 10.7554/eLife.32120. PubMed DOI PMC
Kvasilova A., Olejnickova V., Jensen B., Christoffels V.M., Kolesova H., Sedmera D., Gregorovicova M. The formation of the atrioventricular conduction axis is linked in development to ventricular septation. Pt 19J. Exp. Biol. 2020;223 doi: 10.1242/jeb.229278. PubMed DOI
Miquerol L., Meysen S., Mangoni M., Bois P., van Rijen H.V., Abran P., Jongsma H., Nargeot J., Gros D. Architectural and functional asymmetry of the His-Purkinje system of the murine heart. Cardiovasc. Res. 2004;63:77–86. doi: 10.1016/j.cardiores.2004.03.007. PubMed DOI
Sankova B., Benes J., Jr., Krejci E., Dupays L., Theveniau-Ruissy M., Miquerol L., Sedmera D. The effect of connexin40 deficiency on ventricular conduction system function during development. Cardiovasc. Res. 2012;95:469–479. doi: 10.1093/cvr/cvs210. PubMed DOI
Martinez M.E., Walton R.D., Bayer J.D., Haissaguerre M., Vigmond E.J., Hocini M., Bernus O. Role of the Purkinje-Muscle Junction on the Ventricular Repolarization Heterogeneity in the Healthy and Ischemic Ovine Ventricular Myocardium. Front. Physiol. 2018;9:718. doi: 10.3389/fphys.2018.00718. PubMed DOI PMC
Boyden P.A., Hirose M., Dun W. Cardiac Purkinje cells. Heart Rhythm. 2010;7:127–135. doi: 10.1016/j.hrthm.2009.09.017. PubMed DOI
Rentschler S., Vaidya D.M., Tamaddon H., Degenhardt K., Sassoon D., Morley G.E., Jalife J., Fishman G.I. Visualization and functional characterization of the developing murine cardiac conduction system. Development. 2001;128:1785–1792. PubMed PMC
Morley G.E., Vaidya D. Understanding conduction of electrical impulses in the mouse heart using high-resolution video imaging technology. Microsc. Res. Tech. 2001;52:241–250. doi: 10.1002/1097-0029(20010201)52:3<241::AID-JEMT1010>3.0.CO;2-3. PubMed DOI
Sedmera D., Gourdie R.G. Why do we have Purkinje fibers deep in our heart? Physiol. Res. 2014;63(Suppl. 1):S9–S18. doi: 10.33549/physiolres.932686. PubMed DOI
Krishnamoorthi S., Perotti L.E., Borgstrom N.P., Ajijola O.A., Frid A., Ponnaluri A.V., Weiss J.N., Qu Z., Klug W.S., Ennis D.B., et al. Simulation Methods and Validation Criteria for Modeling Cardiac Ventricular Electrophysiology. PLoS ONE. 2014;9:e114494. doi: 10.1371/journal.pone.0114494. PubMed DOI PMC
Wiegerinck R.F., van Veen T.A., Belterman C.N., Schumacher C.A., Noorman M., de Bakker J.M., Coronel R. Transmural dispersion of refractoriness and conduction velocity is associated with heterogeneously reduced connexin43 in a rabbit model of heart failure. Heart Rhythm. 2008;5:1178–1185. doi: 10.1016/j.hrthm.2008.04.026. PubMed DOI
Akar F.G., Spragg D.D., Tunin R.S., Kass D.A., Tomaselli G.F. Mechanisms underlying conduction slowing and arrhythmogenesis in nonischemic dilated cardiomyopathy. Circ. Res. 2004;95:717–725. doi: 10.1161/01.RES.0000144125.61927.1c. PubMed DOI
Glukhov A.V., Fedorov V.V., Lou Q., Ravikumar V.K., Kalish P.W., Schuessler R.B., Moazami N., Efimov I.R. Transmural dispersion of repolarization in failing and nonfailing human ventricle. Circ. Res. 2010;106:981–991. doi: 10.1161/CIRCRESAHA.109.204891. PubMed DOI PMC
Tawara S. Reizleitungssystem des Säugetierherzens—Eine anatomisch—Pathlogische Studie Über das Atrioventrikularbündel und die Purkinjeschen Fäden. Verlag von Gustav Fischer; Jena, Germany: 1906. p. 252.
Ryu S., Yamamoto S., Andersen C.R., Nakazawa K., Miyake F., James T.N. Intramural Purkinje cell network of sheep ventricles as the terminal pathway of conduction system. Anat. Rec. 2009;292:12–22. doi: 10.1002/ar.20827. PubMed DOI
Gourdie R.G., Mima T., Thompson R.P., Mikawa T. Terminal diversification of the myocyte lineage generates Purkinje fibers of the cardiac conduction system. Development. 1995;121:1423–1431. PubMed
Takebayashi-Suzuki K., Yanagisawa M., Gourdie R.G., Kanzawa N., Mikawa T. In vivo induction of cardiac Purkinje fiber differentiation by coexpression of preproendothelin-1 and endothelin converting enzyme-1. Development. 2000;127:3523–3532. PubMed
Durrer D., van Dam R.T., Freud G.E., Janse M.J., Meijler F.L., Arzbaecher R.C. Total excitation of the isolated human heart. Circulation. 1970;41:899–912. doi: 10.1161/01.CIR.41.6.899. PubMed DOI
Choquet C., Kelly R.G., Miquerol L. Nkx2-5 defines distinct scaffold and recruitment phases during formation of the murine cardiac Purkinje fiber network. Nat. Commun. 2020;11:5300. doi: 10.1038/s41467-020-19150-9. PubMed DOI PMC
Angst B.D., Khan L.U., Severs N.J., Whitely K., Rothery S., Thompson R.P., Magee A.I., Gourdie R.G. Dissociated spatial patterning of gap junctions and cell adhesion junctions during postnatal differentiation of ventricular myocardium. Circ. Res. 1997;80:88–94. doi: 10.1161/01.RES.80.1.88. PubMed DOI
Litchenberg W.H., Norman L.W., Holwell A.K., Martin K.L., Hewett K.W., Gourdie R.G. The rate and anisotropy of impulse propagation in the postnatal terminal crest are correlated with remodeling of Cx43 gap junction pattern. Cardiovasc. Res. 2000;45:379–387. doi: 10.1016/S0008-6363(99)00363-6. PubMed DOI
Kolesova H., Capek M., Radochova B., Janacek J., Sedmera D. Comparison of different tissue clearing methods and 3D imaging techniques for visualization of GFP-expressing mouse embryos and embryonic hearts. Histochem. Cell Biol. 2016;146:141–152. doi: 10.1007/s00418-016-1441-8. PubMed DOI
Miquerol L., Moreno-Rascon N., Beyer S., Dupays L., Meilhac S.M., Buckingham M.E., Franco D., Kelly R.G. Biphasic development of the Mammalian ventricular conduction system. Circ. Res. 2010;107:153–161. doi: 10.1161/CIRCRESAHA.110.218156. PubMed DOI
Vaidya D., Tamaddon H.S., Lo C.W., Taffet S.M., Delmar M., Morley G.E., Jalife J. Null mutation of connexin43 causes slow propagation of ventricular activation in the late stages of mouse embryonic development. Circ. Res. 2001;88:1196–1202. doi: 10.1161/hh1101.091107. PubMed DOI
Olejnickova V., Sankova B., Sedmera D., Janacek J. Trabecular Architecture Determines Impulse Propagation through the Early Embryonic Mouse Heart. Front. Physiol. 2018;9:1876. doi: 10.3389/fphys.2018.01876. PubMed DOI PMC
Scher A.M., Young A.C., Malmgren A.L., Erickson R.V. Activation of the interventricular septum. Circ. Res. 1955;3:56–64. doi: 10.1161/01.RES.3.1.56. PubMed DOI
Eckhardt A., Kulhava L., Miksik I., Pataridis S., Hlavackova M., Vasinova J., Kolar F., Sedmera D., Ostadal B. Proteomic analysis of cardiac ventricles: Baso-apical differences. Mol. Cell Biochem. 2018;445:211–219. doi: 10.1007/s11010-017-3266-8. PubMed DOI
Wessels A., Sedmera D. Developmental anatomy of the heart: A tale of mice and man. Physiol. Genom. 2003;15:165–176. doi: 10.1152/physiolgenomics.00033.2003. PubMed DOI
Sedmera D., Grobety M., Reymond C., Baehler P., Kucera P., Kappenberger L. Pacing-induced ventricular remodeling in the chick embryonic heart. Pediatr. Res. 1999;45:845–852. doi: 10.1203/00006450-199906000-00011. PubMed DOI
Sedmera D., Pexieder T., Vuillemin M., Thompson R.P., Anderson R.H. Developmental patterning of the myocardium. Anat. Rec. 2000;258:319–337. doi: 10.1002/(SICI)1097-0185(20000401)258:4<319::AID-AR1>3.0.CO;2-O. PubMed DOI
Kajstura J., Urbanek K., Perl S., Hosoda T., Zheng H., Ogorek B., Ferreira-Martins J., Goichberg P., Rondon-Clavo C., Sanada F., et al. Cardiomyogenesis in the adult human heart. Circ. Res. 2010;107:305–315. doi: 10.1161/CIRCRESAHA.110.223024. PubMed DOI PMC
Li F., Wang X., Bunger P.C., Gerdes A.M. Formation of binucleated cardiac myocytes in rat heart: I. Role of actin-myosin contractile ring. J. Mol. Cell. Cardiol. 1997;29:1541–1551. doi: 10.1006/jmcc.1997.0381. PubMed DOI
Li F., Wang X., Capasso J.M., Gerdes A.M. Rapid transition of cardiac myocytes from hyperplasia to hypertrophy during postnatal development. J. Mol. Cell. Cardiol. 1996;28:1737–1746. doi: 10.1006/jmcc.1996.0163. PubMed DOI
Greiner J., Sankarankutty A.C., Seemann G., Seidel T., Sachse F.B. Confocal Microscopy-Based Estimation of Parameters for Computational Modeling of Electrical Conduction in the Normal and Infarcted Heart. Front. Physiol. 2018;9:239. doi: 10.3389/fphys.2018.00239. PubMed DOI PMC
Pallante B.A., Giovannone S., Fang-Yu L., Zhang J., Liu N., Kang G., Dun W., Boyden P.A., Fishman G.I. Contactin-2 expression in the cardiac Purkinje fiber network. Circ. Arrhythm. Electrophysiol. 2010;3:186–194. doi: 10.1161/CIRCEP.109.928820. PubMed DOI PMC
Veeraraghavan R., Hoeker G.S., Alvarez-Laviada A., Hoagland D., Wan X., King D.R., Sanchez-Alonso J., Chen C., Jourdan J., Isom L.L., et al. The adhesion function of the sodium channel beta subunit (beta1) contributes to cardiac action potential propagation. eLife. 2018;7:e37610. doi: 10.7554/eLife.37610. PubMed DOI PMC
Gourdie R.G. The Cardiac Gap Junction has Discrete Functions in Electrotonic and Ephaptic Coupling. Anat. Rec. 2019;302:93–100. doi: 10.1002/ar.24036. PubMed DOI PMC
Sedmera D., Thompson R.P., Kolar F. Effect of increased pressure loading on heart growth in neonatal rats. J. Mol. Cell. Cardiol. 2003;35:301–309. doi: 10.1016/S0022-2828(03)00011-7. PubMed DOI
De la Rosa A.J., Dominguez J.N., Sedmera D., Sankova B., Hove-Madsen L., Franco D., Aranega A. Functional suppression of Kcnq1 leads to early sodium channel remodeling and cardiac conduction system dysmorphogenesis. Cardiovasc. Res. 2013;98:504–514. doi: 10.1093/cvr/cvt076. PubMed DOI
The changing morphology of the ventricular walls of mouse and human with increasing gestation
Sixty Years of Heart Research in the Institute of Physiology of the Czech Academy of Sciences