Changes in Myocardial Composition and Conduction Properties in Rat Heart Failure Model Induced by Chronic Volume Overload
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
27610087
PubMed Central
PMC4997968
DOI
10.3389/fphys.2016.00367
Knihovny.cz E-zdroje
- Klíčová slova
- aorto-caval fistula, autonomic heart innervation, conduction velocity, connexin43, hypertrophy,
- Publikační typ
- časopisecké články MeSH
Volume overload leads to development of eccentric cardiac hypertrophy and heart failure. In our previous report, we have shown myocyte hypertrophy with no fibrosis and decrease in gap junctional coupling via connexin43 in a rat model of aorto-caval fistula at 21 weeks. Here we set to analyze the electrophysiological and protein expression changes in the left ventricle and correlate them with phenotypic severity based upon ventricles to body weight ratio. ECG analysis showed increased amplitude and duration of the P wave, prolongation of PR and QRS interval, ST segment elevation and decreased T wave amplitude in the fistula group. Optical mapping showed a prolongation of action potential duration in the hypertrophied hearts. Minimal conduction velocity (CV) showed a bell-shaped curve, with a significant increase in the mild cases and there was a negative correlation of both minimal and maximal CV with heart to body weight ratio. Since the CV is influenced by gap junctional coupling as well as the autonomic nervous system, we measured the amounts of tyrosine hydroxylase (TH) and choline acetyl transferase (ChAT) as a proxy for sympathetic and parasympathetic innervation, respectively. At the protein level, we confirmed a significant decrease in total and phosphorylated connexin43 that was proportional to the level of hypertrophy, and similarly decreased levels of TH and ChAT. Even at a single time-point, severity of morphological phenotype correlates with progression of molecular and electrophysiological changes, with the most hypertrophied hearts showing the most severe changes that might be related to arrhythmogenesis.
Zobrazit více v PubMed
Ai X., Curran J. W., Shannon T. R., Bers D. M., Pogwizd S. M. (2005). Ca2+/calmodulin-dependent protein kinase modulates cardiac ryanodine receptor phosphorylation and sarcoplasmic reticulum Ca2+ leak in heart failure. Circ. Res. 97, 1314–1322. 10.1161/01.RES.0000194329.41863.89 PubMed DOI
Ai X., Pogwizd S. M. (2005). Connexin 43 downregulation and dephosphorylation in nonischemic heart failure is associated with enhanced colocalized protein phosphatase type 2A. Circ. Res. 96, 54–63. 10.1161/01.RES.0000152325.07495.5a PubMed DOI
Aiba T., Tomaselli G. F. (2010). Electrical remodeling in the failing heart. Curr. Opin. Cardiol. 25, 29–36. 10.1097/HCO.0b013e328333d3d6 PubMed DOI PMC
Akar F. G., Nass R. D., Hahn S., Cingolani E., Shah M., Hesketh G. G., et al. . (2007). Dynamic changes in conduction velocity and gap junction properties during development of pacing-induced heart failure. Am. J. Physiol. Heart Circ. Physiol. 293, H1223–H1230. 10.1152/ajpheart.00079.2007 PubMed DOI
Akar F. G., Spragg D. D., Tunin R. S., Kass D. A., Tomaselli G. F. (2004). Mechanisms underlying conduction slowing and arrhythmogenesis in nonischemic dilated cardiomyopathy. Circ. Res. 95, 717–725. 10.1161/01.RES.0000144125.61927.1c PubMed DOI
Akar F. G., Tomaselli G. F. (2005). Conduction abnormalities in nonischemic dilated cardiomyopathy: basic mechanisms and arrhythmic consequences. Trends Cardiovasc. Med. 15, 259–264. 10.1016/j.tcm.2005.08.002 PubMed DOI
Anderson K. P., Walker R., Urie P., Ershler P. R., Lux R. L., Karwandee S. V. (1993). Myocardial electrical propagation in patients with idiopathic dilated cardiomyopathy. J. Clin. Invest. 92, 122–140. 10.1172/JCI116540 PubMed DOI PMC
Benes J., Kazdova L., Drahota Z., Houstek J., Medrikova D., Kopecky J., et al. . (2011b). Effect of metformin therapy on cardiac function and survival in a volume-overload model of heart failure in rats. Clin. Sci. (Lond). 121, 29–41. 10.1042/CS20100527 PubMed DOI
Benes J., Jr., Melenovsky V., Skaroupkova P., Pospisilova J., Petrak J., Cervenka L., et al. . (2011a). Myocardial morphological characteristics and proarrhythmic substrate in the Rat model of heart failure due to Chronic volume overload. Anat. Rec. (Hoboken). 294, 102–111. 10.1002/ar.21280 PubMed DOI
Cooklin M., Wallis W. R., Sheridan D. J., Fry C. H. (1998). Conduction velocity and gap junction resistance in hypertrophied, hypoxic guinea-pig left ventricular myocardium. Exp. Physiol. 83, 763–770. 10.1113/expphysiol.1998.sp004157 PubMed DOI
Coote J. H. (2013). Myths and realities of the cardiac vagus. J. Physiol. 591, 4073–4085. 10.1113/jphysiol.2013.257758 PubMed DOI PMC
de la Rosa A. J., Dominguez J. N., Sedmera D., Sankova B., Hove-Madsen L., Franco D., et al. . (2013). Functional suppression of Kcnq1 leads to early sodium channel remodelling and cardiac conduction system dysmorphogenesis. Cardiovasc. Res. 98, 504–514. 10.1093/cvr/cvt076 PubMed DOI
Delgado C., Steinhaus B., Delmar M., Chialvo D. R., Jalife J. (1990). Directional differences in excitability and margin of safety for propagation in sheep ventricular epicardial muscle. Circ. Res. 67, 97–110. 10.1161/01.RES.67.1.97 PubMed DOI
Fast V. G., Darrow B. J., Saffitz J. E., Kleber A. G. (1996). Anisotropic activation spread in heart cell monolayers assessed by high-resolution optical mapping. Role Tiss. Discontinuit. Circ. Res. 79, 115–127. 10.1161/01.RES.79.1.115 PubMed DOI
Ford L. E. (1976). Heart size. Circ. Res. 39, 297–303. 10.1161/01.RES.39.3.297 PubMed DOI
Gradman A., Deedwania P., Cody R., Massie B., Packer M., Pitt B., et al. . (1989). Predictors of total mortality and sudden death in mild to moderate heart failure. Captopril-Digoxin Study Group. J. Am. Coll. Cardiol. 14, 564–570; discussion 571–562. 10.1016/0735-1097(89)90093-4 PubMed DOI
Grigioni F., Enriquez-Sarano M., Ling L. H., Bailey K. R., Seward J. B., Tajik A. J., et al. . (1999). Sudden death in mitral regurgitation due to flail leaflet. J. Am. Coll. Cardiol. 34, 2078–2085. 10.1016/S0735-1097(99)00474-X PubMed DOI
Guggilam A., Hutchinson K. R., West T. A., Kelly A. P., Galantowicz M. L., Davidoff A. J., et al. . (2012). In vivo and in vitro cardiac responses to beta-adrenergic stimulation in volume-overload heart failure. J. Mol. Cell. Cardiol. 57, 47–58. 10.1016/j.yjmcc.2012.11.013 PubMed DOI PMC
Hatt P. Y., Rakusan K., Gastineau P., Laplace M. (1979). Morphometry and ultrastructure of heart hypertrophy induced by chronic volume overload (aorto-caval fistula in the rat). J. Mol. Cell. Cardiol. 11, 989–998. 10.1016/0022-2828(79)90390-0 PubMed DOI
Himura Y., Felten S. Y., Kashiki M., Lewandowski T. J., Delehanty J. M., Liang C. S. (1993). Cardiac noradrenergic nerve terminal abnormalities in dogs with experimental congestive heart failure. Circulation 88, 1299–1309. 10.1161/01.CIR.88.3.1299 PubMed DOI
Hobbs F. D., Kenkre J. E., Roalfe A. K., Davis R. C., Hare R., Davies M. K. (2002). Impact of heart failure and left ventricular systolic dysfunction on quality of life: a cross-sectional study comparing common chronic cardiac and medical disorders and a representative adult population. Eur. Heart J. 23, 1867–1876. 10.1053/euhj.2002.3255 PubMed DOI
Hood W. P., Jr., Rackley C. E., Rolett E. L. (1968). Wall stress in the normal and hypertrophied human left ventricle. Am. J. Cardiol. 22, 550–558. 10.1016/0002-9149(68)90161-6 PubMed DOI
Hutchins G. M., Bulkley B. H., Moore G. W., Piasio M. A., Lohr F. T. (1978). Shape of the human cardiac ventricles. Am. J. Cardiol. 41, 646–654. 10.1016/0002-9149(78)90812-3 PubMed DOI
Hutchinson K. R., Guggilam A., Cismowski M. J., Galantowicz M. L., West T. A., Stewart J. A., Jr., et al. . (2011). Temporal pattern of left ventricular structural and functional remodeling following reversal of volume overload heart failure. J. Appl. Physiol. (1985) 111, 1778–1788. 10.1152/japplphysiol.00691.2011 PubMed DOI PMC
Hutchinson K. R., Stewart J. A., Jr., Lucchesi P. A. (2010). Extracellular matrix remodeling during the progression of volume overload-induced heart failure. J. Mol. Cell. Cardiol. 48, 564–569. 10.1016/j.yjmcc.2009.06.001 PubMed DOI PMC
Kadish A. H., Spear J. F., Levine J. H., Moore E. N. (1986). The effects of procainamide on conduction in anisotropic canine ventricular myocardium. Circulation 74, 616–625. 10.1161/01.CIR.74.3.616 PubMed DOI
Kanazawa H., Ieda M., Kimura K., Arai T., Kawaguchi-Manabe H., Matsuhashi T., et al. . (2010). Heart failure causes cholinergic transdifferentiation of cardiac sympathetic nerves via gp130-signaling cytokines in rodents. J. Clin. Invest. 120, 408–421. 10.1172/JCI39778 PubMed DOI PMC
Kannel W. B., Plehn J. F., Cupples L. A. (1988). Cardiac failure and sudden death in the Framingham Study. Am. Heart J. 115, 869–875. 10.1016/0002-8703(88)90891-5 PubMed DOI
Konstam V., Salem D., Pouleur H., Kostis J., Gorkin L., Shumaker S., et al. . (1996). Baseline quality of life as a predictor of mortality and hospitalization in 5,025 patients with congestive heart failure. SOLVD Investigations. Studies of Left Ventricular Dysfunction Investigators. Am. J. Cardiol. 78, 890–895. 10.1016/S0002-9149(96)00463-8 PubMed DOI
Leon L. J., Roberge F. A. (1991). Directional characteristics of action potential propagation in cardiac muscle. A model study. Circ. Res. 69, 378–395. 10.1161/01.RES.69.2.378 PubMed DOI
Libby P., Bonow R. O., Mann D. L., Zipes D. P. (2008). Braunwald's Heart Disease. Philadelphia, PA: Elsevier.
McSpadden L. C., Kirkton R. D., Bursac N. (2009). Electrotonic loading of anisotropic cardiac monolayers by unexcitable cells depends on connexin type and expression level. Am. J. Physiol. Cell Physiol. 297, C339–C351. 10.1152/ajpcell.00024.2009 PubMed DOI PMC
Melenovsky V. (2013). Cardiac adaptation to volume overload, in Cardiac Adaptations, eds Dhalla N. S., Ostadal B. (New York, NY: Springer; ), 167–199.
Melenovsky V., Benes J., Skaroupkova P., Sedmera D., Strnad H., Kolar M., et al. . (2011). Metabolic characterization of volume overload heart failure due to aorto-caval fistula in rats. Mol. Cell. Biochem. 354, 83–96. 10.1007/s11010-011-0808-3 PubMed DOI
Melenovsky V., Skaroupkova P., Benes J., Torresova V., Kopkan L., Cervenka L. (2012). The course of heart failure development and mortality in rats with volume overload due to aorto-caval fistula. Kid. Blood Press. Res. 35, 167–173. 10.1159/000331562 PubMed DOI
Morley G. E., Vaidya D. (2001). Understanding conduction of electrical impulses in the mouse heart using high-resolution video imaging technology. Microsc. Res. Tech. 52, 241–250. 10.1002/1097-0029(20010201)52:3<241::AID-JEMT1010>3.0.CO;2-3 PubMed DOI
Muller-Borer B. J., Erdman D. J., Buchanan J. W. (1994). Electrical coupling and impulse propagation in anatomically modeled ventricular tissue. IEEE Trans. Biomed. Eng. 41, 445–454. 10.1109/10.293219 PubMed DOI
Patterson E., Scherlag B. J., Zhou J., Jackman W. M., Lazzara R., Coscia D., et al. . (2008). Antifibrillatory actions of cisatracurium: an atrial specific M2 receptor antagonist. J. Cardiovasc. Electrophysiol. 19, 861–868. 10.1111/j.1540-8167.2008.01123.x PubMed DOI
Peschar M., Vernooy K., Vanagt W. Y., Reneman R. S., Vos M. A., Prinzen F. W. (2003). Absence of reverse electrical remodeling during regression of volume overload hypertrophy in canine ventricles. Cardiovasc. Res. 58, 510–517. 10.1016/S0008-6363(03)00331-6 PubMed DOI
Pesevski Z., Sedmera D. (2013). Prenatal Adaptations to Overolad, in Cardiac Adaptations, eds Ostadal B., Dhalla N. S. (New York, NY: Springer Science+Business Media; ), 41–57.
Rauch B., Niroomand F. (1991). Specific M2-receptor activation: an alternative to treatment with beta-receptor blockers? Eur. Heart J. 12(Suppl. F), 76–82. PubMed
Reddy Y. N., Melenovsky V., Redfield M. M., Nishimura R. A., Borlaug B. A. (2016). High-output heart failure: a 15-year experience. J. Am. Coll. Cardiol. 68, 473–482. 10.1016/j.jacc.2016.05.043 PubMed DOI
Roy A., Fields W. C., Rocha-Resende C., Resende R. R., Guatimosim S., Prado V. F., et al. . (2013). Cardiomyocyte-secreted acetylcholine is required for maintenance of homeostasis in the heart. FASEB J. 27, 5072–5082. 10.1096/fj.13-238279 PubMed DOI PMC
Ryan T. D., Rothstein E. C., Aban I., Tallaj J. A., Husain A., Lucchesi P. A., et al. . (2007). Left ventricular eccentric remodeling and matrix loss are mediated by bradykinin and precede cardiomyocyte elongation in rats with volume overload. J. Am. Coll. Cardiol. 49, 811–821. 10.1016/j.jacc.2006.06.083 PubMed DOI
Shah M., Akar F. G., Tomaselli G. F. (2005). Molecular basis of arrhythmias. Circulation 112, 2517–2529. 10.1161/CIRCULATIONAHA.104.494476 PubMed DOI
Stevens S. M., Reinier K., Chugh S. S. (2013). Increased left ventricular mass as a predictor of sudden cardiac death: is it time to put it to the test? Circ. Arrhythm. Electrophysiol. 6, 212–217. 10.1161/CIRCEP.112.974931 PubMed DOI PMC
Tomaselli G. F., Beuckelmann D. J., Calkins H. G., Berger R. D., Kessler P. D., Lawrence J. H., et al. . (1994). Sudden cardiac death in heart failure. The role of abnormal repolarization. Circulation 90, 2534–2539. 10.1161/01.CIR.90.5.2534 PubMed DOI
van Borren M. M., Den Ruijter H. M., Baartscheer A., Ravesloot J. H., Coronel R., Verkerk A. O. (2012). Dietary Omega-3 polyunsaturated fatty acids suppress NHE-1 upregulation in a rabbit model of volume- and pressure-overload. Front. Physiol. 3:76. 10.3389/fphys.2012.00076 PubMed DOI PMC
Wiegerinck R. F., Verkerk A. O., Belterman C. N., Van Veen T. A., Baartscheer A., Opthof T., et al. . (2006). Larger cell size in rabbits with heart failure increases myocardial conduction velocity and QRS duration. Circulation 113, 806–813. 10.1161/CIRCULATIONAHA.105.565804 PubMed DOI
Winterton S. J., Turner M. A., O'gorman D. J., Flores N. A., Sheridan D. J. (1994). Hypertrophy causes delayed conduction in human and guinea pig myocardium: accentuation during ischaemic perfusion. Cardiovasc. Res. 28, 47–54. 10.1093/cvr/28.1.47 PubMed DOI
Right versus left ventricular remodeling in heart failure due to chronic volume overload
HIF-1α is required for development of the sympathetic nervous system
Adverse effects of Hif1a mutation and maternal diabetes on the offspring heart