Effects of Trandolapril on Structural, Contractile and Electrophysiological Remodeling in Experimental Volume Overload Heart Failure
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
34566652
PubMed Central
PMC8460913
DOI
10.3389/fphar.2021.729568
PII: 729568
Knihovny.cz E-zdroje
- Klíčová slova
- aortocaval fistula, cardiac remodeling, rat, renin-angiotensin-aldosterone system, trandolapril, volume overload,
- Publikační typ
- časopisecké články MeSH
Chronic volume overload induces multiple cardiac remodeling processes that finally result in eccentric cardiac hypertrophy and heart failure. We have hypothesized that chronic angiotensin-converting enzyme (ACE) inhibition by trandolapril might affect various remodeling processes differentially, thus allowing their dissociation. Cardiac remodeling due to chronic volume overload and the effects of trandolapril were investigated in rats with an aortocaval fistula (ACF rats). The aortocaval shunt was created using a needle technique and progression of cardiac remodeling to heart failure was followed for 24 weeks. In ACF rats, pronounced eccentric cardiac hypertrophy and contractile and proarrhythmic electrical remodeling were associated with increased mortality. Trandolapril substantially reduced the electrical proarrhythmic remodeling and mortality, whereas the effect on cardiac hypertrophy was less pronounced and significant eccentric hypertrophy was preserved. Effective suppression of electrical proarrhythmic remodeling and mortality but not hypertrophy indicates that the beneficial therapeutic effects of ACE inhibitor trandolapril in volume overload heart failure might be dissociated from pure antihypertrophic effects.
Biomedical Center Faculty of Medicine in Pilsen Charles University Pilsen Czechia
Center for Experimental Medicine Institute for Clinical and Experimental Medicine Prague Czechia
Department of Cardiology Institute for Clinical and Experimental Medicine Prague Czechia
Department of Pathophysiology 2 Faculty of Medicine Charles University Prague Czechia
Department of Physiology Faculty of Medicine in Pilsen Charles University Pilsen Czechia
Zobrazit více v PubMed
Abassi Z., Goltsman I., Karram T., Winaver J., Hoffman A., Abassi Z., et al. (2011). Aortocaval Fistula in Rat: a Unique Model of Volume-Overload Congestive Heart Failure and Cardiac Hypertrophy. J. Biomed. Biotechnol. 2011, 729497. 10.1155/2011/729497 PubMed DOI PMC
Alvin Z., Laurence G. G., Coleman B. R., Zhao A., Hajj-Moussa M., Haddad G. E. (2011a). Regulation of L-type Inward Calcium Channel Activity by Captopril and Angiotensin II via the Phosphatidyl Inositol 3-kinase Pathway in Cardiomyocytes from Volume-Overload Hypertrophied Rat Hearts. Can. J. Physiol. Pharmacol. 89, 206–215. 10.1139/Y11-011 PubMed DOI PMC
Alvin Z. V., Laurence G. G., Coleman B. R., Zhao A., Hajj-Moussa M., Haddad G. E. (2011b). Regulation of the Instantaneous Inward Rectifier and the Delayed Outward Rectifier Potassium Channels by Captopril and Angiotensin II via the Phosphoinositide-3 Kinase Pathway in Volume-Overload-Induced Hypertrophied Cardiac Myocytes. Med. Sci. Monit. 17, BR165–72. 10.12659/msm.881843 PubMed DOI PMC
Arsenault M., Zendaoui A., Roussel E., Drolet M. C., Dhahri W., Grenier A., et al. (2013). Angiotensin II-Converting Enzyme Inhibition Improves Survival, Ventricular Remodeling, and Myocardial Energetics in Experimental Aortic Regurgitation. Circ. Heart Fail. 6, 1021–1028. 10.1161/CIRCHEARTFAILURE.112.000045 PubMed DOI
Benes J., Melenovsky V., Skaroupkova P., Pospisilova J., Petrak J., Cervenka L., et al. (2011). Myocardial Morphological Characteristics and Proarrhythmic Substrate in the Rat Model of Heart Failure Due to Chronic Volume Overload. Anat. Rec. (Hoboken) 294, 102–111. 10.1002/ar.21280 PubMed DOI
Brower G. L., Henegar J. R., Janicki J. S. (1996). Temporal Evaluation of Left Ventricular Remodeling and Function in Rats with Chronic Volume Overload. Am. J. Physiol. 271, H2071–H2078. 10.1152/ajpheart.1996.271.5.H2071 PubMed DOI
Brower G. L., Janicki J. S. (2001). Contribution of Ventricular Remodeling to Pathogenesis of Heart Failure in Rats. Am. J. Physiol. Heart Circ. Physiol. 280, H674–H683. 10.1152/ajpheart.2001.280.2.H674 PubMed DOI
Brower G. L., Levick S. P., Janicki J. S. (2015). Differential Effects of Prevention and Reversal Treatment with Lisinopril on Left Ventricular Remodelling in a Rat Model of Heart Failure. Heart Lung Circ. 24, 919–924. 10.1016/j.hlc.2015.02.023 PubMed DOI PMC
Červenka L., Melenovský V., Husková Z., Škaroupková P., Nishiyama A., Sadowski J. (2015a). Inhibition of Soluble Epoxide Hydrolase Counteracts the Development of Renal Dysfunction and Progression of Congestive Heart Failure in Ren-2 Transgenic Hypertensive Rats with Aorto-Caval Fistula. Clin. Exp. Pharmacol. Physiol. 42, 795–807. 10.1111/1440-1681.12419 PubMed DOI
Červenka L., Melenovský V., Husková Z., Sporková A., Bürgelová M., Škaroupková P., et al. (2015b). Inhibition of Soluble Epoxide Hydrolase Does Not Improve the Course of Congestive Heart Failure and the Development of Renal Dysfunction in Rats with Volume Overload Induced by Aorto-Caval Fistula. Physiol. Res. 64, 857–873. 10.33549/physiolres.932977 PubMed DOI PMC
Chaggar P. S., Malkin C. J., Shaw S. M., Williams S. G., Channer K. S. (2009). Neuroendocrine Effects on the Heart and Targets for Therapeutic Manipulation in Heart Failure. Cardiovasc. Ther. 27, 187–193. 10.1111/j.1755-5922.2009.00094.x PubMed DOI
Chevalier B., Heudes D., Heymes C., Basset A., Dakhli T., Bansard Y., et al. (1995). Trandolapril Decreases Prevalence of Ventricular Ectopic Activity in Middle-Aged SHR. Circulation 92, 1947–1953. 10.1161/01.cir.92.7.1947 PubMed DOI
Cutler M. J., Jeyaraj D., Rosenbaum D. S. (2011). Cardiac Electrical Remodeling in Health and Disease. Trends Pharmacol. Sci. 32, 174–180. 10.1016/j.tips.2010.12.001 PubMed DOI PMC
Dell'italia L. J., Balcells E., Meng Q. C., Su X., Schultz D., Bishop S. P., et al. (1997). Volume-overload Cardiac Hypertrophy Is Unaffected by ACE Inhibitor Treatment in Dogs. Am. J. Physiol. 273, H961–H970. 10.1152/ajpheart.1997.273.2.H961 PubMed DOI
Diaz A., Ducharme A. (2008). Update on the Use of Trandolapril in the Management of Cardiovascular Disorders. Vasc. Health Risk Manag. 4, 1147–1158. 10.2147/vhrm.s3467 PubMed DOI PMC
Ding Y. F., Brower G. L., Zhong Q., Murray D., Holland M., Janicki J. S., et al. (2008). Defective Intracellular Ca2+ Homeostasis Contributes to Myocyte Dysfunction During Ventricular Remodelling Induced by Chronic Volume Overload in Rats. Clin. Exp. Pharmacol. Physiol. 35, 827–835. 10.1111/j.1440-1681.2008.04923.x PubMed DOI
Essayagh B., Sabbag A., Antoine C., Benfari G., Yang L. T., Maalouf J., et al. (2020). Presentation and Outcome of Arrhythmic Mitral Valve Prolapse. J. Am. Coll. Cardiol. 76, 637–649. 10.1016/j.jacc.2020.06.029 PubMed DOI
Flaim S. F., Minteer W. J., Nellis S. H., Clark D. P. (1979). Chronic Arteriovenous Shunt: Evaluation of a Model for Heart Failure in Rat. Am. J. Physiol. 236, H698–H704. 10.1152/ajpheart.1979.236.5.H698 PubMed DOI
Fornes P., Richer C., Pussard E., Heudes D., Domergue V., Giudicelli J. F. (1992). Beneficial Effects of Trandolapril on Experimentally Induced Congestive Heart Failure in Rats. Am. J. Cardiol. 70, 43D–51D. 10.1016/0002-9149(92)90271-y PubMed DOI
Garcia R., Diebold S. (1990). Simple, Rapid, and Effective Method of Producing Aortocaval Shunts in the Rat. Cardiovasc. Res. 24, 430–432. 10.1093/cvr/24.5.430 PubMed DOI
Gardner J. D., Brower G. L., Janicki J. S. (2002). Gender Differences in Cardiac Remodeling Secondary to Chronic Volume Overload. J. Card. Fail. 8, 101–107. 10.1054/jcaf.2002.32195 PubMed DOI
Gilat E., Girouard S. D., Pastore J. M., Laurita K. R., Rosenbaum D. S. (1998). Angiotensin-converting Enzyme Inhibition Produces Electrophysiologic but Not Antiarrhythmic Effects in the Intact Heart. J. Cardiovasc. Pharmacol. 31, 734–740. 10.1097/00005344-199805000-00012 PubMed DOI
Guggilam A., Hutchinson K. R., West T. A., Kelly A. P., Galantowicz M. L., Davidoff A. J., et al. (2013). In Vivo and In Vitro Cardiac Responses to Beta-Adrenergic Stimulation in Volume-Overload Heart Failure. J. Mol. Cel Cardiol 57, 47–58. 10.1016/j.yjmcc.2012.11.013 PubMed DOI PMC
Hammond H. K., Roth D. A., Insel P. A., Ford C. E., White F. C., Maisel A. S., et al. (1992). Myocardial Beta-Adrenergic Receptor Expression and Signal Transduction after Chronic Volume-Overload Hypertrophy and Circulatory Congestion. Circulation 85, 269–280. 10.1161/01.CIR.85.1.269 PubMed DOI
Harris G. S., Lust R. M., Katwa L. C. (2007). Hemodynamic Effects of Chronic Urotensin II Administration in Animals with and without Aorto-Caval Fistula. Peptides 28, 1483–1489. 10.1016/j.peptides.2007.04.018 PubMed DOI PMC
Hatt P. Y., Rakusan K., Gastineau P., Laplace M., Cluzeaud F. (1980). Aorto-caval Fistula in the Rat. An Experimental Model of Heart Volume Overloading. Basic Res. Cardiol. 75, 105–108. 10.1007/BF02001401 PubMed DOI
Hatt P. Y., Rakusan K., Gastineau P., Laplace M. (1979). Morphometry and Ultrastructure of Heart Hypertrophy Induced by Chronic Volume Overload (Aorto-caval Fistula in the Rat). J. Mol. Cel Cardiol 11, 989–998. 10.1016/0022-2828(79)90390-0 PubMed DOI
Hill J. A. (2003). Electrical Remodeling in Cardiac Hypertrophy. Trends Cardiovasc. Med. 13, 316–322. 10.1016/j.tcm.2003.08.002 PubMed DOI
Hutchinson K. R., Guggilam A., Cismowski M. J., Galantowicz M. L., West T. A., Stewart J. A., Jr., et al. (2011). Temporal Pattern of Left Ventricular Structural and Functional Remodeling Following Reversal of Volume Overload Heart Failure. J. Appl. Physiol. 111 (6), 1778–1788. 10.1152/japplphysiol.00691.2011 PubMed DOI PMC
Ichihara A., Hayashi M., Koura Y., Tada Y., Hirota N., Saruta T. (2003). Long-term Effects of Intensive Blood-Pressure Lowering on Arterial wall Stiffness in Hypertensive Patients. Am. J. Hypertens. 16, 959–965. 10.1016/s0895-7061(03)01004-5 PubMed DOI
Kehat I., Molkentin J. D. (2010). Molecular Pathways Underlying Cardiac Remodeling during Pathophysiological Stimulation. Circulation 122, 2727–2735. 10.1161/CIRCULATIONAHA.110.942268 PubMed DOI PMC
Kemp C. D., Conte J. V. (2012). The Pathophysiology of Heart Failure. Cardiovasc. Pathol. 21, 365–371. 10.1016/j.carpath.2011.11.007 PubMed DOI
Kim H. N., Januzzi J. L. (2011). Natriuretic Peptide Testing in Heart Failure. Circulation 123, 2015–2019. 10.1161/CIRCULATIONAHA.110.9795009 PubMed DOI
Kmecova J., Klimas J. (2010). Heart Rate Correction of the QT Duration in Rats. Eur. J. Pharmacol. 641, 187–192. 10.1016/j.ejphar.2010.05.038 PubMed DOI
Koffi I., Lacolley P., Kirchengaast M., Pomiès J. P., Laurent S., Benetos A. (1998). Prevention of Arterial Structural Alterations with Verapamil and Trandolapril and Consequences for Mechanical Properties in Spontaneously Hypertensive Rats. Eur. J. Pharmacol. 361, 51–60. 10.1016/s0014-2999(98)00691-8 PubMed DOI
Kristen A. V., Kreusser M. M., Lehmann L., Kinscherf R., Katus H. A., Haass M., et al. (2006). Preserved Norepinephrine Reuptake but Reduced Sympathetic Nerve Endings in Hypertrophic Volume-Overloaded Rat Hearts. J. Card. Fail. 12, 577–583. 10.1016/j.cardfail.2006.05.006 PubMed DOI
Lee C. S., Tkacs N. C. (2008). Current Concepts of Neurohormonal Activation in Heart Failure: Mediators and Mechanisms. AACN Adv. Crit. Care 19, 364–367. 10.1097/01.AACN.0000340718.93742.c4 PubMed DOI
Liu Z., Hilbelink D. R., Crockett W. B., Gerdes A. M. (1991a). Regional Changes in Hemodynamics and Cardiac Myocyte Size in Rats with Aortocaval Fistulas. 1. Developing and Established Hypertrophy. Circ. Res. 69, 52–58. 10.1161/01.res.69.1.52 PubMed DOI
Liu Z., Hilbelink D. R., Gerdes A. M. (1991b). Regional Changes in Hemodynamics and Cardiac Myocyte Size in Rats with Aortocaval Fistulas. 2. Long-Term Effects. Circ. Res. 69, 59–65. 10.1161/01.res.69.1.59 PubMed DOI
Lloyd-Jones D. M., Larson M. G., Leip E. P., Beiser A., D'Agostino R. B., Kannel W. B., et al. (2002). Lifetime Risk for Developing Congestive Heart Failure: the Framingham Heart Study. Circulation 106, 3068–3072. 10.1161/01.cir.0000039105.49749.6f PubMed DOI
Lou Q., Janardhan A., Efimov I. R. (2012). Remodeling of Calcium Handling in Human Heart Failure. Adv. Exp. Med. Biol. 740, 1145–1174. 10.1007/978-94-007-2888-2_52 PubMed DOI PMC
Luo M., Anderson M. E. (2013). Mechanisms of Altered Ca²⁺ Handling in Heart Failure. Circ. Res. 113, 690–708. 10.1161/CIRCRESAHA.113.301651 PubMed DOI PMC
Mahajerin A., Gurm H. S., Tsai T. T., Chan P. S., Nallamothu B. K. (2007). Vasodilator Therapy in Patients with Aortic Insufficiency: a Systematic Review. Am. Heart J. 153, 454–461. 10.1016/j.ahj.2007.01.006 PubMed DOI
Meani P., Maloberti A., Sormani P., Colombo G., Giupponi L., Stucchi M., et al. (2018). Determinants of Carotid-Femoral Pulse Wave Velocity Progression in Hypertensive Patients over a 3.7 Years Follow-Up. Blood Press. 27, 32–40. 10.1080/08037051.2017.1378069 PubMed DOI
Melenovsky V., Cervenka L., Viklicky O., Franekova J., Havlenova T., Behounek M., et al. (2018). Kidney Response to Heart Failure: Proteomic Analysis of Cardiorenal Syndrome. Kidney Blood Press. Res. 43, 1437–1450. 10.1159/000493657 PubMed DOI
Melenovsky V., Skaroupkova P., Benes J., Torresova V., Kopkan L., Cervenka L. (2012). The Course of Heart Failure Development and Mortality in Rats with Volume Overload Due to Aorto-Caval Fistula. Kidney Blood Press. Res. 35, 167–173. 10.1159/000331562 PubMed DOI
Modesti P. A., Vanni S., Bertolozzi I., Cecioni I., Lumachi C., Perna A. M., et al. (2004). Different Growth Factor Activation in the Right and Left Ventricles in Experimental Volume Overload. Hypertension 43, 101–108. 10.1161/01.HYP.0000104720.76179.18 PubMed DOI
Oliver-Dussault C., Ascah A., Marcil M., Matas J., Picard S., Pibarot P., et al. (2010). Early Predictors of Cardiac Decompensation in Experimental Volume Overload. Mol. Cel Biochem 338, 271–282. 10.1007/s11010-009-0361-5 PubMed DOI
Orsborne C., Chaggar P. S., Shaw S. M., Williams S. G. (2017). The Renin-Angiotensin-Aldosterone System in Heart Failure for the Non-specialist: the Past, the Present and the Future. Postgrad. Med. J. 93, 29–37. 10.1136/postgradmedj-2016-134045 PubMed DOI
Perry G. J., Wei C. C., Hankes G. H., Dillon S. R., Rynders P., Mukherjee R., et al. (2002). Angiotensin II Receptor Blockade Does Not Improve Left Ventricular Function and Remodeling in Subacute Mitral Regurgitation in the Dog. J. Am. Coll. Cardiol. 39, 1374–1379. 10.1016/s0735-1097(02)01763-1 PubMed DOI
Petrak J., Pospisilova J., Sedinova M., Jedelsky P., Lorkova L., Vit O., et al. (2011). Proteomic and Transcriptomic Analysis of Heart Failure Due to Volume Overload in a Rat Aorto-Caval Fistula Model Provides Support for New Potential Therapeutic Targets - Monoamine Oxidase A and Transglutaminase 2. Proteome Sci. 9, 69. 10.1186/1477-5956-9-69 PubMed DOI PMC
Pfeffer M. A., Braunwald E., Moyé L. A., Basta L., Brown E. J., Cuddy T. E., et al. (1992). Effect of Captopril on Mortality and Morbidity in Patients with Left Ventricular Dysfunction after Myocardial Infarction. Results of the Survival and Ventricular Enlargement Trial. The SAVE Investigators. N. Engl. J. Med. 327, 669–677. 10.1056/NEJM199209033271001 PubMed DOI
Rea M. E., Dunlap M. E. (2008). Renal Hemodynamics in Heart Failure: Implications for Treatment. Curr. Opin. Nephrol. Hypertens. 17, 87–92. 10.1097/MNH.0b013e3282f357da PubMed DOI
Ruzicka M., Keeley F. W., Leenen F. H. (1994). The Renin-Angiotensin System and Volume Overload-Induced Changes in Cardiac Collagen and Elastin. Circulation 90, 1989–1996. 10.1161/01.cir.90.4.1989 PubMed DOI
Ruzicka M., Skarda V., Leenen F. H. (1995). Effects of ACE Inhibitors on Circulating versus Cardiac Angiotensin II in Volume Overload-Induced Cardiac Hypertrophy in Rats. Circulation 92, 3568–3573. 10.1161/01.cir.92.12.3568 PubMed DOI
Ruzicka M., Yuan B., Harmsen E., Leenen F. H. (1993). The Renin-Angiotensin System and Volume Overload-Induced Cardiac Hypertrophy in Rats. Effects of Angiotensin Converting Enzyme Inhibitor versus Angiotensin II Receptor Blocker. Circulation 87, 921–930. 10.1161/01.cir.87.3.921 PubMed DOI
Ryan T. D., Rothstein E. C., Aban I., Tallaj J. A., Husain A., Lucchesi P. A., et al. (2007). Left Ventricular Eccentric Remodeling and Matrix Loss Are Mediated by Bradykinin and Precede Cardiomyocyte Elongation in Rats with Volume Overload. J. Am. Coll. Cardiol. 49, 811–821. 10.1016/j.jacc.2006.06.083 PubMed DOI
Savarese G., Lund L. H. (2017). Global Public Health Burden of Heart Failure. Card. Fail. Rev. 3, 7–11. 10.15420/cfr.2016:25:2 PubMed DOI PMC
Schirone L., Forte M., Palmerio S., Yee D., Nocella C., Angelini F., et al. (2017). A Review of the Molecular Mechanisms Underlying the Development and Progression of Cardiac Remodeling. Oxidative Med. Cell Longevity 2017, 1–16. 10.1155/2017/3920195 PubMed DOI PMC
Sedmera D., Neckar J., Benes J., Pospisilova J., Petrak J., Sedlacek K., et al. (2016). Changes in Myocardial Composition and Conduction Properties in Rat Heart Failure Model Induced by Chronic Volume Overload. Front. Physiol. 7, 367. 10.3389/fphys.2016.00367 PubMed DOI PMC
St John Sutton M. M., Pfeffer M. A., Plappert T., Rouleau J. L., Moyé L. A., Dagenais G. R., et al. (1994). Quantitative Two-Dimensional Echocardiographic Measurements Are Major Predictors of Adverse Cardiovascular Events after Acute Myocardial Infarction. The Protective Effects of Captopril. Circulation 89, 68–75. 10.1161/01.cir.89.1.68 PubMed DOI
Stumpe K. O., Sölle H., Klein H., Krück F. (1973). Mechanism of Sodium and Water Retention in Rats with Experimental Heart Failure. Kidney Int. 4, 309–317. 10.1038/ki.1973.122 PubMed DOI
Tanonaka K., Toga W., Yoshida H., Furuhama K., Takeo S. (2001). Effect of Long-Term Treatment with Trandolapril on Hsp72 and Hsp73 Induction of the Failing Heart Following Myocardial Infarction. Br. J. Pharmacol. 134, 969–976. 10.1038/sj.bjp.0704323 PubMed DOI PMC
Toischer K., Rokita A. G., Unsöld B., Zhu W., Kararigas G., Sossalla S., et al. (2010). Differential Cardiac Remodeling in Preload versus Afterload. Circulation 122, 993–1003. 10.1161/CIRCULATIONAHA.110.943431 PubMed DOI PMC
Topouchian J., Asmar R., Sayegh F., Rudnicki A., Benetos A., Bacri A. M., et al. (1999). Changes in Arterial Structure and Function under Trandolapril-Verapamil Combination in Hypertension. Stroke 30, 1056–1064. 10.1161/01.str.30.5.1056 PubMed DOI
Triposkiadis F., Karayannis G., Giamouzis G., Skoularigis J., Louridas G., Butler J. (2009). The Sympathetic Nervous System in Heart Failure Physiology, Pathophysiology, and Clinical Implications. J. Am. Coll. Cardiol. 54, 1747–1762. 10.1016/j.jacc.2009.05.015 PubMed DOI
van der Ent M., Remme W. J., de Leeuw P. W., Bartels G. L. (1998). Renal Hemodynamic Effects in Patients with Moderate to Severe Heart Failure during Chronic Treatment with Trandolapril. Cardiovasc. Drugs Ther. 12, 395–403. 10.1023/a:1007729002821 PubMed DOI
Varró A., Baczkó I. (2011). Cardiac Ventricular Repolarization reserve: a Principle for Understanding Drug-Related Proarrhythmic Risk. Br. J. Pharmacol. 164, 14–36. 10.1111/j.1476-5381.2011.01367.x PubMed DOI PMC
Wang X., Zhuo X., Gao J., Liu H., Lin F., Ma A. (2019). Neuregulin-1beta Partially Improves Cardiac Function in Volume-Overload Heart Failure Through Regulation of Abnormal Calcium Handling. Front Pharmacol 10, 616–36. 10.3389/fphar.2019.00616 PubMed DOI PMC
Westerhof N., O'Rourke M. F. (1995). Haemodynamic Basis for the Development of Left Ventricular Failure in Systolic Hypertension and for its Logical Therapy. J. Hypertens. 13, 943–952. 10.1097/00004872-199509000-00002 PubMed DOI
Willenbrock R., Stauss H., Scheuermann M., Osterziel K. J., Unger T., Dietz R. (1997). Effect of Chronic Volume Overload on Baroreflex Control of Heart Rate and Sympathetic Nerve Activity. Am. J. Physiol. 273, H2580–H2585. 10.1152/ajpheart.1997.273.6.H2580 PubMed DOI
Zeltser I., Gaynor J. W., Petko M., Myung R. J., Birbach M., Waibel R., et al. (2005). The Roles of Chronic Pressure and Volume Overload States in Induction of Arrhythmias: an Animal Model of Physiologic Sequelae after Repair of Tetralogy of Fallot. J. Thorac. Cardiovasc. Surg. 130, 1542–1548. 10.1016/j.jtcvs.2005.08.034 PubMed DOI