The impact of phosphodiesterase-5 inhibition or angiotensin-converting enzyme inhibition on right and left ventricular remodeling in heart failure due to chronic volume overload
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články
Grantová podpora
304121
Grant Agency of Charles University (GAUK)
NU20-02-00052
Ministry of Health of the Czech Republic
NU22-02-00161
Ministry of Health of the Czech Republic
LX22NPO5104
Project National Institute for Research of Metabolic and Cardiovascular Diseases (Programme EXCELES), funded by the European Union-Next Generation EU
PubMed
38284173
PubMed Central
PMC10823410
DOI
10.1002/prp2.1172
Knihovny.cz E-zdroje
- Klíčová slova
- heart failure, phosphodiesterase-5 inhibition, rats, right ventricle, volume overload,
- MeSH
- inhibitory ACE * farmakologie MeSH
- inhibitory fosfodiesterasy 5 * farmakologie MeSH
- kardiomegalie farmakoterapie MeSH
- krysa rodu Rattus MeSH
- remodelace komor * MeSH
- srdeční selhání * farmakoterapie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- inhibitory ACE * MeSH
- inhibitory fosfodiesterasy 5 * MeSH
While phosphodiesterase-5 inhibition (PED5i) may prevent hypertrophy and failure in pressure-overloaded heart in an experimental model, the impact of PDE5i on volume-overload (VO)-induced hypertrophy is unknown. It is also unclear whether the hypertrophied right ventricle (RV) and left ventricle (LV) differ in their responsiveness to long-term PDE5i and if this therapy affects renal function. The goal of this study was to elucidate the effect of PDE5i treatment in VO due to aorto-caval fistula (ACF) and to compare PDE5i treatment with standard heart failure (HF) therapy with angiotensin-converting enzyme inhibitor (ACEi). ACF/sham procedure was performed on male HanSD rats aged 8 weeks. ACF animals were randomized for PDE5i sildenafil, ACEi trandolapril, or placebo treatments. After 20 weeks, RV and LV function (echocardiography, pressure-volume analysis), myocardial gene expression, and renal function were studied. Separate rat cohorts served for survival analysis. ACF led to biventricular eccentric hypertrophy (LV: +68%, RV: +145%), increased stroke work (LV: 3.6-fold, RV: 6.7-fold), and reduced load-independent systolic function (PRSW, LV: -54%, RV: -51%). Both ACF ventricles exhibited upregulation of the genes of myocardial stress and glucose metabolism. ACEi but not PDE5i attenuated pulmonary congestion, LV remodeling, albuminuria, and improved survival (median survival in ACF/ACEi was 41 weeks vs. 35 weeks in ACF/placebo, p = .02). PDE5i increased cyclic guanosine monophosphate levels in the lungs, but not in the RV, LV, or kidney. PDE5i did not improve survival rate and cardiac and renal function in ACF rats, in contrast to ACEi. VO-induced HF is not responsive to PDE5i therapy.
Department of Pathophysiology 2nd Faculty of Medicine Charles University Prague Czech Republic
Institute for Clinical and Experimental Medicine IKEM Prague Czech Republic
Zobrazit více v PubMed
Abassi Z, Goltsman I, Karram T, Winaver J, Hoffman A. Aortocaval fistula in rat: a unique model of volume‐overload congestive heart failure and cardiac hypertrophy. J Biomed Biotechnol. 2011;2011:e729497. PubMed PMC
Benes J, Kazdova L, Drahota Z, et al. Effect of metformin therapy on cardiac function and survival in a volume‐overload model of heart failure in rats. Clin Sci. 2011;121(1):29‐41. PubMed
Melenovsky V, Benes J, Skaroupkova P, et al. Metabolic characterization of volume overload heart failure due to aorto‐caval fistula in rats. Mol Cell Biochem. 2011;354(1):83‐96. PubMed
Melenovsky V, Skaroupkova P, Benes J, Torresova V, Kopkan L, Cervenka L. The course of heart failure development and mortality in rats with volume overload due to aorto‐caval fistula. Kidney Blood Press Res. 2012;35(3):167‐173. PubMed
Havlenova T, Skaroupkova P, Miklovic M, et al. Right versus left ventricular remodeling in heart failure due to chronic volume overload. Sci Rep. 2021;11(1):1‐17. PubMed PMC
Miklovic M, Kala P, Melenovsky V. Simultaneous biventricular pressure‐volume analysis in rats. J Physiol Pharmacol. 2023;74(2):131‐147. PubMed
Dunkerly‐Eyring B, Kass DA. Myocardial phosphodiesterases and their role in cGMP regulation. J Cardiovasc Pharmacol. 2020;75(6):483‐493. PubMed PMC
Nagendran J, Archer SL, Soliman D, et al. Phosphodiesterase type 5 is highly expressed in the hypertrophied human right ventricle, and acute inhibition of phosphodiesterase type 5 improves contractility. Circulation. 2007;116(3):238‐248. PubMed
Pokreisz P, Vandenwijngaert S, Bito V, et al. Ventricular phosphodiesterase‐5 expression is increased in patients with advanced heart failure and contributes to adverse ventricular remodeling after myocardial infarction in mice. Circulation. 2009;119(3):408‐416. PubMed PMC
Lu Z, Xu X, Hu X, et al. Oxidative stress regulates left ventricular PDE5 expression in the failing heart. Circulation. 2010;121(13):1474‐1483. PubMed PMC
Kishimoto I, Rossi K, Garbers DL. A genetic model provides evidence that the receptor for atrial natriuretic peptide (guanylyl cyclase‐A) inhibits cardiac ventricular myocyte hypertrophy. Proc Natl Acad Sci U S A. 2001;98(5):2703‐2706. PubMed PMC
Das A, Xi L, Kukreja RC. Phosphodiesterase‐5 inhibitor sildenafil preconditions adult cardiac myocytes against necrosis and apoptosis. Essential role of nitric oxide signaling. J Biol Chem. 2005;280(13):12944‐12955. PubMed
Takimoto E, Champion HC, Li M, et al. Chronic inhibition of cyclic GMP phosphodiesterase 5A prevents and reverses cardiac hypertrophy. Nat Med. 2005;11(2):214‐222. PubMed
Borgdorff MAJ, Bartelds B, Dickinson MG, et al. Sildenafil enhances systolic adaptation, but does not prevent diastolic dysfunction, in the pressure‐loaded right ventricle. Eur J Heart Fail. 2012;14(9):1067‐1074. PubMed
Borgdorff MA, Bartelds B, Dickinson MG, et al. Sildenafil treatment in established right ventricular dysfunction improves diastolic function and attenuates interstitial fibrosis independent from afterload. Am J Physiol Heart Circ Physiol. 2014;307(3):H361‐H369. PubMed
Schäfer S, Ellinghaus P, Janssen W, et al. Chronic inhibition of phosphodiesterase 5 does not prevent pressure‐overload‐induced right‐ventricular remodelling. Cardiovasc Res. 2009;82(1):30‐39. PubMed
Toischer K, Rokita AG, Unsöld B, et al. Differential cardiac remodeling in preload versus afterload. Circulation. 2010;122(10):993‐1003. PubMed PMC
Dai W, Kloner RA, Dai W, Kloner RA. Is inhibition of phosphodiesterase type 5 by sildenafil a promising therapy for volume‐overload heart failure? Circulation. 2012;125:1341‐1343. PubMed
Friedberg MK, Redington AN. Right versus left ventricular failure: differences, similarities, and interactions. Circulation. 2014;129(9):1033‐1044. PubMed
Forfia PR, Lee M, Tunin RS, Mahmud M, Champion HC, Kass DA. Acute phosphodiesterase 5 inhibition mimics hemodynamic effects of B‐type natriuretic peptide and potentiates B‐type natriuretic peptide effects in failing but not Normal canine heart. J Am Coll Cardiol. 2007;49(10):1079‐1088. PubMed
Ghali‐Ghoul R, Tahseldar‐Roumieh R, Sabra R. Effect of chronic administration of sildenafil on sodium retention and on the hemodynamic complications associated with liver cirrhosis in the rat. Eur J Pharmacol. 2007;572(1):49‐56. PubMed
Melenovsky V, Cervenka L, Viklicky O, et al. Kidney response to heart failure: proteomic analysis of cardiorenal syndrome. Kidney Blood Press Res. 2018;43(5):1437‐1450. PubMed
Asakura M, Kitakaze M. Global gene expression profiling in the failing myocardium. Circ J. 2009;73(9):1568‐1576. PubMed
Drake JI, Bogaard HJ, Mizuno S, et al. Molecular signature of a right heart failure program in chronic severe pulmonary hypertension. Am J Respir Cell Mol Biol. 2011;45(6):1239‐1247. PubMed PMC
Kong Q, Blanton RM. Protein kinase G I and heart failure: shifting focus from vascular unloading to direct myocardial antiremodeling effects. Circ Heart Fail. 2013;6(6):1268‐1283. PubMed PMC
Takimoto E. Cyclic GMP‐dependent signaling in cardiac myocytes. Circ J. 2012;76(8):1819‐1825. PubMed
Weinberg EO, Schoen FJ, George D, et al. Angiotensin‐converting enzyme inhibition prolongs survival and modifies the transition to heart failure in rats with pressure overload hypertrophy due to ascending aortic stenosis. Circulation. 1994;90(3):1410‐1422. PubMed
Lapointe N, Blais C, Adam A, et al. Comparison of the effects of an angiotensin‐converting enzyme inhibitor and a vasopeptidase inhibitor after myocardial infarction in the rat. J Am Coll Cardiol. 2002;39(10):1692‐1698. PubMed
Červenka L, Melenovský V, Husková Z, Škaroupková P, Nishiyama A, Sadowski J. Inhibition of soluble epoxide hydrolase counteracts the development of renal dysfunction and progression of congestive heart failure in Ren‐2 transgenic hypertensive rats with aorto‐caval fistula. Clin Exp Pharmacol Physiol. 2015;42(7):795‐807. PubMed
Lange PE, Seiffert PA, Pries F, et al. Value of image enhancement and injection of contrast medium for right ventricular volume determination by two‐dimensional echocardiography in congenital heart disease. Am J Cardiol. 1985;55(1):152‐157. PubMed
Abraham D, Mao L. Cardiac pressure‐volume loop analysis using conductance catheters in mice. J Vis Exp. 2015;2015(103):1‐10. PubMed PMC
Huber W, Carey VJ, Gentleman R, et al. Orchestrating high‐throughput genomic analysis with Bioconductor. Nat Methods. 2015;12(2):115‐121. PubMed PMC
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real‐time quantitative PCR and the 2−ΔΔCT method. Methods. 2001;25(4):402‐408. PubMed
McCall MN, McMurray HR, Land H, Almudevar A. On non‐detects in qPCR data. Bioinformatics. 2014;30(16):2310‐2316. PubMed PMC
Sporková A, Kopkan L, Varcabová S, et al. Role of cytochrome P‐450 metabolites in the regulation of renal function and blood pressure in 2‐kidney 1‐clip hypertensive rats. Am J Physiol Regul Integr Comp Physiol. 2011;300(6):R1468‐R1475. PubMed PMC
Harding SD, Sharman JL, Faccenda E, et al. The IUPHAR/BPS guide to PHARMACOLOGY in 2018: updates and expansion to encompass the new guide to IMMUNOPHARMACOLOGY. Nucleic Acids Res. 2018;46(D1):D1091‐D1106. PubMed PMC
Alexander SPH, Fabbro D, Kelly E, et al. THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: catalytic receptors. Br J Pharmacol. 2021;178(S1):S264‐S312. PubMed
Petrak J, Pospisilova J, Sedinova M, et al. Proteomic and transcriptomic analysis of heart failure due to volume overload in a rat aorto‐caval fistula model provides support for new potential therapeutic targets—monoamine oxidase a and transglutaminase 2. Proteome Sci. 2011;9(1):69. PubMed PMC
Kim KH, Kim YJ, Ohn JH, et al. Long‐term effects of sildenafil in a rat model of chronic mitral regurgitation: benefits of ventricular remodeling and exercise capacity. Circulation. 2012;125(11):1390‐1401. PubMed
Eskesen K, Olsen NT, Dimaano VL, et al. Sildenafil treatment attenuates ventricular remodeling in an experimental model of aortic regurgitation. SpringerPlus. 2015;4(1):592. PubMed PMC
Castro LRV, Verde I, Cooper DMF, Fischmeister R. Cyclic guanosine monophosphate compartmentation in rat cardiac myocytes. Circulation. 2006;113(18):2221‐2228. PubMed PMC
Lee DI, Zhu G, Sasaki T, et al. Phosphodiesterase 9A controls nitric‐oxide‐independent cGMP and hypertrophic heart disease. Nature. 2015;519(7544):472‐476. PubMed PMC
Margulies KB, Burnett JC. Inhibition of cyclic GMP phosphodiesterases augments renal responses to atrial natriuretic factor in congestive heart failure. J Card Fail. 1994;1(1):71‐80. PubMed
Charloux A, Piquard F, Doutreleau S, Brandenberger G, Geny B. Mechanisms of renal hyporesponsiveness to ANP in heart failure. Eur J Clin Invest. 2003;33(9):769‐778. PubMed
Yamamoto T, Wada A, Ohnishi M, et al. Chronic administration of phosphodiesterase type 5 inhibitor suppresses renal production of endothelin‐1 in dogs with congestive heart failure. Clin Sci Lond Engl. 2002;103(suppl 48):258S‐262S. PubMed
Chen HH, Huntley BK, Schirger JA, Cataliotti A, Burnett JC. Maximizing the renal cyclic 3′‐5′‐guanosine monophosphate system with type V phosphodiesterase inhibition and exogenous natriuretic peptide: a novel strategy to improve renal function in experimental overt heart failure. J Am Soc Nephrol. 2006;17(10):2742‐2747. PubMed PMC
Scott NJA, Rademaker MT, Charles CJ, Espiner EA, Richards AM. Hemodynamic, hormonal, and renal actions of phosphodiesterase‐9 inhibition in experimental heart failure. J Am Coll Cardiol. 2019;74(7):889‐901. PubMed
Lewis GD, Lachmann J, Camuso J, et al. Sildenafil improves exercise hemodynamics and oxygen uptake in patients with systolic heart failure. Circulation. 2007;115(1):59‐66. PubMed
Barnes H, Brown Z, Burns A, Williams T. Phosphodiesterase 5 inhibitors for pulmonary hypertension. Cochrane Database Syst Rev. 2019;1(1):1‐131. PubMed PMC
Melenovsky V, Kotrc M, Borlaug BA, et al. Relationships between right ventricular function, body composition, and prognosis in advanced heart failure. J Am Coll Cardiol. 2013;62(18):1660‐1670. PubMed
Kala P, Sedláková L, Škaroupková P, et al. Effect of angiotensin‐converting enzyme blockade, alone or combined with blockade of soluble epoxide hydrolase, on the course of congestive heart failure and occurrence of renal dysfunction in Ren‐2 transgenic hypertensive rats with aorto‐caval fistula. Physiol Res. 2018;67(3):401‐415. PubMed PMC
Kratky V, Vanourkova Z, Sykora M, et al. AT1 receptor blocker, but not an ACE inhibitor, prevents kidneys from hypoperfusion during congestive heart failure in normotensive and hypertensive rats. Sci Rep. 2021;11(1):4271. PubMed PMC
Jarkovská D, Miklovič M, Švíglerová J, et al. Effects of Trandolapril on structural, contractile and electrophysiological remodeling in experimental volume overload heart failure. Front Pharmacol. 2021;12:1‐13. PubMed PMC
Červenka L, Škaroupková P, Kompanowska‐Jezierska E, Sadowski J. Sex‐linked differences in the course of chronic kidney disease and congestive heart failure: a study in 5/6 nephrectomized Ren‐2 transgenic hypertensive rats with volume overload induced using aorto‐caval fistula. Clin Exp Pharmacol Physiol. 2016;43(10):883‐895. PubMed