Effect of angiotensin-converting enzyme blockade, alone or combined with blockade of soluble epoxide hydrolase, on the course of congestive heart failure and occurrence of renal dysfunction in Ren-2 transgenic hypertensive rats with aorto-caval fistula

. 2018 Jul 17 ; 67 (3) : 401-415. [epub] 20180312

Jazyk angličtina Země Česko Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid29527914

Grantová podpora
R01 DK103616 NIDDK NIH HHS - United States

We showed recently that increasing kidney epoxyeicosatrienoic acids (EETs) by blocking soluble epoxide hydrolase (sEH), an enzyme responsible for EETs degradation, retarded the development of renal dysfunction and progression of aorto-caval fistula(ACF)-induced congestive heart failure (CHF) in Ren-2 transgenic hypertensive rats (TGR). In that study the final survival rate of untreated ACF TGR was only 14 % but increased to 41 % after sEH blockade. Here we examined if sEH inhibition added to renin-angiotensin system (RAS) blockade would further enhance protection against ACF-induced CHF in TGR. The treatment regimens were started one week after ACF creation and the follow-up period was 50 weeks. RAS was blocked using angiotensin-converting enzyme inhibitor (ACEi, trandolapril, 6 mg/l) and sEH with an sEH inhibitor (sEHi, c-AUCB, 3 mg/l). Renal hemodynamics and excretory function were determined two weeks post-ACF, just before the onset of decompensated phase of CHF. 29 weeks post-ACF no untreated animal survived. ACEi treatment greatly improved the survival rate, to 84 % at the end of study. Surprisingly, combined treatment with ACEi and sEHi worsened the rate (53 %). Untreated ACF TGR exhibited marked impairment of renal function and the treatment with ACEi alone or combined with sEH inhibition did not prevent it. In conclusion, addition of sEHi to ACEi treatment does not provide better protection against CHF progression and does not increase the survival rate in ACF TGR: indeed, the rate decreases significantly. Thus, combined treatment with sEHi and ACEi is not a promising approach to further attenuate renal dysfunction and retard progression of CHF.

Zobrazit více v PubMed

Roger VL. Epidemiology of heart failure. Circ. Res. 2013;113:646–659. PubMed PMC

Ambrosy AP, Fonarow GC, Butler J, et al. The global health and economic burden of hospitalizations for heart failure: lessons learned from hospitalized heart failure registries. J Am Coll Cardiol. 2014;63:1123–1133. PubMed

Braunwald E. The war against heart failure. Lancet. 2015;385:812–824. PubMed

Benjamin EJ, Blaha MJ, Chiuve SE, et al. Heart disease and stroke statistics-2017 update: a report from the American Heart Association. Circulation. 2017;135:e146–e603. PubMed PMC

Ronco C, Haapio M, House AA, Avavekar N, Bellomo R. Cardiorenal syndrome. J Am Coll Cardiol. 2008;52:1527–1539. PubMed

Giamouzis G, Kalogeroupoulos AP, Butler J, et al. Epidemiology and importance of renal dysfunction in heart failure patients. Curr Heart Fail. Rep. 2013;10:411–420. PubMed

Stewart S, MacIntyre K, Hole DJ, Capewell S, McMurray JJV. More “malignant” than cancer? Five year survival following a first admission for heart failure. Eur J Heart Fail. 2001;3:315–322. PubMed

Ichikawa I, Pfeffer JM, Pfeffer MA, Hostetter TH, Brenner BM. Role of angiotensin II in the altered renal function of congestive heart failure. Circ. Res. 1984;55:669–675. PubMed

Moayedi Y, Ross HJ. Advances in heart failure: a review of biomarkers, emerging pharmacological therapies, durable mechanical support and telemonitoring. Clin. Sci. 2017;131:553–566. PubMed

Braam B, Joles JA, Daniswar AH, Gaillard CA. Cardiorenal syndrome – current understanding and future perspectives. Nat Rev Nephrol. 2014;10:48–55. PubMed

Re RN. A reassessment of the pathophysiology of progressive cardiorenal disorders. Med Clin North. Am. 2017;101:103–115. PubMed

Dube P, Weber KT. Congestive heart failure: pathophysiologic consequences of neurohormonal activation and the potential for recovery: part I. Am J. Med Sci. 2011;342:348–351. PubMed

Patel VB, Zhong JC, Grant MB, Oudit GY. Role of the ACE2/angiotensin 1–7 axis of the renin-angiotensin system in heart failure. Circ. Res. 2016;118:1313–1326. PubMed PMC

Rossi F, Mascolo A, Mollace V. The pathophysiological role of natriuretic peptide-RAAS cross talk in heart failure. Int J Cardiol. 2017;226:121–125. PubMed

Packer M, McMurray JJV. Importance of endogenous compensatory vasoactive peptides in broadening the effects of inhibitors of the renin-angiotensin system for the treatment of heart failure. Lancet. 2017;389:1831–1840. PubMed

Kobori H, Nangaku M, Navar LG, Nishiyama A. The intrarenal renin-angiotensin system: from physiology to the pathobiology of hypertension and kidney disease. Pharmacol. Rev. 2007;59:251–287. PubMed

Hall JE, Granger JP, Hall ME. Physiology and pathophysiology of hypertension. In: Albeprn RJ, Caplan MJ, Moe OW, editors. Seldin and Giebisch´s The Kidney physiology and pathophysiology. fifth. Academic Press; 2013. pp. 1319–1352.

Ferrario CM, Mullick AE. Renin angiotensin aldosterone inhibition in the treatment of cardiovascular disease. Pharmacol Res. 2017 doi: 10.1016/j.phrs.2017.05.020. PubMed DOI PMC

Pfeffer MA, Pfeffer JM, Steinberg C, Finn P. Survival after an experimental myocardial infarction: beneficial effects of long-term therapy with captopril. Circulation. 1985;2:406–412. PubMed

Brands MW, Alonso-Galicia M, Mizelle HL, Montani JP, Hildebrandt DA, Hall JE. Chronic angiotensin-converting-enzyme inhibition improves cardiac output and fluid balance during heart failure. Am J Physiol. 1993;264:R414–R422. PubMed

Ruzicka M, Yuan B, Leenen FHH. Effects of enalapril versus losartan on regression of volume overload-induced cardiac hypertrophy in rats. Circulation. 1994;90:484–491. PubMed

Brower GL, Levick SP, Janicki JS. Differential effects of prevention and reversal treatment with Lisinopril on left ventricular remodeling in a rat model of heart failure. Heart Lung Circ. 2015;24:919–924. PubMed PMC

Červenka L, Melenovský V, Husková Z, Škaroupková P, Nishiyama A, Sadowski J. Inhibition of soluble epoxide hydrolase counteracts the development of renal dysfunction and progression of congestive heart failure in Ren-2 transgenic hypertensive rats with aorto-caval fistula. Clin Exp Pharmacol Physiol. 2015;42:795–807. PubMed

Červenka L, Melenovský V, Husková Z, et al. Inhibition of soluble epoxide hydrolase does not improve the course of congestive heart failure and the development of renal dysfunction in rats with volume overload induced by aorto-caval fistula. Physiol. Res. 2015;64:857–873. PubMed PMC

Effects of enalapril on mortality in severe congestive heart failure. Results of the Cooperative North Scandinavian Enalapril Survival Study (CONSENSUS). The CONSENSUS Trial Study Group. N Engl J. Med. 1987;316:1429–1435. PubMed

Effect of enalapril on mortality and the development of heart failure in asymptomatic patients with reduced left ventricular ejection fractions. The SOLVD Investigators. N Engl J. Med. 1992;327:658–691. PubMed

McMurray JJ, Packer M, Desai AS, et al. Angiotensin-neprilysin inhibition versus enalapril in heart failure. N Engl J. Med. 2014;371:993–1004. PubMed

Ponikowski P, Voors AA, Anker SD, et al. 2016 ESC Guideliness for the diagnois and treatment of acute and chronic heart failure: The Task Force of the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardioloy (ESC) Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2016;37:2129–21200. PubMed

Yancy CW, Jessup M, Bozkurt B, et al. 2017 ACC/AHA/HFSA focused updatae of the 2013 ACCF/AHA Guideline for the management of heart failure. Circulation. 2017;136:e137–e161. PubMed

Cohen-Segev R, Francis B, Abu-Saleh N, et al. Cardiac and renal distribution of ACE and ACE-2 in rats with heart failure. Acta Histiochem. 2014;116:1342–1349. PubMed

Oliver-Dussault C, Ascah A, Marcil M, et al. Early predictors of cardiac decompensation in experimental volume overload. Mol Cell Biochem. 2010;338:271–281. PubMed

Abassi Z, Goltsmna I, Karram T, Winaver J, Horrman A. Aortocaval fistula in rat: a unique model of volume-overload congestive heart failure and cardiac hypertrophy. J Biomed Biotechnol. 2011:729497. doi: 10.1155/2011/729497. PubMed DOI PMC

Melenovsky V, Skaroupkova P, Benes J, Torresova V, Kopkan L, Cervenka L. The course of heart failure development and mortality in rats with volume overload due to aorto-caval fistula. Kidney Blood Press. Res. 2012;35:167–173. PubMed

Melenovský V, Benes J, Skaroupkova P, et al. Metabolic characterization of volume overload heart failure due to aorto-caval fistula in rats. Mol Cell Biochem. 2011;354:83–96. PubMed

Červenka L, Škaroupková P, Kompanowska-Jezierska E, Sadowski J. Sex-linked differences in the course of chronic kidney disease and congestive heart failure: a study in 5/6 nephrectomized Ren-2 transgenic hypertensive rats with volume overload using aorto-caval fistula. Clin Exp Pharmacol Physiol. 2016;43:883–895. PubMed

Mullins JJ, Peters J, Ganten D. Fulminant hypertension in transgenic rats harboring the mouse Ren-2 gene. Nature. 1990;344:541–544. PubMed

Lee MA, Böhm M, Paul M, Bader M, Ganten U, Ganten D. Physiological characterization of the hypertensive transgenic rat TGR(mRen2)27. Am J Physiol. 1990;270:E919–E929. PubMed

Kujal P, Certíková Chábová V, Vernerová Z, et al. Similar renoprotection after renin-angiotensin-dependent and -independent antihypertensive therapy in 5/6-nephrectomized Ren-2 transgenic rats: are there blood pressure-independent effects? Clin Exp Pharmacol Physiol. 2010;37:1159–1169. PubMed

Beneš J, Kazdová L, Drahota Z, et al. Effect of metformin therapy on cardiac function and survival in a volume-overload model of heart failure in rats. Clin Sci. 2011;121:29–41. PubMed

Hutchinson KR, Guggilam A, Cismowski MJ, et al. Temporal pattern of left ventricle structural and functional remodeling following reversal of volume overload heart failure. J App Physiol. 2011;111:1778–1788. PubMed PMC

Brower GL, Henegar JR, Janicki JS. Temporal evaluation of left ventricular remodeling and function in rats with chronic volume overload. Am J Physiol. 1996;40:H2071–H2078. PubMed

Wang XI, Ren B, Liu S, et al. Characterization of cardiac hypertrophy and heart failure due to volume overload in the rat. J App Physiol. 2003;94:752–763. PubMed

Brower GL, Janicki JS. Contribution of ventricular remodeling to the pathogenesis of heart failure in rats. Am J Physiol. 2001;280:H674–H683. PubMed

Fleming I. The pharmacology of the cytochrome P450 epoxygenase/soluble epoxide hydrolase axis in the vasculature and cardiovascular disease. Pharmacol Rev. 2014;66:1106–1140. PubMed

El-Sherbeni AA, Aboutabl ME, Zordoky BNM, Anwar-Mohamed A, El-Kadi AOS. Determination of the dominant arachidonic acid cytochrome P450 monooxygenase in rat heart, lung, kidney, and liver: protein expression and metabolite kinetics. AAPS J. 2013;15:112–122. PubMed PMC

Imig JD. Epoxyeicosatrienoic acids, hypertension, and kidney injury. Hypertension. 2015;65:476–482. PubMed PMC

Elmarakby AA. Reno-protective mechanisms of epoxyeicosatrienoic acids in cardiovascular disease. Am J Physiol. 2012;302:R321–R330. PubMed

Fan F, Roman RJ. Effect of cytochrome P450 metabolites of arachidonic acid in Nephrology. J Am Soc Nephrol. 2017;28 doi: 10.1681/ASN.2017030252. PubMed DOI PMC

Gonzalez-Villalobos RA, Janjoulia T, Fletcher NK, et al. The absence of intrarenal ACE protects against hypertension. J Clin Invest. 2013;123:2011–2023. PubMed PMC

Carlstrom M, Wilcox CS, Arendshorst WJ. Renal autoregulation in health and disease. Physiol. Rev. 2015;95:405–511. PubMed PMC

Garcia R, Diebold S. Simple, rapid, and effective method of producing aortocaval shunts in the rat. Cardiovasc. Res. 1990;24:430–432. PubMed

Sporková A, Jíchová Š, Husková Z, et al. Different mechanism of acute versus long-term antihypertensive effects of soluble epoxide hydrolase inhibition: studies in Cyp1a1-Ren-2 transgenic rats. Clin Exp Pharmacol Physiol. 2014;41:1003–1013. PubMed PMC

Honetschlägerová Z, Husková Z, Vaňourková Z, et al. Renal mechanisms contributing to the antihypertensive action of soluble epoxide hydrolase inhibition in Ren-2 transgenic rats with inducible hypertension. J. Physiol. 2011;589:207–219. PubMed PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Effects of renal denervation on the course of cardiorenal syndrome: insight from studies with fawn-hooded hypertensive rats

. 2024 Dec 31 ; 73 (S3) : S737-S754.

Long-chain polyunsaturated fatty acid-containing phosphatidylcholines predict survival rate in patients after heart failure

. 2024 Nov 15 ; 10 (21) : e39979. [epub] 20241030

Renal denervation improves cardiac function independently of afterload and restores myocardial norepinephrine levels in a rodent heart failure model

. 2024 Oct ; 47 (10) : 2718-2730. [epub] 20240202

Modulation of left ventricular hypertrophy in spontaneously hypertensive rats by acetylcholinesterase and ACE inhibitors: physiological, biochemical, and proteomic studies

. 2024 ; 11 () : 1390547. [epub] 20240916

Renal sympathetic denervation improves pressure-natriuresis relationship in cardiorenal syndrome: insight from studies with Ren-2 transgenic hypertensive rats with volume overload induced using aorto-caval fistula

. 2024 Apr ; 47 (4) : 998-1016. [epub] 20240202

The impact of phosphodiesterase-5 inhibition or angiotensin-converting enzyme inhibition on right and left ventricular remodeling in heart failure due to chronic volume overload

. 2024 Feb ; 12 (1) : e1172.

Epoxylipids and soluble epoxide hydrolase in heart diseases

. 2022 Jan ; 195 () : 114866. [epub] 20211202

Effects of Renal Denervation on the Enhanced Renal Vascular Responsiveness to Angiotensin II in High-Output Heart Failure: Angiotensin II Receptor Binding Assessment and Functional Studies in Ren-2 Transgenic Hypertensive Rats

. 2021 Nov 30 ; 9 (12) : . [epub] 20211130

Effects of Epoxyeicosatrienoic Acid-Enhancing Therapy on the Course of Congestive Heart Failure in Angiotensin II-Dependent Rat Hypertension: From mRNA Analysis towards Functional In Vivo Evaluation

. 2021 Aug 20 ; 9 (8) : . [epub] 20210820

Kidney Response to Chemotherapy-Induced Heart Failure: mRNA Analysis in Normotensive and Ren-2 Transgenic Hypertensive Rats

. 2021 Aug 06 ; 22 (16) : . [epub] 20210806

AT1 receptor blocker, but not an ACE inhibitor, prevents kidneys from hypoperfusion during congestive heart failure in normotensive and hypertensive rats

. 2021 Feb 19 ; 11 (1) : 4271. [epub] 20210219

Deleterious Effects of Hyperactivity of the Renin-Angiotensin System and Hypertension on the Course of Chemotherapy-Induced Heart Failure after Doxorubicin Administration: A Study in Ren-2 Transgenic Rat

. 2020 Dec 08 ; 21 (24) : . [epub] 20201208

Epoxyeicosatrienoic Acid-Based Therapy Attenuates the Progression of Postischemic Heart Failure in Normotensive Sprague-Dawley but Not in Hypertensive Ren-2 Transgenic Rats

. 2019 ; 10 () : 159. [epub] 20190301

Pharmacological Blockade of Soluble Epoxide Hydrolase Attenuates the Progression of Congestive Heart Failure Combined With Chronic Kidney Disease: Insights From Studies With Fawn-Hooded Hypertensive Rats

. 2019 ; 10 () : 18. [epub] 20190123

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...