Effects of renal denervation on the course of cardiorenal syndrome: insight from studies with fawn-hooded hypertensive rats
Jazyk angličtina Země Česko Médium print
Typ dokumentu časopisecké články
PubMed
39808175
PubMed Central
PMC11827057
DOI
10.33549/physiolres.935469
PII: 935469
Knihovny.cz E-zdroje
- MeSH
- denervace metody MeSH
- hypertenze * patofyziologie komplikace MeSH
- kardiorenální syndrom * patofyziologie chirurgie etiologie MeSH
- krysa rodu Rattus MeSH
- ledviny * inervace MeSH
- modely nemocí na zvířatech MeSH
- sympatektomie * metody MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Combination of chronic kidney disease (CKD) and heart failure (HF) results in extremely high morbidity and mortality. The current guideline-directed medical therapy is rarely effective and new therapeutic approaches are urgently needed. The study was designed to examine if renal denervation (RDN) will exhibit long-standing beneficial effects on the HF- and CKD-related morbidity and mortality. Fawn-hooded hypertensive rats (FHH) served as a genetic model of CKD and fawn-hooded low-pressure rats (FHL) without CKD served as controls. HF was induced by creation of aorto-caval fistula (ACF). RDN was performed 28 days after creation of ACF and the follow-up period was 70 days. ACF FHH subjected to sham-RDN had survival rate of 34 % i.e. significantly lower than 79 % observed in sham-denervated ACF FHL. RDN did not improve the condition and the final survival rate, both in ACF FHL and in ACF FHH. In FHH basal albuminuria was markedly higher than in FHL, and further increased throughout the study. RDN did not lower albuminuria and did not reduce renal glomerular damage in FHH. In these rats creation of ACF resulted in marked bilateral cardiac hypertrophy and alterations of cardiac connexin-43, however, RDN did not modify any of the cardiac parameters. Our present results further support the notion that kidney damage aggravates the HF-related morbidity and mortality. Moreover, it is clear that in the ACF FHH model of combined CKD and HF, RDN does not exhibit any important renoprotective or cardioprotective effects and does not reduce mortality. Key words Chronic kidney disease, Heart failure, Renal denervation, Fawn-hooded hypertensive rats.
Zobrazit více v PubMed
Savarese G, Becher PM, Lund LH, Sefrovic P, Rosano GMC, Coats AJS. Global burden of heart failure: a comprehensive and updated review of epidemiology. Cardiovasc Res. 2023;118:3272–3287. doi: 10.1093/cvr/cvac013. PubMed DOI
Kalantar-Zadeh K, Jafar TH, Nitsch D, Neuen BL, Perkovic P. Chronic kidney disease. Lancet. 2021;398:786–802. doi: 10.1016/S0140-6736(21)00519-5. PubMed DOI
Jankowski J, Floege J, Fliser D, Böhm M, Marx N. Cardiovascular Disease in Chronic Kidney Disease: Pathophysiological Insights and Therapeutic Options. Circulation. 2021;143:1157–1172. doi: 10.1161/CIRCULATIONAHA.120.050686. PubMed DOI PMC
Schuett K, Marx N, Lehrke M. The Cardio-Kidney Patient: Epidemiology, Clinical Characteristics and Therapy. Circ Res. 2023;132:902–914. doi: 10.1161/CIRCRESAHA.122.321748. PubMed DOI PMC
Saritas T, Floege J. Cardiovascular disease in patients with chronic kidney disease. Kardiovaskuläre Erkrankungen bei Patienten mit chronischer Niereninsuffizienz. Herz. 2020;45:122–128. doi: 10.1007/s00059-019-04884-0. PubMed DOI
Laffin LJ, Bakris GL. Intersection Between Chronic Kidney Disease and Cardiovascular Disease. Curr Cardiol Rep. 2021;23:117. doi: 10.1007/s11886-021-01546-8. PubMed DOI
McCullough PA, Amin A, Pantalone KM, Ronco C. Cardiorenal Nexus: A Review With Focus on Combined Chronic Heart and Kidney Failure, and Insights From Recent Clinical Trials. J Am Heart Assoc. 2022;11:e024139. doi: 10.1161/JAHA.121.024139. PubMed DOI PMC
Kim JA, Wu L, Rodriguez M, Lentine Kl, Virk HUH, El Hachem K, Lerma EV, et al. Recent Developments in the Evaluation and Management of Cardiorenal Syndrome: A Comprehensive Review. Curr Probl Cardiol. 2023;48:101509. doi: 10.1016/j.cpcardiol.2022.101509. PubMed DOI
Ortiz A, Navarro-González JF, Núñez J, de la Espriella R, Cobo M, Santamaría R, de Sequera P, Díez J. The unmet need of evidence-based therapy for patients with advanced chronic kidney disease and heart failure: Position paper from the Cardiorenal Working Groups of the Spanish Society of Nephrology and the Spanish Society of Cardiology. Clin Kidney J. 2021;15:865–872. doi: 10.1093/ckj/sfab290. PubMed DOI PMC
Banerjee D, Wang AY. Personalizing heart failure management in chronic kidney disease patients. Nephrol Dial Transplant. 2022;37:2055–2062. doi: 10.1093/ndt/gfab026. PubMed DOI
Parmar SS, Muthuppalaniappan V, Banerjee D. Gaps in Modern Heart Failure and Chronic Kidney Disease Research. Eur Cardiol. 2023;18:e51. doi: 10.15420/ecr.2022.64. PubMed DOI PMC
McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, Burri H, et al. 2023 Focused Update of the 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2023;44:3627–3639. doi: 10.1093/eurheartj/ehad195. PubMed DOI
Schlaich MP, Socratous F, Hennebry S, Eikelis N, Lambert EA,Straznicky N, Esler MD, Lambert GW. Sympathetic activation in chronic renal failure. J Am Soc Nephrol. 2009;20:933–939. doi: 10.1681/ASN.2008040402. PubMed DOI
Singh RB, Hristova K, Fedacko J, El-Kilany G, Cornelissen G. Chronic heart failure: a disease of the brain. Heart Fail Rev. 2019;24:301–307. doi: 10.1007/s10741-018-9747-3. PubMed DOI
Patel KP, Katsurada K, Zheng H. Cardiorenal Syndrome: The Role of Neural Connections Between the Heart and the Kidneys. Circ Res. 2022;130:1601–1617. doi: 10.1161/CIRCRESAHA.122.319989. PubMed DOI PMC
Mahfoud F, Kandzari DE, Kario K, Townsend RR, Weber MA, Schmieder RE, Tsioufis K, et al. Long-term efficacy and safety of renal denervation in the presence of antihypertensive drugs (SPYRAL HTN-ON MED): a randomised, sham-controlled trial. Lancet. 2022;399:1401–1410. doi: 10.1016/S0140-6736(22)00455-X. PubMed DOI
Fudim M, Sobotka PA, Piccini JP, Patel MR. Renal Denervation for Patients With Heart Failure: Making a Full Circle. Circ Heart Fail. 2021;14:e008301. doi: 10.1161/CIRCHEARTFAILURE.121.008301. PubMed DOI
Triposkiadis F, Briasoulis A, Kitai T, Magouliotis D, Athanasiou T, Skoularigis J, Xanthopoulos A. The sympathetic nervous system in heart failure revisited. Heart Fail Rev. 2024;29:355–365. doi: 10.1007/s10741-023-10345-y. PubMed DOI
Cao W, Yang Z, Liu X, Ren S, Su H, Yang B, Liu Y, et al. A kidney-brain neural circuit drives progressive kidney damage and heart failure. Signal Transduct Target Ther. 2023;8:184. doi: 10.1038/s41392-023-01402-x. PubMed DOI PMC
Zucker IH, Xia Z, Wang HJ. Potential Neuromodulation of the Cardio-Renal Syndrome. J Clin Med. 2023;12:803. doi: 10.3390/jcm12030803. PubMed DOI PMC
Schmieder RE. Renal denervation in patients with chronic kidney disease: current evidence and future perspectives. Nephrol Dial Transplant. 2023;38:1089–1096. doi: 10.1093/ndt/gfac189. PubMed DOI PMC
Mullens W, Martens P, Testani JM, Wilson Tang WH, Skouri H, Verbrugge FH, Fudim M, et al. Renal effects of guideline-directed medical therapies in heart failure: a consensus document from the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail. 2022;24:603–619. doi: 10.1002/ejhf.2471. PubMed DOI
Schmieder RE, Mahfoud F, Mancia G, Azizi M, Böhm M, Dimitriadis K, Kario K, et al. European Society of Hypertension position paper on renal denervation 2021. J Hypertens. 2021;39:733–1741. doi: 10.1097/HJH.0000000000002933. PubMed DOI
Messerli FH, Bavishi C, Brguljan J, Burnier M, Dobner S, Elijovich F, Ferdinand KC, et al. Renal denervation in the antihypertensive arsenal - knowns and known unknowns. J Hypertens. 2022;40:1859–1875. doi: 10.1097/HJH.0000000000003171. PubMed DOI PMC
Sharp TE, 3rd, Lefer DJ. Renal Denervation to Treat Heart Failure. Annu Rev Physiol. 2021;83:39–58. doi: 10.1146/annurev-physiol-031620-093431. PubMed DOI PMC
Kuijpers MH, Provoost AP, de Jong W. Development of hypertension and proteinuria with age in fawn-hooded rats. Clin Exp Pharmacol Physiol. 1986;13:201–209. doi: 10.1111/j.1440-1681.1986.tb00338.x. PubMed DOI
Provoost AP. Spontaneous glomerulosclerosis: insights from the fawn-hooded rat. Kidney Int Suppl. 1994;45:S2–S5. PubMed
Ochodnický P, Henning RH, Buikema HJ, de Zeeuw D, Provoost AP, van Dokkum RPE. Renal vascular dysfunction precedes the development of renal damage in the hypertensive Fawn-Hooded rat. Am J Physiol Renal Physiol. 2010;298:F625–F633. doi: 10.1152/ajprenal.00289.2009. PubMed DOI
Doleželová Š, Jíchová Š, Husková Z, Vojtíšková A, Kujal P, Hošková L, Kautzner J, et al. Progression of hypertension and kidney disease in aging fawn-hooded rats is mediated by enhanced influence of renin-angiotensin system and suppression of nitric oxide system and epoxyeicosanoids. Clin Exp Hypertens. 2016;38:644–651. doi: 10.1080/10641963.2016.1182182. PubMed DOI
Vacková Š, Kopkan L, Kikerlová S, Husková Z, Sadowski J, Kompanowska-Jezierska E, Hammock BD, et al. Pharmacological Blockade of Soluble Epoxide Hydrolase Attenuates the Progression of Congestive Heart Failure Combined With Chronic Kidney Disease: Insights From Studies With Fawn-Hooded Hypertensive Rats. Front Pharmacol. 2019;10:18. doi: 10.3389/fphar.2019.00018. PubMed DOI PMC
Hatt PY, Rakusan K, Gastineau P, Laplace M, Cluzeaud F. Aorto-caval fistula in the rat. An experimental model of heart volume overloading. Basic Res Cardiol. 1980;75:105–108. doi: 10.1007/BF02001401. PubMed DOI
Brower GL, Janicki JS. Contribution of ventricular remodeling to pathogenesis of heart failure in rats. Am J Physiol Heart Circ Physiol. 2001;280:H674–H683. doi: 10.1152/ajpheart.2001.280.2.H674. PubMed DOI
Oliver-Dussault C, Ascah A, Marcil M, Matas J, Picard S, Pibarot P, Burelle Y, Deschepper CF. Early predictors of cardiac decompensation in experimental volume overload. Mol Cell Biochem. 2010;338:271–282. doi: 10.1007/s11010-009-0361-5. PubMed DOI
Červenka L, Melenovský V, Husková Z, Sporková A, Bürgelová M, Škaroupková P, Hwang SH, et al. Inhibition of soluble epoxide hydrolase does not improve the course of congestive heart failure and the development of renal dysfunction in rats with volume overload induced by aorto-caval fistula. Physiol Res. 2015;64:857–873. doi: 10.33549/physiolres.932977. PubMed DOI PMC
Kala P, Sedláková L, Škaroupková P, Kopkan L, Vaňourková Z, Táborský M, Nishiyama A, et al. Effect of angiotensin-converting enzyme blockade, alone or combined with blockade of soluble epoxide hydrolase, on the course of congestive heart failure and occurrence of renal dysfunction in Ren-2 transgenic hypertensive rats with aorto-caval fistula. Physiol Res. 2018;67:401–415. doi: 10.33549/physiolres.933757. PubMed DOI PMC
Sporková A, Husková Z, Škaroupková P, Rami Reddy N, Falck JR, Sadowski J, Červenka L. Vasodilatory responses of renal interlobular arteries to epoxyeicosatrienoic acids analog are not enhanced in Ren-2 transgenic hypertensive rats: evidence against a role of direct vascular effects of epoxyeicosatrienoic acids in progression of experimental heart failure. Physiol Res. 2017;66:29–39. doi: 10.33549/physiolres.933350. PubMed DOI
Kala P, Červenka L, Škaroupková P, Táborský M, Kompanowska-Jezierska E, Sadowski J. Sex-linked differences in the mortality in Ren-2 transgenic hypertensive rats with aorto-caval fistula: effects of treatment with angiotensin converting enzyme alone and combined with inhibitor of soluble epoxide hydrolase. Physiol Res. 2019;68:589–601. doi: 10.33549/physiolres.934094. PubMed DOI
Riehle C, Bauersachs J. Small animal models of heart failure. Cardiovasc Res. 2019;115:1838–1849. doi: 10.1093/cvr/cvz161. PubMed DOI PMC
Honetschlagerová Z, Škaroupková P, Kikerlová S, Husková Z, Maxová H, Melenovský V, Kompanowska-Jezierska E, Sadowski J, et al. Effects of renal sympathetic denervation on the course of congestive heart failure combined with chronic kidney disease: Insight from studies with fawn-hooded hypertensive rats with volume overload induced using aorto-caval fistula. Clin Exp Hypertens. 2021;43:522–535. doi: 10.1080/10641963.2021.1907398. PubMed DOI
Nasi-Er B-G, Lou X, Zhang Y, Sun H, Zhou X, Li Y, Zhou Q, et al. Renal Sympathetic Denervation Improves Outcomes in a Canine Myocardial Infarction Model. Med Sci Monit. 2019;25:3887–3893. doi: 10.12659/MSM.914384. PubMed DOI PMC
Li C, Xia W, Wang L, Zhang j He Q, Liu Y, Xia D, Lu C. Effect of Renal Denervation on Cardiac Function and Inflammatory Factors in Heart Failure After Myocardial Infarction. J Cardiovasc Pharmacol. 2020;76:602–609. doi: 10.1097/FJC.0000000000000899. PubMed DOI PMC
Chen W-J, Liu H, Wang Z-H, Liu C, Fan J-Q, Wang Z-L, Xu Y-P, et al. The Impact of Renal Denervation on the Progression of Heart Failure in a Canine Model Induced by Right Ventricular Rapid Pacing. Front Physiol. 2020;10:1625. doi: 10.3389/fphys.2019.01625. PubMed DOI PMC
Pinkham MI, Loftus MT, Amirapu S, Guild S-J, Quill G, Woodward WR, Habecker BA, Barrett CJ. Renal denervation in male rats with heart failure improves ventricular sympathetic nerve innervation and function. Am J Physiol Regul Integr Comp Physiol. 2017;312:R368–R379. doi: 10.1152/ajpregu.00313.2016. PubMed DOI PMC
Bello-Reuss E, Colindres RE, Pastoriza-Muñoz E, Mueller RA, Gottschalk CW. Effects of acute unilateral renal denervation in the rat. J Clin Invest. 1975;56:208–217. doi: 10.1172/JCI108069. PubMed DOI PMC
Ichihara A, Inscho EW, Imig JD, Michel RE, Navar LG. Role of renal nerves in afferent arteriolar reactivity in angiotensin-induced hypertension. Hypertension. 1997;29:442–449. doi: 10.1161/01.HYP.29.1.442. PubMed DOI
Kline RL, Mercer PF. Functional reinnervation and development of supersensitivity to NE after renal denervation in rats. Am J Physiol. 1980;238:R353–R358. doi: 10.1152/ajpregu.1980.238.5.R353. PubMed DOI
Honetschlagerová Z, Gawrys O, Jíchová Š, Škaroupková P, Kikerlová S, Vaňourková Z, Husková Z, et al. Renal Sympathetic Denervation Attenuates Congestive Heart Failure in Angiotensin II-Dependent Hypertension: Studies with Ren-2 Transgenic Hypertensive Rats with Aortocaval Fistula. Kidney Blood Press Res. 2021;46:95–113. doi: 10.1159/000513071. PubMed DOI
Kala P, Gawrys O, Miklovič M, Vaňourková Z, Škaroupková P, Jíchová Š, Sadowski J, et al. Endothelin type A receptor blockade attenuates aorto-caval fistula-induced heart failure in rats with angiotensin II-dependent hypertension. J Hypertens. 2023;41:99–114. doi: 10.1097/01.hjh.0000917496.33970.53. PubMed DOI PMC
Kala P, Vaňourková Z, Škaroupková P, Kompanowska-Jezierska E, Sadowski J, Walkowska A, Veselka J, et al. Endothelin type A receptor blockade increases renoprotection in congestive heart failure combined with chronic kidney disease: Studies in 5/6 nephrectomized rats with aorto-caval fistula. Biomed Pharmacother. 2023;158:114157. doi: 10.1016/j.biopha.2022.114157. PubMed DOI
Nakano Y, Hirano T, Uehara K, Nishibayashi S, Hattori K, Aihara M, Yamada Y. New rat model induced by anti-glomerular basement membrane antibody shows severe glomerular adhesion in early stage and quickly progresses to end-stage renal failure. Pathol Int. 2008;58:361–370. doi: 10.1111/j.1440-1827.2008.02237.x. PubMed DOI
Gawrys O, Husková Z, Škaroupková P, Honetschlägerová Z, Vaňourková Z, Kikerlová S, Melenovský V, et al. The treatment with sGC stimulator improves survival of hypertensive rats in response to volume-overload induced by aorto-caval fistula. Naunyn Schmiedebergs Arch Pharmacol. 2023;396:3757–3773. doi: 10.1007/s00210-023-02561-y. PubMed DOI PMC
Sykora M, Kratky V, Cervenka L, Kopkan L, Tribulova N, Szeiffova Bacova B. The treatment with trandolapril and losartan attenuates pressure and volume overload alternations of cardiac connexin-43 and extracellular matrix in Ren-2 transgenic rats. Sci Rep. 2023;13:20923. doi: 10.1038/s41598-023-48259-2. PubMed DOI PMC
Lojda Z. Studies on dipeptidyl(amino)peptidase IV (glycyl-proline naphthylamidase). II. Blood vessels. Histochemistry. 1979;59:153–166. doi: 10.1007/BF00495663. PubMed DOI
Lojda Z, Gutmann E. Histochemistry of some acid hydrolases in striated muscles of the rat. Histochemistry. 1976;49:337–342. doi: 10.1007/BF00496137. PubMed DOI
Lendeckel U, Arndt M, Wrenger S, Nepple K, Huth C, Ansorge S, Klein HU, Goette A. Expression and activity of ectopeptidases in fibrillating human atria. J Mol Cell Cardiol. 2001;33:1273–1281. doi: 10.1006/jmcc.2001.1389. PubMed DOI
Mitašíková M, Šmidová S, Macsaliová A, Knezl V, Dlugošová K, Okruhlicová L, Weissmann P, Tribulová N. Aged male and female spontaneously hypertensive rats benefit from n-3 polyunsaturated fatty acids supplementation. Physiol Res. 2008;57(Suppl 2):S39–S48. doi: 10.33549/physiolres.931550. PubMed DOI
Sykora M, Kamocsaiova L, Egan Benova T, Frimmel K, Ujhazy E, Mach M, Barancik M, et al. Alterations in myocardial connexin-43 and matrix metalloproteinase-2 signaling in response to pregnancy and oxygen deprivation of Wistar rats: a pilot study. Can J Physiol Pharmacol. 2019;97:829–836. doi: 10.1139/cjpp-2018-0740. PubMed DOI
Cohen J. Some issue in power analysis. In: Cohen J, editor. Statistical Power Analysis for Behavioral Sciences. 2nd edition. Routlede; 2013. pp. 531–542. DOI
Khan MS, Shahid I, Anker SD, Fonarow GC, Fudim M, Hall ME, Hernndez A, et al. Albuminuria and Heart Failure: JACC State-of-the-Art Review. J Am Coll Cardiol. 2023;81:270–282. doi: 10.1016/j.jacc.2022.10.028. PubMed DOI
Brenner BM. Nephron adaptation to renal injury or ablation. Am J Physiol. 1985;249:F324–F337. doi: 10.1152/ajprenal.1985.249.3.F324. PubMed DOI
Zoja C, Abbate M, Remuzzi G. Progression of chronic kidney disease: insights from animal models. Curr Opin Nephrol Hypertens. 2006;15:250–257. doi: 10.1097/01.mnh.0000222691.53970.83. PubMed DOI
Bidani AK, Polichnowski AJ, Loutzenhiser R, Griffin KA. Renal microvascular dysfunction, hypertension and CKD progression. Curr Opin Nephrol Hypertens. 2013;22:1–9. doi: 10.1097/MNH.0b013e32835b36c1. PubMed DOI PMC
Kujal P, Chábová VČ, Vernerová Z, Walkowska A, Kompanowska-Jezierska E, Sadowski J, Vaňourková Z, et al. Similar renoprotection after renin-angiotensin-dependent and -independent antihypertensive therapy in 5/6-nephrectomized Ren-2 transgenic rats: are there blood pressure-independent effects? Clin Exp Pharmacol Physiol. 2010;37:1159–1169. doi: 10.1111/j.1440-1681.2010.05453.x. PubMed DOI
Sedláková L, Čertíková Chábová V, Doleželová Š, Škaroupková P, Kopkan L, Husková Z, Červenková L, et al. Renin-angiotensin system blockade alone or combined with ETA receptor blockade: effects on the course of chronic kidney disease in 5/6 nephrectomized Ren-2 transgenic hypertensive rats. Clin Exp Hypertens. 2017;39:183–195. doi: 10.1080/10641963.2016.1235184. PubMed DOI
Tribulova N, Szeiffova Bacova B, Benova T, Viczenczova C. Can we protect from malignant arrhythmias by modulation of cardiac cell-to-cell coupling? J Electrocardiol. 2015;48:434–440. doi: 10.1016/j.jelectrocard.2015.02.006. PubMed DOI
Benes J, Jr, Melenovsky V, Skaroupkova P, Pospisilova J, Petrak J, Cervenka L, Sedmera D. Myocardial morphological characteristics and proarrhythmic substrate in the rat model of heart failure due to chronic volume overload. Anat Rec (Hoboken) 2011;294:102–111. doi: 10.1002/ar.21280. PubMed DOI
Wang X-H, Zhuo X-Z, Ni Y-J, Gong M, Wang T-Z, Lu Q, Ma A-Q. Improvement of cardiac function and reversal of gap junction remodeling by Neuregulin-1β in volume-overloaded rats with heart failure. J Geriatr Cardiol. 2012;9:172–179. doi: 10.3724/SP.J.1263.2012.03271. PubMed DOI PMC
Szeiffova Bacova B, Viczenczova C, Andelova K, Sykora M, Chaudagar K, Barancik M, Adamcova M, et al. Antiarrhythmic Effects of Melatonin and Omega-3 Are Linked with Protection of Myocardial Cx43 Topology and Suppression of Fibrosis in Catecholamine Stressed Normotensive and Hypertensive Rats. Antioxidants (Basel) 2020;9:546. doi: 10.3390/antiox9060546. PubMed DOI PMC
Honetschlägerová Z, Husková Z, Kikerlová S, Sadowski J, Kompanowska-Jezierska E, Táborský M, Vaňourková Z, et al. Renal sympathetic denervation improves pressure-natriuresis relationship in cardiorenal syndrome: insight from studies with Ren-2 transgenic hypertensive rats with volume overload induced using aorto-caval fistula. Hypertens Res. 2024;47:998–1016. doi: 10.1038/s41440-024-01583-0. PubMed DOI PMC
Hu X, Zhou H, Chen W, Li D, Du H, Xia T, Yin Y. Current problems in renal denervation and a hope to break the stage. Hypertens Res. 2023;46:2654–2660. doi: 10.1038/s41440-023-01380-1. PubMed DOI
Husková Z, Kramer HJ, Vanourková Z, Cervenka L. Effects of changes in sodium balance on plasma and kidney angiotensin II levels in anesthetized and conscious Ren-2 transgenic rats. J Hypertens. 2006;24:517–527. doi: 10.1097/01.hjh.0000209988.51606.c7. PubMed DOI
Osborn JW, Tyshynsky R, Vulchanova L. Function of Renal Nerves in Kidney Physiology and Pathophysiology. Annu Rev Physiol. 2021;83:429–450. doi: 10.1146/annurev-physiol-031620-091656. PubMed DOI
Rosenzweig A. The Growing Importance of Basic Models of Cardiovascular Disease. Circ Res. 2022;130:1743–1746. doi: 10.1161/CIRCRESAHA.122.321368. PubMed DOI PMC
Bernard C. An Introduction to the Study of Experimental Medicine. Dover Publications, Inc; New York: 2018. p. 226.
Weil J. Symplicity SPYRAL TM: Device and procedural tips and tricks. In: Heusler RR, Schlaich MP, Hering D, Bertog SC, editors. Renal Denervation: Treatment and Device-Based Neuromodulation. 2nd Edition. Springer; 2023. pp. 141–150. DOI
Zeijen V, Daemen J. ReCor Medical Paradise TM system: Device and procedural tips and tricks. In: Heusler RR, Schlaich MP, Hering D, Bertog SC, editors. Renal Denervation: Treatment and Device-Based Neuromodulation. 2nd Edition. Springer; 2023. pp. 151–154. DOI
Bertog SC, Sharma A, Hering D, Mahfoud F, Pathak A, Schmieder RE, Sievert K, et al. Alcohol-mediated renal sympathetic neurolysis for the treatment of hypertension: The Peregrine TM infusion catheter. In: Heusler RR, Schlaich MP, Hering D, Bertog SC, editors. Renal Denervation: Treatment and Device-Based Neuromodulation. 2nd Edition. Springer; 2023. pp. 155–170. DOI
Böhm M, Kario K, Kandzari DE, Mahfoud F, Weber MA, Schmieder RE, Tsioufis K, et al. Efficacy of catheter-based renal denervation in the absence of antihypertensive medications (SPYRAL HTN-OFF MED Pivotal): a multicentre, randomised, sham-controlled trial. Lancet. 2020;395:1444–1451. doi: 10.1016/S0140-6736(20)30554-7. PubMed DOI
Kirtane AJ, Sharp ASP, Mahfoud F, Fisher NDL, Schmieder RE, Daemen J, Lobo MD, et al. Patient-Level Pooled Analysis of Ultrasound Renal Denervation in the Sham-Controlled RADIANCE II, RADIANCE-HTN SOLO, and RADIANCE-HTN TRIO Trials. JAMA Cardiol. 2023;8:464–473. doi: 10.1001/jamacardio.2023.0338. PubMed DOI PMC
Kandzari DE, Weber MA, Pathak A, Zidar JP, Saxena M, David SW, Schmieder RE, et al. Effect of Alcohol-Mediated Renal Denervation on Blood Pressure in the Presence of Antihypertensive Medications: Primary Results From the TARGET BP I Randomized Clinical Trial. Circulation. 2024;149:1875–1884. doi: 10.1161/CIRCULATIONAHA.124.069291. PubMed DOI
Ogoyama Y, Abe M, Okamura K, Tada K, Katsurada K, Shibata S, Kai H, et al. Effect of renal denervation on blood pressure in patients with hypertension: a latest systemic review and meta-analysis of randomized sham controlled trials. Hypertens Res. 2024;47:2745–2759. doi: 10.1038/s41440-024-01739-y. PubMed DOI
Táborský M, Richter D, Tonar Z, Kubíková T, Herman A, Peregrin J, Červenková L, et al. Early morphologic alterations in renal artery wall and renal nerves in response to catheter-based renal denervation procedure in sheep: difference between single-point and multiple-point ablation catheters. Physiol Res. 2017;66:601–614. doi: 10.33549/physiolres.933503. PubMed DOI
Táborský M, Richter D, Tonar Z, Kubíková T, Herman A, Peregrin J, Husková Y, Kopkan L. Evaluation of later morphologic alterations in renal artery wall and renal nerves in response to catheter-based renal denervation in sheep: comparison of the single-point and multiple-point ablation catheters. Physiol Res. 2018;67:891–901. doi: 10.33549/physiolres.933903. PubMed DOI
Akumwami S, Morishita A, Iradukunda A, Kobara H, Nishiyama A. Possible organ-protective effects of renal denervation: insights from basic studies. Hypertens Res. 2023;46:2661–2669. doi: 10.1038/s41440-023-01393-w. PubMed DOI