Intraventricular spring expander attenuates cardiac atrophy of the failing heart after unloading caused by heterotopic heart transplantation: no sex-linked differences
Jazyk angličtina Země Česko Médium print
Typ dokumentu časopisecké články
PubMed
40698656
PubMed Central
PMC12462713
DOI
10.33549/physiolres.935560
PII: 935560
Knihovny.cz E-zdroje
- MeSH
- atrofie MeSH
- heterotopická transplantace * škodlivé účinky MeSH
- krysa rodu Rattus MeSH
- myokard * patologie MeSH
- podpůrné srdeční systémy * škodlivé účinky MeSH
- pohlavní dimorfismus * MeSH
- potkani Wistar MeSH
- sexuální faktory MeSH
- srdeční selhání * patologie patofyziologie chirurgie MeSH
- transplantace srdce * škodlivé účinky metody MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Cardiac atrophy is the most common complication of prolonged application of the left ventricle (LV) assist device (LVAD) in patients with advanced heart failure (HF), obviously, it is a consequence of LVAD-induced mechanical unloading. Previous studies employing heterotopic heart transplantation (HTx) as a model of heart unloading after LVAD implantation discovered sex-linked differences in the course of unloading-induced in the healthy hearts. It remains to be clarified if sex-related differences are present in the failing hearts after heterotopic HTx. Therefore, we first compared the course of unloading-induced cardiac atrophy in the failing hearts in intact (without gonadectomy) male and female rats, and in animals after gonadectomy, to explore the influence of sex hormones on this process. Second, we examined if the animal's sex modifies the effects of increased isovolumic loading of the LV on the course of unloading-induced cardiac atrophy. Heterotopic abdominal heart transplantation (HTx) was used as a rat model of heart unloading. HF was induced by volume overload achieved by creation of aorto-caval fistula. Increased isovolumic loading was obtained by implantation of specially designed three-branch spring expander into the LV. The degree of cardiac atrophy was assessed as the whole heart weight (HW) ratio of the heterotopically transplanted to the native control heart. We found that decreases in HW after HTx were similar in intact male and female rats, similarly in intact and gonadectomized animals. Implantation of the expander significantly and comparably reduced decreases in HW in male and in female rats. We conclude that there are no sex-linked differences in the development of unloading-induced cardiac atrophy in the failing hearts. Our results also show that enhanced isovolumic heart loading obtained using the spring expander attenuates the development of unloading-induced cardiac atrophy in the failing hearts; the degree of attenuation is similar in both sexes. Key words Heart failure " Cardiac atrophy " Sex differences " Heterotopic heart transplantation " Mechanical heart unloading.
Zobrazit více v PubMed
Frigerio M. Left Ventricular Assist Device: Indication, Timing, and Management. Heart Fail Clin. 2021;17:619–634. doi: 10.1016/j.hfc.2021.05.007. PubMed DOI
Varshney AS, DeFilippis EM, Cowger JA, Netuka I, Pinney SP, Givertz MM. Trends and Outcomes of Left Ventricular Assist Device Therapy: JACC Focus Seminar. J Am Coll Cardiol. 2022;79:1092–1107. doi: 10.1016/j.jacc.2022.01.017. PubMed DOI
Shah P, Yuzefpolskaya M, Hickey GW, Breathett K, Wever-Pinzon O, Ton V-K, Hiesinger W, et al. Twelfth Interagency Registry for Mechanically Assisted Circulatory Support Report: Readmissions After Left Ventricular Assist Device. Ann Thorac Surg. 2022;113:722–737. doi: 10.1016/j.athoracsur.2021.12.011. PubMed DOI PMC
Mehra MR, Nayak A, Desai AS. Life-Prolonging Benefits of LVAD Therapy in Advanced Heart Failure: A Clinician’s Action and Communication Aid. JACC Heart Fail. 2023;11:1011–1017. doi: 10.1016/j.jchf.2023.05.013. PubMed DOI
Mullens W, Dauw J, Gustafsson F, Mebazaa A, Steffel J, Witte KK, Delgado V, et al. Integration of implantable device therapy in patients with heart failure. A clinical consensus statement from the Heart Failure Association (HFA) and European Heart Rhythm Association (EHRA) of the European Society of Cardiology (ESC) Eur J Heart Fail. 2024;26:483–501. doi: 10.1002/ejhf.3150. PubMed DOI
Saeed D, Feldman D, Banayosy AE, Birks E, Blume E, Cowger J, Hayward C, et al. The 2023 International Society for Heart and Lung Transplantation Guidelines for Mechanical Circulatory Support: A 10-Year Update. J Heart Lung Transplant. 2023;42:e1–e222. PubMed
Boulet J, Wanderley MRB, Jr, Mehra MR. Contemporary Left Ventricular Assist Device Therapy as a Bridge or Alternative to Transplantation. Transplantation. 2024;108:1333–1341. doi: 10.1097/TP.0000000000004834. PubMed DOI
Braunwald E. The war against heart failure: the Lancet lecture. Lancet. 2015;385:812–824. doi: 10.1016/S0140-6736(14)61889-4. PubMed DOI
Moayedi Y, Ross HJ. Advances in heart failure: a review of biomarkers, emerging pharmacological therapies, durable mechanical support and telemonitoring. Clin Sci (Lond) 2017;131:553–566. doi: 10.1042/CS20160196. PubMed DOI
Frantz S, Hundertmark MJ, Schulz-Menger J, Bengel FM, Bauersachs J. Left ventricular remodelling post-myocardial infarction: pathophysiology, imaging, and novel therapies. Eur Heart J. 2022;3:549–2561. doi: 10.1093/eurheartj/ehac223. PubMed DOI PMC
Beghini A, Sammartino AM, Papp Z, von Haehling S, Biegus J, Ponikowski P, Adamo M, et al. 2024 update in heart failure. ESC Heart Fail. 2025;12:8–42. doi: 10.1002/ehf2.14857. PubMed DOI PMC
Burkhoff D, Topkara VK, Sayer G, Uriel N. Reverse Remodeling With Left Ventricular Assist Devices. Circ Res. 2021;128:1594–1612. doi: 10.1161/CIRCRESAHA.121.318160. PubMed DOI PMC
Margulies KB. Reversal mechanisms of left ventricular remodeling: lessons from left ventricular assist device experiments. J Card Fail. 2002;8(6 Suppl):S500–S505. doi: 10.1054/jcaf.2002.129264. PubMed DOI
Pamias-Lopez B, Ibrahim ME, Pitoulis FG. Cardiac mechanics and reverse remodeling under mechanical support from left ventricular assist devices. Front Cardiovasc Med. 2023;10:1212875. doi: 10.3389/fcvm.2023.1212875. PubMed DOI PMC
Rao V, Billia F. Myocardial recovery following durable left ventricular assist device support. JTCVS Open. 2021;8:1–5. doi: 10.1016/j.xjon.2021.10.005. PubMed DOI PMC
Hamad EA, Byku M, Larson SB, Billia F. LVAD therapy as a catalyst to heart failure remission and myocardial recovery. Clin Cardiol. 2023;46:1154–1162. doi: 10.1002/clc.24094. PubMed DOI PMC
Yin MY, Maneta E, Kyriakopoulos CP, Michaels AT, Genovese LD, Indaram MB, Wever-Pinzon O, et al. Cardiac Reverse Remodeling Mediated by HeartMate 3 Left Ventricular Assist Device: Comparison to Older Generation Devices. ASAIO J. 2024;70:1060–1066. doi: 10.1097/MAT.0000000000002245. PubMed DOI PMC
Kayali F, Tahhan O, Vecchio G, Jubouri M, Noubani JM, Bailey DM, Williams IM, et al. Left ventricular unloading to facilitate ventricular remodeling in heart failure: A narrative review of mechanical circulatory support. Exp Physiol. 2024;109:1826–1836. doi: 10.1113/EP091796. PubMed DOI PMC
Birks EJ, Tansley PD, Hardy J, George RS, Bowles CT, Burke M, Banner NR, et al. Left ventricular assist device and drug therapy for the reversal of heart failure. N Engl J Med. 2006;355:1873–1884. doi: 10.1056/NEJMoa053063. PubMed DOI
Birks EJ, George RS, Hedger M, Bahrami T, Wilton P, Bowles CT, Webb C, et al. Reversal of severe heart failure with a continuous-flow left ventricular assist device and pharmacological therapy: a prospective study. Circulation. 2011;123:381–390. doi: 10.1161/CIRCULATIONAHA.109.933960. PubMed DOI
Birks EJ, Drakos SG, Patel SR, Lowes BD, Selzman CH, Starling RC, Trivedi J, et al. Prospective Multicenter Study of Myocardial Recovery Using Left Ventricular Assist Devices (RESTAGE-HF [Remission from Stage D Heart Failure]): Medium-Term and Primary End Point Results. Circulation. 2020;142:2016–2028. doi: 10.1161/CIRCULATIONAHA.120.046415. PubMed DOI
Itagaki S, Moss N, Toyoda N, Mancini D, Egorova N, Serrao G, Lala A, et al. Incidence, Outcomes, and Opportunity for Left Ventricular Assist Device Weaning for Myocardial Recovery. JACC Heart Fail. 2024;12:893–901. doi: 10.1016/j.jchf.2023.12.006. PubMed DOI
Kanwar MK, Selzman CH, Ton V-K, Miera O, Cornwell WK, 3rd, Antaki J, Drakos S, Shah P. Clinical myocardial recovery in advanced heart failure with long term left ventricular assist device support. J Heart Lung Transplant. 2022;41:1324–1334. doi: 10.1016/j.healun.2022.05.015. PubMed DOI PMC
Brinks H, Tevaearai H, Mühlfeld C, Bertschi D, Gahl B, Carrel T, Giraud M-N. The contractile function is preserved in unloaded hearts despite atrophic remodeling. J Thorac Cardiovasc Surg. 2009;137:742–746. doi: 10.1016/j.jtcvs.2008.09.020. PubMed DOI
Diakos NA, Selzman CH, Sachse FB, Stehlik J, Kfoury AG, Wever-Pinzon O, Catino A, et al. Myocardial atrophy and chronic mechanical unloading of the failing human heart: implications for cardiac assist device-induced myocardial recovery. J Am Coll Cardiol. 2014;64:1602–1612. doi: 10.1016/j.jacc.2014.05.073. PubMed DOI
Miyagawa S, Toda K, Nakamura T, Yoshikawa Y, Fukushima S, Saito S, Yoshioka D, et al. Building a bridge to recovery: the pathophysiology of LVAD-induced reverse modeling in heart failure. Surg Today. 2016;46:149–154. doi: 10.1007/s00595-015-1149-8. PubMed DOI
Pokorný M, Cervenka L, Netuka I, Pirk J, Koňařík M, Malý J. Ventricular assist devices in heart failure: how to support the heart but prevent atrophy? Physiol Res. 2014;63:147–156. doi: 10.33549/physiolres.932617. PubMed DOI
Brinks H, Giraud MN, Segiser A, Ferrié C, Longnus S, Ullrich ND, Koch WJ, et al. Dynamic patterns of ventricular remodeling and apoptosis in hearts unloaded by heterotopic transplantation. J Heart Lung Transplant. 2014;33:203–210. doi: 10.1016/j.healun.2013.10.006. PubMed DOI PMC
Heckle MR, Flatt DM, Sun Y, Mancarella S, Marion TN, Gerling IC, Weber KT. Atrophied cardiomyocytes and their potential for rescue and recovery of ventricular function. Heart Fail Rev. 2016;21:191–198. doi: 10.1007/s10741-016-9535-x. PubMed DOI
Pham BN, Chaparro SV. Left ventricular assist device recovery: does duration of mechanical support matter? Heart Fail Rev. 2019;24:237–244. doi: 10.1007/s10741-018-9744-6. PubMed DOI
Drakos SG, Badolia R, Makaju A, Kyriakopoulos CP, Wever-Pinzon O, Tracy CM, Bakhtina A, et al. Distinct Transcriptomic and Proteomic Profile Specifies Patients Who Have Heart Failure With Potential of Myocardial Recovery on Mechanical Unloading and Circulatory Support. Circulation. 2023;147:409–424. doi: 10.1161/CIRCULATIONAHA.121.056600. PubMed DOI PMC
Chrysakis N, Xanthopoulos A, Magouliotis D, Starling RC, Drakos SG, Triposkiadis FP, Skoularigis J. Myocardial Recovery. Diagnostics (Basel) 2023;13:1504. doi: 10.3390/diagnostics13081504. PubMed DOI PMC
Cooke JP, Youker KA, Lai L. Myocardial Recovery versus Myocardial Regeneration: Mechanisms and Therapeutic Modulation. Methodist Debakey Cardiovasc J. 2024;20:31–41. doi: 10.14797/mdcvj.1400. PubMed DOI PMC
Soloff LA. Atrophy of myocardium and its myocytes by left ventricular assist device. Circulation. 1999;100:1012. doi: 10.1161/circ.100.9.1011/-b. PubMed DOI
Tsuneyoshi H, Oriyanhan W, Kanemitsu H, Shiina R, Nishina T, Matsuoka S, Ikeda T, Komeda M. Does the beta2-agonist clenbuterol help to maintain the myocardial potential to recover during mechanical unloading? Circulation. 2005;112(9 Suppl):I51–I56. doi: 10.1161/CIRCULATIONAHA.104.525097. PubMed DOI
Didié M, Biermann D, Buchert R, Hess A, Wittköpper K, Christalla P, Döker S, et al. Preservation of left ventricular function and morphology in volume-loaded versus volume-unloaded heterotopic heart transplants. Am J Physiol Heart Circ Physiol. 2013;305:H533–H541. doi: 10.1152/ajpheart.00218.2013. PubMed DOI
Liu Y, Maureira P, Gauchotte G, Falanga A, Marie V, Olivier A, Groubatch F, et al. Effect of chronic left ventricular unloading on myocardial remodeling: Multimodal assessment of two heterotopic heart transplantation techniques. J Heart Lung Transplant. 2015;34:594–603. doi: 10.1016/j.healun.2014.11.015. PubMed DOI
Fu X, Segiser A, Carrel TP, Tevaearai Stahel HT, Most H. Rat Heterotopic Heart Transplantation Model to Investigate Unloading-Induced Myocardial Remodeling. Front Cardiovasc Med. 2016;3:34. doi: 10.3389/fcvm.2016.00034. PubMed DOI PMC
Benke K, Sayour AA, Mátyás C, Ágg B, Németh BT, Oláh A, Ruppert R, et al. Heterotopic Abdominal Rat Heart Transplantation as a Model to Investigate Volume Dependency of Myocardial Remodeling. Transplantation. 2017;101:498–505. doi: 10.1097/TP.0000000000001585. PubMed DOI
Pokorný M, Mrázová I, Malý J, Pirk J, Netuka I, Vaňourková Z, Doleželová Š, et al. Effects of increased myocardial tissue concentration of myristic, palmitic and palmitoleic acids on the course of cardiac atrophy of the failing heart unloaded by heterotopic transplantation. Physiol Res. 2018;67:13–30. doi: 10.33549/physiolres.933637. PubMed DOI
Pokorný M, Mrázová I, Kubátová H, Pťha J, Malý J, Pirk J, Maxová H, et al. Intraventricular placement of a spring expander does not attenuate cardiac atrophy of the healthy heart induced by unloading via heterotopic heart transplantation. Physiol Res. 2019;68:567–580. doi: 10.33549/physiolres.933936. PubMed DOI
Kim G, Kil HR, Quan C, Lee SS. Effects of carvedilol and metoprolol on the myocardium during mechanical unloading in a rat heterotopic heart transplantation model. Cardiol Young. 2021;31:1269–1274. doi: 10.1017/S1047951121000196. PubMed DOI
Rakusan K, Heron MI, Kolar F, Korecky B. Transplantation-induced atrophy of normal and hypertrophic rat hearts: effect on cardiac myocytes and capillaries. J Mol Cell Cardiol. 1997;29:1045–1054. doi: 10.1006/jmcc.1996.0350. PubMed DOI
McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, Burri H, et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2021;42:3599–3726. doi: 10.1093/eurheartj/ehab368. PubMed DOI
Clayton JA, Gaugh MD. Sex as a Biological Variable in Cardiovascular Diseases: JACC Focus Seminar 1/7. J Am Coll Cardiol. 2022;79:1388–1397. doi: 10.1016/j.jacc.2021.10.050. PubMed DOI
Reue K, Wiese CB. Illuminating the Mechanisms Underlying Sex Differences in Cardiovascular Disease. Circ Res. 2022;130:1747–1762. doi: 10.1161/CIRCRESAHA.122.320259. PubMed DOI PMC
Regitz-Zagrosek V, Gebhard C. Gender medicine: effects of sex and gender on cardiovascular disease manifestation and outcomes. Nat Rev Cardiol. 2023;20:236–247. doi: 10.1038/s41569-022-00797-4. PubMed DOI PMC
Shetty NS, Parcha V, Abdelmessih P, Patel N, Hasnie AA, Kalra R, Pandey A, et al. Sex-Associated Differences in the Clinical Outcomes of Left Ventricular Assist Device Recipients: Insights From Interagency Registry for Mechanically Assisted Circulatory Support. Circ Heart Fail. 2023;16:e010189. doi: 10.1161/CIRCHEARTFAILURE.122.010189. PubMed DOI PMC
DeFilippis EM, Nikolova A, Holzhauser L, Khush KK. Understanding and Investigating Sex-Based Differences in Heart Transplantation: A Call to Action. JACC Heart Fail. 2023;11:1181–1188. doi: 10.1016/j.jchf.2023.06.030. PubMed DOI
Walsh MN. Differential Outcomes for Women and Men With Advanced Heart Failure Therapies: Sex Matters. Circ Heart Fail. 2023;16:e010352. doi: 10.1161/CIRCHEARTFAILURE.123.010352. PubMed DOI
Lamba HK, Kherallah R, Nair AP, Shafii AE, Loor G, Kassi K, Chatterjee S, et al. Sex Disparities in Left Ventricular Assist Device Implantation: Delayed Presentation and Worse Right Heart Failure. ASAIO J. 2024;70:469–476. doi: 10.1097/MAT.0000000000002134. PubMed DOI
Kolesár DM, Kujal P, Mrázová I, Pokorný M, Škaroupková P, Sadowski J, Červenka L, Netuka I. Sex-Linked Differences in Cardiac Atrophy After Mechanical Unloading Induced by Heterotopic Heart Transplantation. Physiol Res. 2024;73:9–25. doi: 10.33549/physiolres.935217. PubMed DOI PMC
Kolesár DM, Kujal P, Mrázová I, Pokorný M, Škaroupková P, Vaňourková Z, Sadowski J, et al. Sex-Linked Differences in Cardiac Atrophy After Heterotopic Heart Transplantation: No Direct Relation to the Actions of Sex Steroid Hormones. Physiol Res. 2024;73(Suppl 2):S527–S539. doi: 10.33549/physiolres.935308. PubMed DOI PMC
Pokorný M, Mrázová I, Šochman J, Melenovský V, Malý J, Pirk J, Červenková L, et al. Isovolumic loading of the failing heart by intraventricular placement of a spring expander attenuates cardiac atrophy after heterotopic heart transplantation. Biosci Rep. 2018;38:BSR20180371. doi: 10.1042/BSR20180371. PubMed DOI PMC
Ono K, Lindsey ES. Improved technique of heart transplantation in rats. J Thorac Cardiovasc Surg. 1969;57:225–229. doi: 10.1016/S0022-5223(19)42744-X. PubMed DOI
Garcia R, Diebold S. Simple, rapid, and effective method of producing aortocaval shunts in the rat. Cardiovasc Res. 1990;24:430–432. doi: 10.1093/cvr/24.5.430. PubMed DOI
Abassi Z, Goltsman I, Karram T, Winaver J, Hoffman A. Aortocaval fistula in rat: a unique model of volume-overload congestive heart failure and cardiac hypertrophy. J Biomed Biotechnol. 2011;2011:729497. doi: 10.1155/2011/729497. PubMed DOI PMC
Brower GL, Janicki JS. Contribution of ventricular remodeling to pathogenesis of heart failure in rats. Am J Physiol Heart Circ Physiol. 2001;280:H674–H683. doi: 10.1152/ajpheart.2001.280.2.H674. PubMed DOI
Oliver-Dussault C, Ascah A, Marcil M, Matas J, Picard S, Pibarot P, Burelle Y, Deschepper CF. Early predictors of cardiac decompensation in experimental volume overload. Mol Cell Biochem. 2010;338:271–282. doi: 10.1007/s11010-009-0361-5. PubMed DOI
Červenka L, Melenovský V, Husková Z, Sporková A, Bürgelová M, Škaroupková P, Hwang SH, et al. Inhibition of soluble epoxide hydrolase does not improve the course of congestive heart failure and the development of renal dysfunction in rats with volume overload induced by aorto-caval fistula. Physiol Res. 2015;64:857–873. doi: 10.33549/physiolres.932977. PubMed DOI PMC
Kala P, Sedláková L, Škaroupková P, Kopkan L, Vaňourková Z, Táborský M, Nishiyama A, et al. Effect of angiotensin-converting enzyme blockade, alone or combined with blockade of soluble epoxide hydrolase, on the course of congestive heart failure and occurrence of renal dysfunction in Ren-2 transgenic hypertensive rats with aorto-caval fistula. Physiol Res. 2018;67:401–415. doi: 10.33549/physiolres.933757. PubMed DOI PMC
Sporková A, Husková Z, Škaroupková P, Rami Reddy N, Falck JR, Sadowski J, Červenka L. Vasodilatory responses of renal interlobular arteries to epoxyeicosatrienoic acids analog are not enhanced in Ren-2 transgenic hypertensive rats: evidence against a role of direct vascular effects of epoxyeicosatrienoic acids in progression of experimental heart failure. Physiol Res. 2017;66:29–39. doi: 10.33549/physiolres.933350. PubMed DOI
Kala P, Červenka L, Škaroupková P, Táborský M, Kompanowska-Jezierska E, Sadowski J. Sex-linked differences in the mortality in Ren-2 transgenic hypertensive rats with aorto-caval fistula: effects of treatment with angiotensin converting enzyme alone and combined with inhibitor of soluble epoxide hydrolase. Physiol Res. 2019;68:589–601. doi: 10.33549/physiolres.934094. PubMed DOI
Doul J, Gawrys O, Škaroupková P, Vaňourková Z, Szeiffová Bačová B, Sýkora M, Maxová H, et al. Effects of renal denervation on the course of cardiorenal syndrome: insight from studies with Fawn-Hooded hypertensive rats. Physiol Res. 2024;73(Suppl 3):S737–S754. doi: 10.33549/physiolres.935469. PubMed DOI PMC
Lossef SV, Lutz RJ, Mundorf J, Barth KH. Comparison of mechanical deformation properties of metallic stents with use of stress-strain analysis. J Vasc Interv Radiol. 1994;5:341–349. doi: 10.1016/S1051-0443(94)71499-8. PubMed DOI
Obayashi M, Yano M, Kohno M, Kobayashi S, Tanigawa T, Hironaka K, Ryouke T, Matsuzaki M. Dose-dependent effect of ANG II-receptor antagonist on myocyte remodeling in rat cardiac hypertrophy. Am J Physiol. 1997;273:H1824–H1831. doi: 10.1152/ajpheart.1997.273.4.H1824. PubMed DOI
Reue K, Wiese CB. Illuminating the Mechanisms Underlying Sex Differences in Cardiovascular Disease. Circ Res. 2022;130:1747–1762. doi: 10.1161/CIRCRESAHA.122.320259. PubMed DOI PMC
Regitz-Zagrosek V, Kararigas G. Mechanistic Pathways of Sex Differences in Cardiovascular Disease. Physiol Rev. 2017;97:1–37. doi: 10.1152/physrev.00021.2015. PubMed DOI
Wilder J. Basimetric approach (law of initial value) to biological rhythms. Ann N Y Acad Sci. 1962;98:1211–1220. doi: 10.1111/j.1749-6632.1962.tb30629.x. PubMed DOI
Hartupee J, Mann DL. Neurohormonal activation in heart failure with reduced ejection fraction. Nat Rev Cardiol. 2017;14:30–38. doi: 10.1038/nrcardio.2016.163. PubMed DOI PMC
Maryam, Varghese TP, BT Unraveling the complex pathophysiology of heart failure: insights into the role of renin-angiotensin-aldosterone system (RAAS) and sympathetic nervous system (SNS) Curr Probl Cardiol. 2024;49:102411. doi: 10.1016/j.cpcardiol.2024.102411. PubMed DOI
Klein I, Hong C, Schreiber SS. Isovolumic loading prevents atrophy of the heterotopically transplanted rat heart. Circ Res. 1991;69:1421–1425. doi: 10.1161/01.RES.69.5.1421. PubMed DOI
Korecky B, Rakusan K. Morphological and physiological aspects of cardiac atrophy. In: ALPERT NR, editor. Perspectives in Cardiovascular Research: Myocardial Hypertrophy and Failure. Raven Press; New York: 1983. pp. 293–309.
Lee LC, Kassab GS, Guccione JM. Mathematical modeling of cardiac growth and remodeling. Wiley Interdiscip Rev Syst Biol Med. 2016;8:211–226. doi: 10.1002/wsbm.1330. PubMed DOI PMC
Niestrawska JA, Augustin CM, Plank G. Computational modeling of cardiac growth and remodeling in pressure overloaded hearts-Linking microstructure to organ phenotype. Acta Biomater. 2020;106:34–53. doi: 10.1016/j.actbio.2020.02.010. PubMed DOI PMC
Molina EJ, Shah P, Kiernan MS, Cornwell WK, 3rd, Copeland H, Takeda K, Fernandez FG, et al. The Society of Thoracic Surgeons Intermacs 2020 Annual Report. Ann Thorac Surg. 2021;111:778–792. doi: 10.1016/j.athoracsur.2020.12.038. PubMed DOI
Meyer DM, Nayak A, Wood KL, Blumer V, Schettle S, Salerno C, Koehl D, et al. The Society of Thoracic Surgeons Intermacs 2024 Annual Report: Focus on Outcomes in Younger Patients. Ann Thorac Surg. 2025;119:34–58. doi: 10.1016/j.athoracsur.2024.10.003. PubMed DOI
Rose SW, Strackman BW, Gilbert ON, Lasser KE, Paasche-Orlow MK, Lin M-Y, Saylor G, Hanchate AD. Disparities by Sex, Race, and Ethnicity in Use of Left Ventricular Assist Devices and Heart Transplants Among Patients With Heart Failure With Reduced Ejection Fraction. J Am Heart Assoc. 2024;13:e031021. doi: 10.1161/JAHA.123.031021. PubMed DOI PMC