Sex-Linked Differences in Cardiac Atrophy After Mechanical Unloading Induced by Heterotopic Heart Transplantation
Jazyk angličtina Země Česko Médium print
Typ dokumentu časopisecké články
PubMed
38466001
PubMed Central
PMC11019613
DOI
10.33549/physiolres.935217
PII: 935217
Knihovny.cz E-zdroje
- MeSH
- atrofie patologie MeSH
- krysa rodu Rattus MeSH
- myokard patologie MeSH
- pohlavní steroidní hormony MeSH
- srdce * MeSH
- srdeční komory patologie MeSH
- transplantace srdce * škodlivé účinky metody MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- pohlavní steroidní hormony MeSH
No information is available about sex-related differences in unloading-induced cardiac atrophy. We aimed to compare the course of unloading-induced cardiac atrophy in intact (without gonadectomy) male and female rats, and in animals after gonadectomy, to obtain insight into the influence of sex hormones on this process. Heterotopic heart transplantation (HT((x)) was used as a model for heart unloading. Cardiac atrophy was assessed as the weight ratio of heterotopically transplanted heart weight (HW) to the native HW on days 7 and 14 after HTx in intact male and female rats. In separate experimental groups, gonadectomy was performed in male and female recipient animals 28 days before HT(x) and the course of cardiac atrophy was again evaluated on days 7 and 14 after HT(x). In intact male rats, HT(x) resulted in significantly greater decreases in whole HW when compared to intact female rats. The dynamics of the left ventricle (LV) and right ventricle (RV) atrophy after HT(x) was quite similar to that of whole hearts. Gonadectomy did not have any significant effect on the decreases in whole HW, LV, and RV weights, with similar results in male and female rats. Our results show that the development of unloading-induced cardiac atrophy is substantially reduced in female rats when compared to male rats. Since gonadectomy did not alter the course of cardiac atrophy after HTx, similarly in both male and female rats, we conclude that sex-linked differences in the development of unloading-induced cardiac atrophy are not caused by the activity of sex hormones.
Zobrazit více v PubMed
Roger VL. Epidemiology of heart failure. A contemporary perspective. Circ Res. 2021;128:1421–1434. doi: 10.1161/CIRCRESAHA.121.318172. PubMed DOI
Savarese G, Becher PM, Lund LH, Seferovic P, Rosano GMC, Coats AJS. Global burden of heart failure: a comprehensive and updated review of epidemiology. Cardiovasc Res. 2023;118:3272–3287. doi: 10.1093/cvr/cvac013. PubMed DOI
Petrie MC, Dawson NF, Murdoch DR, Davie AP, McMurray JJ. Failure of women's hearts. Circulation. 1999;99:2334–2341. doi: 10.1161/01.CIR.99.17.2334. PubMed DOI
Cook JL, Grady KL, Colvin M, Joseph SM, Brisco MA, Walsh MN genVAD Working Group. Sex differences in the care of patients with advanced heart failure. Circ Cardiovasc Qual Outcomes. 2015;8(Suppl 2):S56–S59. doi: 10.1161/CIRCOUTCOMES.115.001730. PubMed DOI
Westerman S, Wenger NK. Women and heart disease, the underrecognized burden: sex differences, biases, and unmet clinical and research challenges. Clin Sci. 2016;130:551–563. doi: 10.1042/CS20150586. PubMed DOI
Bolijn R, Onland-Moret NC, Asselbergs FW, van der Schouw YT. Reproductive factors in relation to heart failure in women: A systematic review. Maturitas. 2017;106:57–72. doi: 10.1016/j.maturitas.2017.09.004. PubMed DOI
Clayton JA, Gaugh MD. Sex as a Biological Variable in Cardiovascular Diseases: JACC Focus Seminar 1/7. J Am Coll Cardiol. 2022;79:1388–1397. doi: 10.1016/j.jacc.2021.10.050. PubMed DOI
DeFilippis EM, Beale A, Martyn T, Agarwal A, Elkayam U, Lam CSP, Hsich E. Heart Failure Subtypes and Cardiomyopathies in Women. Circ Res. 2022;130:436–454. doi: 10.1161/CIRCRESAHA.121.319900. PubMed DOI PMC
Vogel B, Acevedo M, Appelman Y, Bairey Merz CN, Chieffo A, Figtree GA, Guerrero M, et al. The Lancet women and cardiovascular disease Commission: reducing the global burden by 2030. Lancet. 2021;397:2385–2438. doi: 10.1016/S0140-6736(21)00684-X. PubMed DOI
McDonagh TA, Metra M, Adamo M, Gardner S, Baumbach A, Böhm M, Burri H, et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2021;42:3599–3726. doi: 10.1093/eurheartj/ehab368. PubMed DOI
Regitz-Zagrosek V, Kararigas G. Mechanistic Pathways of Sex Differences in Cardiovascular Disease. Physiol Rev. 2017;97:1–37. doi: 10.1152/physrev.00021.2015. PubMed DOI
Reue K, Wiese CB. Illuminating the Mechanisms Underlying Sex Differences in Cardiovascular Disease. Circ Res. 2022;130:1747–1762. doi: 10.1161/CIRCRESAHA.122.320259. PubMed DOI PMC
Frigerio M. Left Ventricular Assist Device: Indication, Timing, and Management. Heart Fail Clin. 2021;17:619–634. doi: 10.1016/j.hfc.2021.05.007. PubMed DOI
Varshney AS, DeFilippis EM, Cowger JA, Netuka I, Pinney SP, Givertz M. Trends and Outcomes of Left Ventricular Assist Device Therapy: JACC Focus Seminar. J Am Coll Cardiol. 2022;79:1092–1107. doi: 10.1016/j.jacc.2022.01.017. PubMed DOI
Shah P, Yuzefpolskaya M, Hickey GW, Breathett K, Wever-Pinzon O, Ton V-K, Hiesinger W, et al. Twelfth Interagency Registry for Mechanically Assisted Circulatory Support Report: Readmissions After Left Ventricular Assist Device. Ann Thorac Surg. 2022;113:722–737. doi: 10.1016/j.athoracsur.2021.12.011. PubMed DOI PMC
Tseliou E, Lavine KJ, Wever-Pinzon O, Topkara VK, Meyns B, Adachi I, Zimpfer D, et al. Biology of myocardial recovery in advanced heart failure with long-term mechanical support. J Heart Lung Transplant. 2022;41:1309–1323. doi: 10.1016/j.healun.2022.07.007. PubMed DOI
Kanwar MK, Selzman CH, Ton V-K, Miera O, Cornwell WK, 3rd, Antaki J, Drakos S, Shah P. Clinical myocardial recovery in advanced heart failure with long-term left ventricular assist device support. J Heart Lung Transplant. 2022;41:1324–1334. doi: 10.1016/j.healun.2022.05.015. PubMed DOI PMC
Boulet J, Mehra MR. Left ventricular reverse remodeling in heart failure: remission to recovery. Structur Heart. 2021;5:466–481. doi: 10.1080/24748706.2021.1954275. DOI
Gruen J, Caraballo C, Miller PE, McCullough M, Mezzacappa C, Ravindra N, Mullan CW, et al. Sex Differences in Patients Receiving Left Ventricular Assist Devices for End-Stage Heart Failure. JACC Heart Fail. 2020;8:770–779. doi: 10.1016/j.jchf.2020.04.015. PubMed DOI
Wever-Pinzon O, Drakos SG, McKellar SH, Horne BD, Caine WT, Kfoury AG, Li DY, et al. Cardiac Recovery During Long-Term Left Ventricular Assist Device Support. J Am Coll Cardiol. 2016;68:1540–1553. doi: 10.1016/j.jacc.2016.07.743. PubMed DOI
Shah P, Psotka M, Taleb I, Alharethi R, Shams MA, Wever-Pinzon O, Yin M, et al. Framework to Classify Reverse Cardiac Remodeling With Mechanical Circulatory Support: The Utah-Inova Stages. Circ Heart Fail. 2021;14:e007991. doi: 10.1161/CIRCHEARTFAILURE.120.007991. PubMed DOI PMC
Burkhoff D, Topkara VK, Sayer G, Uriel N. Reverse Remodeling With Left Ventricular Assist Devices. Circ Res. 2021;128:1594–1612. doi: 10.1161/CIRCRESAHA.121.318160. PubMed DOI PMC
Diakos NA, Selzman CH, Sachse FB, Stehlik J, Kfoury AG, Wever-Pinzon O, Catino A, et al. Myocardial atrophy and chronic mechanical unloading of the failing human heart: implications for cardiac assist device-induced myocardial recovery. J Am Coll Cardiol. 2014;64:1602–1612. doi: 10.1016/j.jacc.2014.05.073. PubMed DOI
Pokorný M, Cervenka L, Netuka I, Pirk J, Koňařík M, Malý J. Ventricular assist devices in heart failure: how to support the heart but prevent atrophy? Physiol Res. 2014;63:147–156. doi: 10.33549/physiolres.932617. PubMed DOI
Heckle MR, Flatt DM, Sun Y, Mancarella S, Marion TN, Gerling IC, Weber KT. Atrophied cardiomyocytes and their potential for rescue and recovery of ventricular function. Heart Fail Rev. 2016;21:191–198. doi: 10.1007/s10741-016-9535-x. PubMed DOI
Brinks H, Tevaearai H, Mühlfeld C, Bertschi D, Gahl B, Carrel T, Giraud M-N. The contractile function is preserved in unloaded hearts despite atrophic remodeling. J Thorac Cardiovasc Surg. 2009;137:742–746. doi: 10.1016/j.jtcvs.2008.09.020. PubMed DOI
Brinks H, Giraud MN, Segiser A, Ferrié C, Longnus S, Ullrich ND, Koch WJ, et al. Dynamic patterns of ventricular remodeling and apoptosis in hearts unloaded by heterotopic transplantation. J Heart Lung Transplant. 2014;33:203–210. doi: 10.1016/j.healun.2013.10.006. PubMed DOI PMC
Rakusan K, Heron MI, Kolar F, Korecky B. Transplantation-induced atrophy of normal and hypertrophic rat hearts: effect on cardiac myocytes and capillaries. J Mol Cell Cardiol. 1997;29:1045–1054. doi: 10.1006/jmcc.1996.0350. PubMed DOI
Soloff LA. Atrophy of myocardium and its myocytes by left ventricular assist device. Circulation. 1999;100:1012. doi: 10.1161/circ.100.9.1011/-b. PubMed DOI
Tsuneyoshi H, Oriyanhan W, Kanemitsu H, Shiina R, Nishina T, Matsuoka S, Ikeda T, Komeda M. Does the beta2-agonist clenbuterol help to maintain the myocardial potential to recover during mechanical unloading? Circulation. 2005;112(Suppl):I51–I56. doi: 10.1161/CIRCULATIONAHA.104.525097. PubMed DOI
Birks EJ, Tansley PD, Hardy J, George RS, Bowles CT, Burke M, Banner NR, et al. Left ventricular assist device and drug therapy for the reversal of heart failure. N Engl J Med. 2006;355:1873–1884. doi: 10.1056/NEJMoa053063. PubMed DOI
Navaratnarajah M, Siedlecka U, Ibrahim M, van Doorn C, Soppa G, Gandhi A, Shah A, et al. Impact of combined clenbuterol and metoprolol therapy on reverse remodeling during mechanical unloading. PLoS One. 2014;9:e92909. doi: 10.1371/journal.pone.0092909. PubMed DOI PMC
Didié M, Biermann D, Buchert R, Hess A, Wittköpper K, Christalla P, Döker S, et al. Preservation of left ventricular function and morphology in volume-loaded versus volume-unloaded heterotopic heart transplants. Am J Physiol Heart Circ Physiol. 2013;305:H533–H541. doi: 10.1152/ajpheart.00218.2013. PubMed DOI
Liu Y, Maureira P, Gauchotte G, Falanga A, Marie V, Olivier A, Groubatch F, et al. Effect of chronic left ventricular unloading on myocardial remodeling: Multimodal assessment of two heterotopic heart transplantation techniques. J Heart Lung Transplant. 2015;34:594–603. doi: 10.1016/j.healun.2014.11.015. PubMed DOI
Oriyanhan W, Tsuneyoshi H, Nishina T, Matsuoka S, Ikeda T, Komeda M. Determination of optimal duration of mechanical unloading for failing hearts to achieve bridge to recovery in a rat heterotopic heart transplantation model. J Heart Lung Transplant. 2007;26:16–23. doi: 10.1016/j.healun.2006.10.016. PubMed DOI
Muranaka H, Marui A, Tsukashita M, Wang J, Nakano J, Ikeda T, Sakata R. Prolonged mechanical unloading preserves myocardial contractility but impairs relaxation in rat heart of dilated cardiomyopathy accompanied by myocardial stiffness and apoptosis. J Thorac Cardiovasc Surg. 2010;140:916–922. doi: 10.1016/j.jtcvs.2010.02.006. PubMed DOI
Fu X, Segiser A, Carrel TP, Tevaearai HT, Most H. Rat heterotopic heart transplantation model to investigate unloading-induced myocardial remodeling. Front Cardiovasc Med. 2016;3:34. doi: 10.3389/fcvm.2016.00034. PubMed DOI PMC
Benke K, Sayour AA, Mátyás C, Ágg B, Németh BT, Oláh A, Ruppert M, et al. Heterotopic Abdominal Rat Heart Transplantation as a Model to Investigate Volume Dependency of Myocardial Remodeling. Transplantation. 2017;101:498–505. doi: 10.1097/TP.0000000000001585. PubMed DOI
Pokorný M, Mrázová I, Malý J, Pirk J, Netuka I, Vaňourková Z, Doleželová Š, et al. Effects of increased myocardial tissue concentration of myristic, palmitic and palmitoleic acids on the course of cardiac atrophy of the failing heart unloaded by heterotopic transplantation. Physiol Res. 2018;67:13–30. doi: 10.33549/physiolres.933637. PubMed DOI
Pokorný M, Mrázová I, Kubátová H, Piťha J, Malý J, Pirk J, Maxová H, et al. Intraventricular placement of a spring expander does not attenuate cardiac atrophy of the healthy heart induced by unloading via heterotopic heart transplantation. Physiol Res. 2019;68:567–580. doi: 10.33549/physiolres.933936. PubMed DOI
Pokorný M, Mrázová I, Šochman J, Melenovský V, Malý J, Pirk J, Červenková L, et al. Isovolumic loading of the failing heart by intra-ventricular placement of a spring expander attenuates cardiac atrophy after heterotopic heart transplantation. Biosci Rep. 2018;38:BSR20180371. doi: 10.1042/BSR20180371. PubMed DOI PMC
Ono K, Lindsey ES. Improved technique of heart transplantation in rats. J Thorac Cardiovasc Surg. 1969;57:225–229. doi: 10.1016/S0022-5223(19)42744-X. PubMed DOI
Vaněčková I, Husková Z, Vaňourková Z, Cervenka L. Castration has antihypertensive and organoprotective effects in male but not in female heterozygous Ren-2 rats. Kidney Blood Press Res. 2011;34:46–52. doi: 10.1159/000322618. PubMed DOI
Koblihová E, Mrázová I, Vaňourková Z, Maxová H, Ryska M, Froněk J. Sex-linked differences in the course of thioacetamide-induced acute liver failure in Lewis rats. Physiol Res. 2020;69:835–845. doi: 10.33549/physiolres.934499. PubMed DOI PMC
Kolár F, Papousek F, MacNaughton C, Pelouch V, Milerová M, Korecky B. Myocardial fibrosis and right ventricular function of heterotopically transplanted hearts in rats treated with cyclosporin. Mol Cell Biochem. 1996;163–164:253–260. doi: 10.1007/BF00408666. PubMed DOI
Benes J, Jr, Melenovsky V, Skaroupkova P, Pospisilova J, Petrak J, Cervenka L, Sedmera D. Myocardial morphological characteristics and proarrhythmic substrate in the rat model of heart failure due to chronic volume overload. Anat Rec (Hoboken) 2011;294:102–111. doi: 10.1002/ar.21280. PubMed DOI
Obayashi M, Yano M, Kohno M, Kobayashi S, Tanigawa T, Hironaka K, Ryouke T, Matsuzaki M. Dose-dependent effect of ANG II-receptor antagonist on myocyte remodeling in rat cardiac hypertrophy. Am J Physiol. 1997;273:H1824–H1831. doi: 10.1152/ajpheart.1997.273.4.H1824. PubMed DOI
Yin FC, Spurgeon HA, Rakusan K, Weisfeldt ML, Lakatta EG. Use of tibial length to quantify cardiac hypertrophy: application in the aging rat. Am J Physiol. 1982;243:H941–H947. doi: 10.1152/ajpheart.1982.243.6.H941. PubMed DOI
Vanourková Z, Kramer HJ, Husková Z, Vanecková I, Opocenský M, Certíková Chábová V, Tesar V, et al. AT1 receptor blockade is superior to conventional triple therapy in protecting against end-organ damage in Cyp1a1-Ren-2 transgenic rats with inducible hypertension. J Hypertens. 2006;24:2465–2472. doi: 10.1097/01.hjh.0000251909.00923.22. PubMed DOI
Kala P, Gawrys O, Miklovič M, Vaňourková Z, Škaroupková P, Jíchová Š, Sadowski J, et al. Endothelin type A receptor blockade attenuates aorto-caval fistula-induced heart failure in rats with angiotensin II-dependent hypertension. J Hypertens. 2023;41:99–114. doi: 10.1097/HJH.0000000000003307. PubMed DOI PMC
Wilder J. Basimetric approach (law of initial value) to biological rhythms. Ann N Y Acad Sci. 1962;98:1211–1220. doi: 10.1111/j.1749-6632.1962.tb30629.x. PubMed DOI
Kolár F, MacNaughton C, Papousek F, Korecky B. Systolic mechanical performance of heterotopically transplanted hearts in rats treated with cyclosporin. Cardiovasc Res. 1993;27:1244–1247. doi: 10.1093/cvr/27.7.1244. PubMed DOI
Schaefer A, Schneeberger Y, Schulz S, Krasemann S, Werner T, Piasecki A, Höppner G, et al. Analysis of fibrosis in control or pressure overloaded rat hearts after mechanical unloading by heterotopic heart transplantation. Sci Rep. 2019;9:5710. doi: 10.1038/s41598-019-42263-1. PubMed DOI PMC
Frangogiannis NG. Cardiac fibrosis. Cardiovasc Res. 2021;117:1450–1488. doi: 10.1093/cvr/cvaa324. PubMed DOI PMC
Ostadal B, Netuka I, Maly J, Besik J, Ostadalova I. Gender differences in cardiac ischemic injury and protection--experimental aspects. Exp Biol Med (Maywood) 2009;234:1011–1019. doi: 10.3181/0812-MR-362. PubMed DOI