Endothelin type A receptor blockade attenuates aorto-caval fistula-induced heart failure in rats with angiotensin II-dependent hypertension

. 2023 Jan 01 ; 41 (1) : 99-114. [epub] 20221007

Jazyk angličtina Země Nizozemsko Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36204993
Odkazy

PubMed 36204993
PubMed Central PMC9794157
DOI 10.1097/hjh.0000000000003307
PII: 00004872-202301000-00011
Knihovny.cz E-zdroje

OBJECTIVE: Evaluation of the effect of endothelin type A (ET A ) receptor blockade on the course of volume-overload heart failure in rats with angiotensin II-dependent hypertension. METHODS: Ren-2 renin transgenic rats (TGR) were used as a model of hypertension. Heart failure was induced by creating an aorto-caval fistula (ACF). Selective ET A receptor blockade was achieved by atrasentan. For comparison, other rat groups received trandolapril, an angiotensin-converting enzyme inhibitor (ACEi). Animals first underwent ACF creation and 2 weeks later the treatment with atrasentan or trandolapril, alone or combined, was applied; the follow-up period was 20 weeks. RESULTS: Eighteen days after creating ACF, untreated TGR began to die, and none was alive by day 79. Both atrasentan and trandolapril treatment improved the survival rate, ultimately to 56% (18 of 31 animals) and 69% (22 of 32 animals), respectively. Combined ACEi and ET A receptor blockade improved the final survival rate to 52% (17 of 33 animals). The effects of the three treatment regimens on the survival rate did not significantly differ. All three treatment regimens suppressed the development of cardiac hypertrophy and lung congestion, decreased left ventricle (LV) end-diastolic volume and LV end-diastolic pressure, and improved LV systolic contractility in ACF TGR as compared with their untreated counterparts. CONCLUSION: The treatment with ET A receptor antagonist delays the onset of decompensation of volume-overload heart failure and improves the survival rate in hypertensive TGR with ACF-induced heart failure. However, the addition of ET A receptor blockade did not enhance the beneficial effects beyond those obtained with standard treatment with ACEi alone.

Zobrazit více v PubMed

Bulluck H, Yellon DM, Hausenloy DJ. Reducing myocardial infarct size: challenges and future opportunities. Heart 2016; 102:341–348. PubMed PMC

Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JG, Coats AJ, et al. . Authors/Task Force Members. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J 2016; 37:2129–2200. PubMed

Savarese G, Becher PM, Lund LH, Seferovic P, Rosano GMC, Coats A. Global burden of heart failure: A comprehensive and updated review of epidemiology. Cardiovasc Res 2022. cvac013.doi: 10.1093/cvr/cvac013. PubMed

Kassi M, Hannawi B, Trachtenberg B. Recent advances in heart failure. Curr Opin Cardiol 2018; 33:249–256. PubMed

Rangawwami J, Bhalla V, Blair JEA, Chang TI, Costa S, Lentine KL, et al. . American Heart Association Council on the Kidney in Cardiovascular Disease and Council on Clinical Cardiology. Circulation 2019; 139:e840–e878. PubMed

McDonagh TS, Metra M, Adamo A, Gardner RS, Baumbach A, Bohm M, et al. . 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 2021; 42:3599–3726. PubMed

Murphy SP, Ibrahim NE, Januzzi J, Jr. Heart failure with reduced ejection fraction. JAMA 2020; 324:488–504. PubMed

The CONSENSUS Trial Study Group. Effects of enalapril on mortality in severe congestive heart failure. Results of the Cooperative North Scandinavian Enalapril Survival Study (CONSENSUS). N Engl J Med 1987; 316:1429–1435. PubMed

Yusuf S, Pitt B, Davis CE, Hood WB, Jr, Cohn JN. SOLVD Investigators. Effect of enalapril on mortality and the development of heart failure in asymptomatic patients with reduced left ventricular ejection fractions. N Engl J Med 1992; 327:658–691. PubMed

Messerli FH, Rimoldi SF, Bangalore S. The transition from hypertension to heart failure. JACC Heart Failure 2017; 8:543–551. PubMed

Pfeffer MA. Heart failure and hypertension: importance of prevention. Med Clin North Am 2017; 101:19–28. PubMed

Pinho-Gomes AC, Azevedo L, Bidel Z, Nazarzadeh M, Canoy D, Copland E, et al. . Effects of blood pressure-lowering drugs in heart failure: a systemic review and meta-analysis of randomized controlled trials. J Hypertens 2019; 37:1757–1767. PubMed

Ryan TD, Rothstein EC, Aban I, Tallaj JA, Hussain A, Lucchesi PA, et al. . Left ventricular eccentric remodellin and matrix loss are mediated by bradykinin and precede cardiomyocyte elongation in rats with volume overload. J Am Coll Cardiol 2007; 49:811–821. PubMed

Plante E, Lachance D, Beaudoin J, Champetier S, Roussel E, Arsenault M, et al. . Comparative study of vasodilators in an animal mode of chronic volume overload caused by severe aortic regurgitation. Circ Heart Fail 2009; 2:25–32. PubMed

Červenka L, Melenovský V, Husková Z, Škaroupková P, Nishiyama A, Sadowski J. Inhibition of soluble epoxide hydrolase counteracts the development of renal dysfunction and progression of congestive heart failure in Ren-2 transgenic hypertensive rats with aorto-caval fistula. Clin Exp Pharmacol Physiol 2015; 42:795–807. PubMed

Ciccarelli M, Dawson D, Falcao-Pires I, Giacca M, Hamdani N, Heymans S, et al. . Reciprocal organ interactions during heart failure: a position paper from the ESC Working Group on Myocardial Function. Cardiovas Res 2021; 117:2416–2433. PubMed PMC

Packer M. How should physicians view heart failure? The philosophical and physiological evolution of three conceptual models of the disease. Am J Cardiol 1993; 71:3C–11C. PubMed

Dube P, Weber KT. Congestive heart failure: pathophysiologic consequences of neurohormonal activation and the potential for recovery: Part I. Am J Med Sci 2011; 342:348–351. PubMed

Mann DL, Felker GM. Mechanisms and models in heart failure. A Transl Approach Circ Res 2021; 128:1435–1450. PubMed PMC

Yanagisawa M, Kurihara H, Kimura S, Tomobe Y, Kobayashi M, Mitsui Y, et al. . A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 1988; 332:411–415. PubMed

Davenport AP, Hyndman KA, Dhaun N, Southan C, Kohan DE, Pollkock JS, et al. . Endothelin. Pharmacol Rev 2016; 68:357–418. PubMed PMC

Dhaun NJ, Webb DJ. Endothelins in cardiovascular biology and therapeutics. Nat Review Cardiol 2019; 16:491–502. PubMed

Barton M, Yanagisawa M. Endothelin: 30 years from discovery to therapy. Hypertension 2019; 74:1232–1265. PubMed

Miyauchi T, Sakai S. Endothelin and the heart in health and diseases. Peptides 2019; 111:77–88. PubMed

Eroglu E, Kocyigit I, Linholm B. The endothelin system as target for therapeutic interventions in cardiovascular and renal disease. Clin Chimi Acta 2020; 506:92–106. PubMed

Kobayashi T, Miyauchi T, Sakai S, Kobayashi M, Yamaguchi I, Goto K, et al. . Expression of endothelin-1, ETA and ETB receptors, and ECE and distribution of endothelin-1 in failing heart. Am J Physiol 1999; 276:H1197–H1206. PubMed

Motte S, van Beneden R, Mottet J, Rondelet B, Mathieu M, Havaux X, et al. . Early activation of cardia and renal endothelin systems in experimental heart failure. Am J Physiol 2003; 285:H2482–H2491. PubMed

Sakai S, Miyauchi T, Kobayashi M, Yamaguchi I, Goto K, Sugishita Y. Inhibition of myocardial endothelin pathway improves long-term survival in heart failure. Nature 1996; 384:353–355. PubMed

Pfeffer MA, Pfeffer JM, Steinberg C, Finn P. Survival after an experimental myocardial infarction: beneficial effects of long-term therapy with captopril. Circulation 1985; 2:406–412. PubMed

Mulder P, Boujedainin H, Richard V, Henry JP, Renet S, Munter K, et al. . Long-term survival and hemodynamics after endothelin-A receptor antagonism and angiotensin-converting enzyme inhibition in rats with chronic heart failure. Monotherapy versus combination therapy. Circulation 2002; 106:1159–1164. PubMed

Lee DS, Nguyen QT, Lapointe N, Austin F, Ohlsson A, Tu JV, et al. . Meta-analysis of the effects of endothelin receptor blockade on survival in experimental heart failure. J Card Fail 2003; 9:368–374. PubMed

Xia QG, Reinecke A, Dorenkamp M, Daemen MJ, Simon R, Unger T. Effects of endothelin ETA receptor blocker LU 135252 on cardiac remodeling and survival in a hypertensive rat model of chronic heart failure. Acta Pharmacol Sin 2006; 27:1417–1422. PubMed

Luscher TF, Enseleit F, Pacher R, Mitrovic V, Schulze MR, Willenbrock R, et al. . Hemodynamic and neurohormonal effects of selective endothelin A (ETA) receptor blockade in chronic heart failure. The heart failure ETA receptor blockade trial (HEAT). Circulation 2002; 106:2666–2672. PubMed

Anand I, McMurray J, Cohn JN, Konstam MA, Notter T, Quitzaou K, et al. . Long-term effects of darusentan on left-ventricular remodeling and clinical outcomes in EndothelinA Receptor Antagonist Trial in Heart Failure (EARTH): randomized, double-blind, placebo-controlled trial. Lancet 2004; 364:347–354. PubMed

Mann JFE, Green D, Jamerson K, Ruilope LM, Kuranoff SJ, Littke T, et al. . Avosentan for over diabetic nephropathy. J Am Soc Nephrol 2010; 21:527–535. PubMed PMC

Packer M, McMurray JJV, Krum H, Kiowski W, Massie BM, Caspi A, et al. . Long-term effect on endothelin receptor antagonism with bosentan on the morbidity and mortality of patients with severe chronic heart failure. Primary results of the ENABLE trials. J Am Col Cardiol HF 2017; 5:317–326. PubMed

Gottlieb SS, Theory fact. Revisiting association and causation. J Am Col Cardiol HF 2017; 5:327–328. PubMed

Čertíková Chábová V, Vernerová Z, Kujal P, Husková Z, Škaroupková P, Tesař V, et al. . Addition of ETA receptor blockade increases renoprotection provided by renin–angiotensin system blockade in 5/6 nephrectomized Ren-2 transgenic rats. Life Sci 2014; 118:297–305. PubMed

Sedláková L, Čertíková Chábová V, Doleželová Š, Škaroupková P, Kopkan L, Husková Z, et al. . Renin-angiotensin system blockade alone or combined with ETA receptor blockade: effects on the course of chronic kidney disease in 5/6 nephrectomized Ren-2 transgenic hypertensive rats. Clin Exp Hypertens 2017; 39:183–195. PubMed

Vaněčková I, Hojná S, Vernerová Z, Kadlecová M, Rauchová H, Kompanowska-Jezierska E, et al. . Renoprotection provided by additional diuretic treatment in partially nephrectomized Ren-2 transgenic rats subjected to the combined RAS and ETA blockade. Front Physiol 2019; 10:1145. PubMed PMC

Heerspinkg HJ, Parving HH, Andress DL, Bakris G, Correa-Rotter R, Hou FF, et al. . Atresantan and renal events in patients with type 2 diabetes and chronic kidney disease (SONAR): a double-blind, randomized, placebo-controlled trial. Lancet 2019; 393:1937–1947. PubMed

Brower GL, Levick SP, Janicki JS. Differential effects of prevention and reversal treatment with Lisinopril on left ventricular remodeling in a rat model of heart failure. Heart Lung Circ 2015; 24:919–924. PubMed PMC

Oliver-Dussault C, Ascah A, Marcil M, Matas J, Picard S, Pibarot P, et al. . Early predictors of cardiac decompensation in experimental volume overload. Mol Cell Biochem 2010; 338:271–281. PubMed

Abassi Z, Goltsmna I, Karram T, Winaver J, Horrman A. Aortocaval fistula in rat: a unique model of volume-overload congestive heart failure and cardiac hypertrophy. J Biomed Biotechnol 2011; 2011:729497. PubMed PMC

Honetschlagerová Z, Gawrys O, Jíchová Š, Škaroupková P, Kikerlová S, Vaňourková Z, et al. . Renal sympathetic denervation attenuates congestive heart failure in angiotensin II-dependent hypertension: studies with Ren-2 transgenic hypertensive rats with aorto-caval fistula. Kidney Blood Press Res 2021; 46:95–113. PubMed

Honetschlagerová Z, Škaroupková P, Kikerlová S, Husková Z, Maxová H, Melenovský V, et al. . Effects of renal sympathetic denervation on the course of congestive heart failure combined with chronic kidney disease: insight from studies with fawn-hooded hypertensive rats with volume overload induced using aorto-caval fistula. Clin Exp Hypertens 2021; 43:522–535. PubMed

Kala P, Miklovič M, Jíchová Š, Škaroupková P, Vaňourková Z, Maxová H, et al. . Effects of Epoxyeicosatrienoic acid-enhancing therapy on the course of congestive heart failure in angiotensin II-dependent rat hypertension: from mRNA analysis towards functional in vivo evaluation. Biomedicines 2021; 9:1053. PubMed PMC

Houser SR, Margulies KB, Murphy AM, Spinale FG, Francis GS, Prabhu SD. Animal models of heart failure: a scientific statement from the American Heart Association. Circ Res 2012; 111:131–150. PubMed

Riehle C, Bauersachs J. Small animals models of heart failure. Cardiovasc Res 2019; 115:1838–1849. PubMed PMC

Mullins JJ, Peters J, Ganten D. Fulminant hypertension in transgenic rats harboring the mouse Ren-2 gene. Nature 1990; 344:541–544. PubMed

Husková Z, Kramer HJ, Vaňourková Z, Červenka L. Effects of changes in sodium balance on plasma and kidney angiotensin II levels in anesthetized and conscious Ren-2 transgenic rats. J Hypertens 2006; 24:517–522. PubMed

Sobieraj P, Nisson PM, Kahan T. Heart failure events in a clinical trial on arterial hypertension: new insights into the SPRINT trial. Hypertension 2021; 78:1241–1247. PubMed

Aimo A, Vergaro G, Passion C, Clerico A. Evaluation of pathophysiological relationship between renin-angiotensin systems in cardiovascular disorders: from theory to routine clinical practice in patients with heart failure. Crit Rev Clin Lab Sci 2021; 1:1–16. PubMed

Antoine S, Vaidya G, Imam H, Villarreal D. Pathophysiologic mechanisms in heart failure: role of the sympathetic nervous system. Am J Med Sci 2017; 353:27–30. PubMed

Floras JS. The 2021 Carl Ludwig Lecture. Unsympathetic autonomic regulation in heart failure: patients-inspired insights. Am J Physiol 2021; 321:R338–R351. PubMed

Grassi G, Mancia G, Esler M. Central and peripheral sympathetic activation in heart failure. Cardiovas Res 2022; 8:1857–1871. PubMed

Cohen J. Cohen J. Some issue in power analysis. Statistical power analysis for behavioral sciences 2nd ed.Oxford, UK: Routledge; 2013. 531–542.

Wang X, Ren B, Liu S, Sentex E, Tappia PS, Dhalla NS. Characterization of cardiac hypertrophy and heart failure due to volume overload in the rat. J Appl Physiol 2003; 94:752–763. PubMed

Kratky V, Vanourkova Z, Sykora M, Szeiffova Bacova B, Hruskova Z, Kikerlova S, et al. . AT1 receptor blocker, but not an ACE inhibitor, prevents kidneys from hypoperfusion during congestive heart failure in normotensive and hypertensive rats. Sci Rep 2021; 11:4271. PubMed PMC

Pacher P, Nagayama T, Mukhopadhyay P, Bátkai S, Kass DA. Measurement of cardiac function using pressure–volume conductance catheter technique in mice and rats. Nat Protoc 2008; 3:1422–1434. PubMed PMC

Kala P, Bartušková H, Pit’ha J, Vaňourková Z, Kikerlová S, Jíchová Š, et al. . Deleterious effects of hyperactivity of the renin-angiotensin system and hypertension on the course of chemotherapy-induced heart failure after doxorubicin administration: a study in Ren-2 transgenic rats. Int J Mol Sci 2020; 21:9337. PubMed PMC

Havlenova T, Skaroupkova P, Miklovic M, Behounek M, Chmel M, Jarkovaska D, et al. . Right versus left ventricular remodeling in heart failure due to chronic volume overload. Sci Rep 2021; 11:17136. PubMed PMC

Opočenský M, Kramer HJ, Bäcker A, Vernerová Z, Eis V, Červenka L, et al. . Late-onset endothelin-A receptor blockade reduces podocyte injury in homozygous Ren-2 rats despite severe hypertension. Hypertension 2006; 48:965–971. PubMed

Husková Z, Kopkan L, Červenková L, Doleželová Š, Vaňourková Z, Škaroupková P, et al. . Intrarenal alterations of the angiotensin-converting type 2/angiotensin 1-7 complex of the renin-angiotensin system do not alter the course of malignant hypertension in Cyp1a1-Ren-2 transgenic rats. Clin Exp Pharmacol Physiol 2016; 43:438–449. PubMed

Kohno M, Horio T, Ikeda M, Yokowa K, Fukui T, Yasunari K, et al. . Angiotensin II stimulates endothelin-1 secretion in cultured rat mesangial cells. Kidney Int 1992; 42:860–866. PubMed

Barton M, Shaw S, d’Uscio LV, Moreau P, Luscher T. Angiotensin II increases vascular and renal endothelin-1 and functional endothelin-converting enzyme activity in vivo: role of ETA receptors of endothelin regulation. Biochem Biophys Res Commun 1997; 238:861–865. PubMed

Kawaguchi H, Sawa H, Yasuda H. Effects of endothelin on angiotensin converting enzyme activity in cultured pulmonary artery endothelial cells. J Hypertens 1991; 9:171–174. PubMed

Stehouwer CDA, Smulders YM. Microalbuminuria and risk for cardiovascular disease: analysis of potential mechanisms. J Am Soc Nephrol 2006; 17:2106–2111. PubMed

Currie G, Delles C. Proteinuria and its relation to cardiovascular disease. Int J Nephrol Renovas Dis 2014; 7:13–24. PubMed PMC

Liang W, Liu Q, Wang Q-y, Yu H, Yu J. Albuminuria and dipstick proteinuria for predicting mortality in heart failure: a systematic review and meta-analyses. Front Cardiovas Med 2021; 8:665831. PubMed PMC

Rossi GP, Sacchetto A, Cesari M, Pessina AC. Interactions between endothelin-1 and the renin–angiotensin–aldosterone system. Cardiovasc Res 1999; 43:300–307. PubMed

Komers R, Plotkin H. Dual inhibition of renin-angiotensin-aldosterone system and endothelin-1 in treatment of chronic kidney disease. Am J Physiol 2016; 310:R877–R884. PubMed PMC

Emori T, Hirata Y, Ohta K, Kanno K, Eguchi S, Imai T, et al. . Cellular mechanisms of endothelin-1 release by angiotensin and vasopressin. Hypertension 1991; 18:165–170. PubMed

Ho KKL, Pinsky JL, Kannel WB, Levy D. The epidemiology of heart failure: the Framingham study. J Am Coll Cardiol 1993; 22: (Supplement A): 6A–13A. PubMed

Pilz PM, Ward JE, Chang WT, Kiss A, Bateh E, Jha A, et al. . Large and small animal models of heart failure with reduced ejection fraction. Circ Res 2022; 130:1888–1905. PubMed

Vacková Š, Kikerlová S, Melenovský V, Kolář F, Imig JD, Kompanowska-Jezierska E, et al. . Altered renal vascular responsiveness to vasoactive agents in rats with angiotensin II-dependent hypertension and congestive heart failure. Kidney Blood Press Res 2019; 44:792–809. PubMed PMC

Santos RAS, Sampaion WO, Alzamora AC, Motta-Santos D, Alenina N, Bader M, et al. . The ACE2/angiotensin-(1-7)/Mas axis of the renin–angiotensin system: focus on the angiotensin-(1-7). Physiol Rev 2018; 98:505–553. PubMed PMC

Bürgelová M, Kramer HJ, Teplan V, Thumová M, Červenka L. Effects of angiotensin-(1-7) blockade on renal function in rats with enhanced intrarenal ANG II activity. Kidney Int 2005; 67:1453–1461. PubMed

Wang K, Basu R, Poglitsch M, Bakal JA, Stat P, Oudit GY. Elevated angiotensin 1-7/angiotensin II ratio predicts favorable outcomes in patients with heart failure. Circ Heart Fail 2020; 13:e006939. PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Altered Balance between Vasoconstrictor and Vasodilator Systems in Experimental Hypertension

. 2024 Dec 31 ; 73 (6) : 901-928.

Effects of renal denervation on the course of cardiorenal syndrome: insight from studies with fawn-hooded hypertensive rats

. 2024 Dec 31 ; 73 (S3) : S737-S754.

Characterization of a new model of chemotherapy-induced heart failure with reduced ejection fraction and nephrotic syndrome in Ren-2 transgenic rats

. 2024 Nov ; 47 (11) : 3126-3146. [epub] 20240909

Sex-Linked Differences in Cardiac Atrophy After Mechanical Unloading Induced by Heterotopic Heart Transplantation

. 2024 Mar 11 ; 73 (1) : 9-25.

The treatment with sGC stimulator improves survival of hypertensive rats in response to volume-overload induced by aorto-caval fistula

. 2023 Dec ; 396 (12) : 3757-3773. [epub] 20230620

The treatment with trandolapril and losartan attenuates pressure and volume overload alternations of cardiac connexin-43 and extracellular matrix in Ren-2 transgenic rats

. 2023 Nov 27 ; 13 (1) : 20923. [epub] 20231127

Impaired renal autoregulation and pressure-natriuresis: any role in the development of heart failure in normotensive and angiotensin II-dependent hypertensive rats?

. 2023 Oct ; 46 (10) : 2340-2355. [epub] 20230817

Inappropriate activation of the renin-angiotensin system improves cardiac tolerance to ischemia/reperfusion injury in rats with late angiotensin II-dependent hypertension

. 2023 ; 14 () : 1151308. [epub] 20230614

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...