Altered Renal Vascular Responsiveness to Vasoactive Agents in Rats with Angiotensin II-Dependent Hypertension and Congestive Heart Failure

. 2019 ; 44 (4) : 792-809. [epub] 20190820

Jazyk angličtina Země Švýcarsko Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31430751

Grantová podpora
R01 DK103616 NIDDK NIH HHS - United States

OBJECTIVE: We evaluated the hypothesis that the development of renal dysfunction and congestive heart failure (CHF) caused by volume overload in rats with angiotensin II (ANG II)-dependent hypertension is associated with altered renal vascular responsiveness to ANG II and to epoxyeicosatrienoic acids (EETs). METHODS: Ren-2 transgenic rats (TGRs) were used as a model of ANG II-dependent hypertension. CHF was induced by volume overload achieved by the creation of the aorto-caval fistula (ACF). Renal blood flow (RBF) responses were determined to renal arterial administration of ANG II, native 11,12-EET, an analog of 14,15-EETs (EET-A), norepinephrine (NE), acetylcholine (Ach) and bradykinin (Bk) in healthy (i.e., sham-operated) TGR and ACF TGR (5 weeks after ACF creation). RESULTS: Selective intrarenal administration of neither vasoactive drug altered mean arterial pressure in any group. Administration of ANG II caused greater decreases in RBF in ACF TGR than in sham-operated TGR, whereas after administration of NE the respective decreases were comparable in the 2 groups. Administration of Ach and Bk elicited significantly higher RBF increases in ACF TGR as compared with sham-operated TGR. In contrast, administration of 11,12-EET and EET-A caused significantly smaller RBF increases in ACF TGR than in sham-operated TGR. CONCLUSION: The findings show that 5 weeks after creation of ACF, the TGR exhibit exaggerated renal vasoconstrictor responses to ANG II and reduced renal vasodilatory responses to EETs, suggesting that both these alterations might play an important role in the development of renal dysfunction in this model of CHF.

Zobrazit více v PubMed

Maggioni AP. Epidemiology of heart failure in Europe. Heart Fail Clin. 2015. Oct;11(4):625–35. PubMed

Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JG, Coats AJ, et al.; ESC Scientific Document Group. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC)Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2016. Jul;37(27):2129–200. PubMed

Stewart S, MacIntyre K, Hole DJ, Capewell S, McMurray JJ. More ‘malignant’ than cancer? Five-year survival following a first admission for heart failure. Eur J Heart Fail. 2001. Jun;3(3):315–22. PubMed

Ronco C, Haapio M, House AA, Anavekar N, Bellomo R. Cardiorenal syndrome. J Am Coll Cardiol. 2008. Nov;52(19):1527–39. PubMed

Braunwald E The war against heart failure: the Lancet lecture. Lancet. 2015. Feb;385(9970):812–24. PubMed

Beldhuis IE, Streng KW, Ter Maaten JM, Voors AA, van der Meer P, Rossignol P, et al. Renin-angiotensin system inhibition, worsening renal function, and outcome in heart failure patients with reduced and preserved ejection fraction. Circ Heart Fail. 2017. Feb;10(2):e003588. PubMed

Di Nicolò P The dark side of the kidney in cardio-renal syndrome: renal venous hypertension and congestive kidney failure. Heart Fail Rev. 2018. Mar;23(2):291–302. PubMed

Kassi M, Hannawi B, Trachtenberg B. Recent advances in heart failure. Curr Opin Cardiol. 2018. Mar;33(2):249–56. PubMed

Braam B, Joles JA, Danishwar AH, Gaillard CA. Cardiorenal syndrome—current understanding and future perspectives. Nat Rev Nephrol. 2014. Jan;10(1):48–55. PubMed

Re RN. A reassessment of the pathophysiology of progressive cardiorenal disorders. Med Clin North Am. 2017. Jan;101(1):103–15. PubMed

Mann JF, Böhm M. Dual renin-angiotensin system blockade and outcome benefits in hypertension: a narrative review. Curr Opin Cardiol. 2015. Jul;30(4):373–7. PubMed

Mullens W, Verbrugge FH, Nijst P, Tang WH. Renal sodium avidity in heart failure: from pathophysiology to treatment strategies. Eur Heart J. 2017. Jun;38(24):1872–82. PubMed

Heywood JT, Fonarow GC, Costanzo MR, Mathur VS, Wigneswaran JR, Wynne J; ADHERE Scientific Advisory Committee and Investigators. High prevalence of renal dysfunction and its impact on outcome in 118,465 patients hospitalized with acute decompensated heart failure: a report from the ADHERE database. J Card Fail. 2007. Aug;13(6):422–30. PubMed

Barger AC, Muldowney FP, Liebowitz MR. Role of the kidney in the pathogenesis of congestive heart failure. Circulation. 1959. Aug;20(2):273–85. PubMed

Packer M, Lee WH, Kessler PD. Preservation of glomerular filtration rate in human heart failure by activation of the renin-angiotensin system. Circulation. 1986. Oct;74(4):766–74. PubMed

Packer M, McMurray JJ. Importance of endogenous compensatory vasoactive peptides in broadening the effects of inhibitors of the renin-angiotensin system for the treatment of heart failure. Lancet. 2017. May;389(10081):1831–40. PubMed

Navar LG. Renal autoregulation: perspectives from whole kidney and single nephron studies. Am J Physiol. 1978. May;234(5):F357–70. PubMed

Carlström M, Wilcox CS, Arendshorst WJ. Renal autoregulation in health and disease. Physiol Rev. 2015. Apr;95(2):405–511. PubMed PMC

Pfeffer MA, Pfeffer JM, Steinberg C, Finn P. Survival after an experimental myocardial infarction: beneficial effects of long-term therapy with captopril. Circulation. 1985. Aug;72(2):406–12. PubMed

Dube P, Weber KT, Weber KT. Congestive heart failure: pathophysiologic consequences of neurohormonal activation and the potential for recovery: part I. Am J Med Sci. 2011. Nov;342(5):348–51. PubMed

Packer M The neurohormonal hypothesis: a theory to explain the mechanism of disease progression in heart failure. J Am Coll Cardiol. 1992. Jul;20(1):248–54. PubMed

Patel VB, Zhong JC, Grant MB, Oudit GY. Role of the ACE2/angiotensin 1–7 axis of the renin-angiotensin system in heart failure. Circ Res. 2016. Apr;118(8):1313–26. PubMed PMC

Rossi F, Mascolo A, Mollace V. The pathophysiological role of natriuretic peptide-RAAS cross talk in heart failure. Int J Cardiol. 2017. Jan;226:121–5. PubMed

Orsborne C, Chaggar PS, Shaw SM, Williams SG. The renin-angiotensin-aldosterone system in heart failure for the non-specialist: the past, the present and the future. Postgrad Med J. 2017. Jan;93(1095):29–37. PubMed

Ichikawa I, Pfeffer JM, Pfeffer MA, Hostetter TH, Brenner BM. Role of angiotensin II in the altered renal function of congestive heart failure. Circ Res. 1984. Nov;55(5):669–75. PubMed

Hostetter TH, Pfeffer JM, Pfeffer MA, Dworkin LD, Braunwald E, Brenner BM. Cardiorenal hemodynamics and sodium excretion in rats with myocardial infarction. Am J Physiol. 1983. Jul;245(1):H98–103. PubMed

Stanton RC, Brenner BM. Role of the kidney in congestive heart failure. Acta Med Scand Suppl. 1986;707 S707:21–5. PubMed

Antoine S, Vaidya G, Imam H, Villarreal D. Pathophysiologic mechanisms in heart failure: role of the sympathetic nervous system. Am J Med Sci. 2017. Jan;353(1):27–30. PubMed

Polhemus DJ, Trivedi RK, Gao J, Li Z, Scarborough AL, Goodchild TT, et al. Renal sympathetic denervation protects the failing heart via inhibition of neprilysin activity in the kidney. J Am Coll Cardiol. 2017. Oct;70(17):2139–53. PubMed

Jönsson S, Agic MB, Narfström F, Melville JM, Hultström M. Renal neurohormonal regulation in heart failure decompensation. Am J Physiol Regul Integr Comp Physiol. 2014. Sep;307(5):R493–7. PubMed

Abassi Z, Goltsman I, Karram T, Winaver J, Hoffman A. Aortocaval fistula in rat: a unique model of volume-overload congestive heart failure and cardiac hypertrophy. J Biomed Biotechnol. 2011;2011:729497. PubMed PMC

Duggan DJ, Tabrizchi R. Angiotensin II control of regional haemodynamics in rats with aortocaval fistula. Exp Physiol. 2016. Sep;101(9):1192–205. PubMed

Szczepanska-Sadowska E, Czarzasta K, Cudnoch-Jedrzejewska A. Dysregulation of the renin-angiotensin system and the vasopressinergic system interactions in cardiovascular disorders. Curr Hypertens Rep. 2018. Mar;20(3):19. PubMed PMC

Kratky V, Kopkan L, Kikerlova S, Huskova Z, Taborsky M, Sadowski J, et al. The role of renal vascular reactivity in the development of renal dysfunction in compensated and decompensated congestive heart failure. Kidney Blood Press Res. 2018;43(6):1730–41. PubMed

Mullins JJ, Peters J, Ganten D. Fulminant hypertension in transgenic rats harbouring the mouse Ren-2 gene. Nature. 1990. Apr;344(6266):541–4. PubMed

Husková Z, Kramer HJ, Vanourková Z, Červenka L. Effects of changes in sodium balance on plasma and kidney angiotensin II levels in anesthetized and conscious Ren-2 transgenic rats. J Hypertens. 2006. Mar;24(3):517–27. PubMed

Červenka L, Melenovský V, Husková Z, Škaroupková P, Nishiyama A, Sadowski J. Inhibition of soluble epoxide hydrolase counteracts the development of renal dysfunction and progression of congestive heart failure in Ren-2 transgenic hypertensive rats with aorto-caval fistula. Clin Exp Pharmacol Physiol. 2015. Jul;42(7):795–807. PubMed

Červenka L, Melenovský V, Husková Z, Sporková A, Bürgelová M, Škaroupková P, et al. Inhibition of soluble epoxide hydrolase does not improve the course of congestive heart failure and the development of renal dysfunction in rats with volume overload induced by aorto-caval fistula. Physiol Res. 2015;64(6):857–73. PubMed PMC

Garcia R, Diebold S. Simple, rapid, and effective method of producing aortocaval shunts in the rat. Cardiovasc Res. 1990. May;24(5):430–2. PubMed

Červenka L, Škaroupková P, Kompanowska-Jezierska E, Sadowski J. Sex-linked differences in the course of chronic kidney disease and congestive heart failure: a study in 5/6 nephrectomized Ren-2 transgenic hypertensive rats with volume overload induced using aorto-caval fistula. Clin Exp Pharmacol Physiol. 2016. Oct;43(10):883–95. PubMed

Melenovsky V, Skaroupkova P, Benes J, Torresova V, Kopkan L, Cervenka L. The course of heart failure development and mortality in rats with volume overload due to aorto-caval fistula. Kidney Blood Press Res. 2012;35(3):167–73. PubMed

Cohen-Segev R, Francis B, Abu-Saleh N, Awad H, Lazarovich A, Kabala A, et al. Cardiac and renal distribution of ACE and ACE-2 in rats with heart failure. Acta Histochem. 2014. Oct;116(8):1342–9. PubMed

Oliver-Dussault C, Ascah A, Marcil M, Matas J, Picard S, Pibarot P, et al. Early predictors of cardiac decompensation in experimental volume overload. Mol Cell Biochem. 2010. May;338(1–2):271–82. PubMed

Hutchinson KR, Guggilam A, Cismowski MJ, Galantowicz ML, West TA, Stewart JA Jr, et al. Temporal pattern of left ventricular structural and functional remodeling following reversal of volume overload heart failure. J Appl Physiol (1985). 2011. Dec;111(6):1778–88. PubMed PMC

Sporková A, Husková Z, Škaroupková P, Rami Reddy N, Falck JR, Sadowski J, et al. Vasodilatory responses of renal interlobular arteries to epoxyeicosatrienoic acids analog are not enhanced in Ren-2 transgenic hypertensive rats: evidence against a role of direct vascular effects of epoxyeicosatrienoic acids in progression of experimental heart failure. Physiol Res. 2017. Mar;66(1):29–39. PubMed

Červenka L, Husková Z, Kopkan L, Kikerlová S, Sedláková L, Vaňourková Z, et al. Two pharmacological epoxyeicosatrienoic acid-enhancing therapies are effectively antihypertensive and reduce the severity of ischemic arrhythmias in rats with angiotensin II-dependent hypertension. J Hypertens. 2018. Jun;36(6):1326–41. PubMed PMC

Chatziantoniou C, Daniels FH, Arendshorst WJ. Exaggerated renal vascular reactivity to angiotensin and thromboxane in young genetically hypertensive rats. Am J Physiol. 1990. Aug;259(2 Pt 2):F372–82. PubMed

Jacinto SM, Mullins JJ, Mitchell KD. Enhanced renal vascular responsiveness to angiotensin II in hypertensive ren-2 transgenic rats. Am J Physiol. 1999. Feb;276(2):F315–22. PubMed

Kopkan L, Kramer HJ, Husková Z, Vanourková Z, Skaroupková P, Thurmová M, et al. The role of intrarenal angiotensin II in the development of hypertension in Ren-2 transgenic rats. J Hypertens. 2005. Aug;23(8):1531–9. PubMed

Fox J, Guan S, Hymel AA, Navar LG. Dietary Na and ACE inhibition effects on renal tissue angiotensin I and II and ACE activity in rats. Am J Physiol. 1992. May;262(5 Pt 2):F902–9. PubMed

Husková Z, Kramer HJ, Thumová M, Vanourková Z, Bürgelová M, Teplan V, et al. Effects of anesthesia on plasma and kidney ANG II levels in normotensive and ANG II-dependent hypertensive rats. Kidney Blood Press Res. 2006;29(2):74–83. PubMed

Husková Z, Kopkan L, Červenková L, Doleželová Š, Vaňourková Z, Škaroupková P, et al. Intrarenal alterations of the angiotensin-converting enzyme type 2/angiotensin 1–7 complex of the renin-angiotensin system do not alter the course of malignant hypertension in Cyp1a1-Ren-2 transgenic rats. Clin Exp Pharmacol Physiol. 2016. Apr;43(4):438–49. PubMed

Mitchell KD, Jacinto SM, Mullins JJ. Proximal tubular fluid, kidney, and plasma levels of angiotensin II in hypertensive ren-2 transgenic rats. Am J Physiol. 1997. Aug;273(2 Pt 2):F246–53. PubMed

Čertíková Chábová V, Kujal P, Škaroupková P, Varňourková Z, Vacková Š, Husková Z, et al. Combined inhibition of soluble epoxide hydrolase and renin-angiotensin system exhibits superior renoprotection to renin-angiotensin system blockade in 5/6 nephrectomized Ren-2 transgenic hypertensive rats with established chronic kidney disease. Kidney Blood Press Res. 2018;43(2):329–49. PubMed PMC

Peters J, Ganten D. Adrenal renin expression and its role in ren-2 transgenic rats TGR(mREN2)27. Horm Metab Res. 1998. Jun-Jul;30(6–7):350–4. PubMed

Lee MA, Böhm M, Paul M, Bader M, Ganten U, Ganten D. Physiological characterization of the hypertensive transgenic rat TGR(mREN2)27. Am J Physiol. 1996. Jun;270(6 Pt 1):E919–29. PubMed

Zicha J, Dobešová Z, Behuliak M, Pintérová M, Kuneš J, Vaněčková I. Nifedipine-sensitive blood pressure component in hypertensive models characterized by high activity of either sympathetic nervous system or renin-angiotensin system. Physiol Res. 2014;63(1):13–26. PubMed

Zicha J, Hojná S, Kopkan L, Červenka L, Vaněčková I. The absence of sympathoexcitation during the development of hypertension in Cyp1a1 Ren-2 transgenic rats. Physiol Res. 2019. Apr;68(2):329–34. PubMed

Santos RA, Sampaio WO, Alzamora AC, Motta-Santos D, Alenina N, Bader M, et al. The ACE2/angiotensin-(1–7)/MAS axis of the renin-angiotensin system: focus on angiotensin-(1–7). Physiol Rev. 2018. Jan;98(1):505–53. PubMed PMC

Goldsmith SR, Sobotka PA, Bart BA. The sympathorenal axis in hypertension and heart failure. J Card Fail. 2010. May;16(5):369–73. PubMed

Brower GL, Henegar JR, Janicki JS. Temporal evaluation of left ventricular remodeling and function in rats with chronic volume overload. Am J Physiol. 1996. Nov;271(5 Pt 2):H2071–8. PubMed

Melenovsky V, Benes J, Skaroupkova P, Sedmera D, Strnad H, Kolar M, et al. Metabolic characterization of volume overload heart failure due to aorto-caval fistula in rats. Mol Cell Biochem. 2011. Aug;354(1–2):83–96. PubMed

Brower GL, Levick SP, Janicki JS. Differential effects of prevention and reversal treatment with Lisinopril on left ventricular remodeling in a rat model of heart failure. Heart Lung Circ. 2015. Sep;24(9):919–24. PubMed PMC

Abassi ZA, Gurbanov K, Mulroney SE, Potlog C, Opgenorth TJ, Hoffman A, et al. Impaired nitric oxide-mediated renal vasodilation in rats with experimental heart failure: role of angiotensin II. Circulation. 1997. Nov;96(10):3655–64. PubMed

Abassi Z, Gurbanov K, Rubinstein I, Better OS, Hoffman A, Winaver J. Regulation of intrarenal blood flow in experimental heart failure: role of endothelin and nitric oxide. Am J Physiol. 1998. Apr;274(4):F766–74. PubMed

Kubo SH, Rector TS, Bank AJ, Williams RE, Heifetz SM. Endothelium-dependent vasodilation is attenuated in patients with heart failure. Circulation. 1991. Oct;84(4):1589–96. PubMed

Katz SD, Schwarz M, Yuen J, LeJemtel TH. Impaired acetylcholine-mediated vasodilation in patients with congestive heart failure. Role of endothelium-derived vasodilating and vasoconstricting factors. Circulation. 1993. Jul;88(1):55–61. PubMed

Katz SD, Hryniewicz K, Hriljac I, Balidemaj K, Dimayuga C, Hudaihed A, et al. Vascular endothelial dysfunction and mortality risk in patients with chronic heart failure. Circulation. 2005. Jan;111(3):310–4. PubMed

Johns EJ, Kopp UC, DiBona GF. Neural control of renal function. Compr Physiol. 2011. Apr;1(2):731–67. PubMed

Cervenka L, Wang CT, Navar LG. Effects of acute AT1 receptor blockade by candesartan on arterial pressure and renal function in rats. Am J Physiol. 1998. May;274(5):F940–5. PubMed

Majid DS, Navar LG. Nitric oxide in the control of renal hemodynamics and excretory function. Am J Hypertens. 2001. Jun;14(6 Pt 2):74S–82S. PubMed

Forrester SJ, Booz GW, Sigmund CD, Coffman TM, Kawai T, Rizzo V, et al. Angiotensin II signaling transduction: an update on mechanisms of physiology and pathophysiology. Physiol Rev. 2018. Jul;98(3):1627–738. PubMed PMC

Harrison-Bernard LM, Zhuo J, Kobori H, Ohishi M, Navar LG. Intrarenal AT1 receptor and ACE binding in ANG II-induced hypertensive rats. Am J Physiol. 2002;281:F19–25. PubMed PMC

Zhuo J, Ohishi M, Mendelsohn FA. Roles of AT1 and AT2 receptors in the hypertensive Ren-2 gene transgenic rat kidney. Hypertension. 1999. Jan;33(1 Pt 2):347–53. PubMed

Imig JD. Epoxyeicosatrienoic acids and 20-hydroxyeicosatetraenoic acid on endothelial and vascular function. Adv Pharmacol. 2016;77:105–41. PubMed PMC

Miyauchi T, Sakai S. Endothelin and the heart in health and diseases. Peptides. 2019. Jan;111:77–88. PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Transgenic rat with ubiquitous expression of angiotensin-(1-7)-producing fusion protein: a new tool to study the role of protective arm of the renin-angiotensin system in the pathophysiology of cardio-renal diseases

. 2025 Jan ; 48 (1) : 336-352. [epub] 20241113

Renal sympathetic denervation improves pressure-natriuresis relationship in cardiorenal syndrome: insight from studies with Ren-2 transgenic hypertensive rats with volume overload induced using aorto-caval fistula

. 2024 Apr ; 47 (4) : 998-1016. [epub] 20240202

Impaired renal autoregulation and pressure-natriuresis: any role in the development of heart failure in normotensive and angiotensin II-dependent hypertensive rats?

. 2023 Oct ; 46 (10) : 2340-2355. [epub] 20230817

Anti-Fibrotic Potential of Angiotensin (1-7) in Hemodynamically Overloaded Rat Heart

. 2023 Feb 09 ; 24 (4) : . [epub] 20230209

Endothelin type A receptor blockade attenuates aorto-caval fistula-induced heart failure in rats with angiotensin II-dependent hypertension

. 2023 Jan 01 ; 41 (1) : 99-114. [epub] 20221007

Effects of Renal Denervation on the Enhanced Renal Vascular Responsiveness to Angiotensin II in High-Output Heart Failure: Angiotensin II Receptor Binding Assessment and Functional Studies in Ren-2 Transgenic Hypertensive Rats

. 2021 Nov 30 ; 9 (12) : . [epub] 20211130

Effects of Epoxyeicosatrienoic Acid-Enhancing Therapy on the Course of Congestive Heart Failure in Angiotensin II-Dependent Rat Hypertension: From mRNA Analysis towards Functional In Vivo Evaluation

. 2021 Aug 20 ; 9 (8) : . [epub] 20210820

Deleterious Effects of Hyperactivity of the Renin-Angiotensin System and Hypertension on the Course of Chemotherapy-Induced Heart Failure after Doxorubicin Administration: A Study in Ren-2 Transgenic Rat

. 2020 Dec 08 ; 21 (24) : . [epub] 20201208

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...