Combined Inhibition of Soluble Epoxide Hydrolase and Renin-Angiotensin System Exhibits Superior Renoprotection to Renin-Angiotensin System Blockade in 5/6 Nephrectomized Ren-2 Transgenic Hypertensive Rats with Established Chronic Kidney Disease
Jazyk angličtina Země Švýcarsko Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
P42 ES004699
NIEHS NIH HHS - United States
R01 DK103616
NIDDK NIH HHS - United States
R01 ES002710
NIEHS NIH HHS - United States
PubMed
29529602
PubMed Central
PMC5985203
DOI
10.1159/000487902
PII: 000487902
Knihovny.cz E-zdroje
- Klíčová slova
- 5/6 nephrectomy, Chronic kidney disease, Epoxyeicosatrienoic acids, Hypertension, Renin-angiotensin system, Soluble epoxide hydrolase,
- MeSH
- albuminurie farmakoterapie MeSH
- chronická renální insuficience farmakoterapie mortalita patofyziologie chirurgie MeSH
- epoxid hydrolasy antagonisté a inhibitory MeSH
- hypertenze MeSH
- inhibitory ACE terapeutické užití MeSH
- kombinovaná farmakoterapie MeSH
- krysa rodu Rattus MeSH
- míra přežití MeSH
- nefrektomie MeSH
- potkani transgenní MeSH
- renin-angiotensin systém účinky léků MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- epoxid hydrolasy MeSH
- inhibitory ACE MeSH
BACKGROUND/AIMS: We found recently that increasing renal epoxyeicosatrienoic acids (EETs) levels by blocking soluble epoxide hydrolase (sEH), an enzyme responsible for EETs degradation, shows renoprotective actions and retards the progression of chronic kidney disease (CKD) in Ren-2 transgenic hypertensive rats (TGR) after 5/6 renal ablation (5/6 NX). This prompted us to examine if additional protection is provided when sEH inhibitor is added to the standard renin-angiotensin system (RAS) blockade, specifically in rats with established CKD. METHODS: For RAS blockade, an angiotensin-converting enzyme inhibitor along with an angiotensin II type receptor blocker was used. RAS blockade was compared to sEH inhibition added to the RAS blockade. Treatments were initiated 6 weeks after 5/6 NX in TGR and the follow-up period was 60 weeks. RESULTS: Combined RAS and sEH blockade exhibited additional positive impact on the rat survival rate, further reduced albuminuria, further reduced glomerular and tubulointerstitial injury, and attenuated the decline in creatinine clearance when compared to 5/6 NX TGR subjected to RAS blockade alone. These additional beneficial actions were associated with normalization of the intrarenal EETs deficient and a further reduction of urinary angiotensinogen excretion. CONCLUSION: This study provides evidence that addition of pharmacological inhibition of sEH to RAS blockade in 5/6 NX TGR enhances renoprotection and retards progression of CKD, notably, when applied at an advanced stage.
Department of Entomology and UCD Cancer Center University of California Davis California USA
Department of Nephrology 1st Faculty of Medicine Charles University Prague Czech Republic
Department of Pathology 3rd Faculty of Medicine Charles University Prague Czech Republic
Department of Pathophysiology 2nd Faculty of Medicine Charles University Prague Czech Republic
Department of Pharmacology and Toxicology Medical College of Wisconsin Milwaukee Wisconsin USA
Zobrazit více v PubMed
Brenner BM. Nephron adaptation to renal injury or ablation. Am J Physiol. 1985;249:F324–F337. PubMed
Zoja C, Abbate M, Remuzzi G. Progression of chronic kidney disease: insight from animal models. Curr Opin Nephrol Hypertens. 2006;15:250–257. PubMed
Webster AC, Nagler EV, Morton RL, Masson P. Chronic kidney disease. Lancet. 2017;389:1238–1252. PubMed
Breyer M, Sustak K. The next generation of therapeutic for chronic kidney disease. Nat Rev Drug Discov. 2016;15:568–588. PubMed PMC
Cortinovis M, Ruggenenti P, Remuzzi G. Progression, remission and regression of chronic renal diseases. Nephron. 2016;34:20–24. PubMed
Carlstrom M, Wilcox CS, Arendshorst WJ. Renal autoregulation in health and disease. Physiol Rev. 2015;95:405–511. PubMed PMC
Kobori H, Nangaku M, Navar LG, Nishiyama A. The intrarenal renin-angiotensin system: from physiology to the pathobiology of hypertension and kidney disease. Pharmacol Rev. 2007;59:251–287. PubMed
Turner JM, Bauer C, Abramowitz MK, Melamed ML, Hostetter TH. Treatment of chronic kidney disease. Kidney Int. 2012;81:351–362. PubMed
Fukuda A, Wickman LT, Venkatareddy MP, Sato Y, Chowdhury MA, Wang SQ, Shedden KA, Dysko RC, Wiggins JE, Wiggins RC. Angiotensin II-dependent persistent podocyte loss form destabilized glomeruli causes progression of end stage kidney disease. Kidney Int. 2012;81:40–55. PubMed PMC
Gilbert RE, Wu LL, Kelly DJ, Cox A, Wilkinson-Berka JL, Johnston CI, Cooper ME. Pathological expression of renin and angiotensin II in the renal tubule after subtotal nephrectomy: implications of the pathogenesis of tubulointerstitial fibrosis. Am J Pathol. 1999;155:429–440. PubMed PMC
Goncalves AR, Fujihara CK, Mattar AL, Malheiros DM, Noronha Ide L, de Nucci G, Zatz R. Renal expression of COX-2, ANG II, and AT1 receptor in remnant kidney: strong renoprotection by therapy with losartan and nonsteroidal anti-inflammatory. Am J Physiol. 2004;286:F945–F954. PubMed
Arias SC, Valente CP, Machado FG, Fanelli C, Origassa CS, de Brito T, Camara NO, Malheiros DM, Zatz R, Fujihara CK. Regression of albuminuria and hypertension and arrest of severe renal injury by a losartan-hydrochlorothiazide association in a model of very advanced nephropathy. PLos One. 2013;8:e56215. PubMed PMC
Arias SC, Souza RA, Malheiros DM, Fanelli C, Fujihara CK, Zatz R. An association of losartan-hydrochlothiazide, but not losartan-furosemide, completely arrests progressive injury in the remnant kidney. Am J Physiol. 2016;310:F135–F143. PubMed
Kujal P, Certikova Chabova V, Vernerova Z, Walkowska A, Kompanowska-Jezierska E, Sadowski J, Vanourkova Z, Huskova Z, Opocensky M, Skaroupkova P, Schejbalova S, Kramer HJ, Rakusan D, Maly J, Netuka I, Vaneckova I, Kopkan L, Cervenka L. Similar renoprotection after renin-angiotensin-dependent and -independent antihypertensive therapy in 5/6-nephrectomized Ren-2 transgenic rats: are there blood pressure-independent effects? Clin Exp Pharmacol Physiol. 2010;37:1159–1169. PubMed
Sedlakova L, Certikova Châbovâ V, Dolezelova S, Skaroupkova P, Kopkan L, Huskova Z, Cervenkova L, Kikerlova S, Vaneckova I, Sadowski J, Kompanovska-Jezierska E, Kujal P, Kramer HJ, Cervenka L. Renin-angiotensin system blockade alone or combined with ETA receptor blockade: effects on the course of chronic kidney disease in 5/6 nephrectomized Ren-2 transgenic hypertensive rats. Clin Exp Hypertens. 2017;39:183–195. PubMed
Rüster C, Wolf G. Renin-angiotensin-aldosterone system and progression of renal disease. J Am Soc Nephrol. 2006;17:2985–2991. PubMed
Certikova Chabova V, Vernerova Z, Kujal P, Huskova Z, Skaroupkova P, Tesar V, Kramer HJ, Kompanowska-Jezierska E, Walkowska A, Sadowski J, Cervenka L, Vaneckova I. Addition of ETA receptor blockade increases renoprotection provided by renin-angiotensin system blockade in 5/6 nephrectomized Ren-2 transgenic rats. Life Sci. 2014;118:297–305. PubMed
Vaneckova I, Kujal P, Huskova Z, Vanourkova Z, Vernerova Z, Certikova Chabova V, Skaroupkova P, Kramer HJ, Tesar V, Cervenka L. Effects of combined endothelin A receptor and renin-angiotensin system blockade on the course of end-organ damage in 5/6 nephrectomized Ren-2 hypertensive rats. Kidney Blood Press Res. 2012;35:382–392. PubMed
Zhou L, Mo H, Miao J, Zhou D, Tan RJ, Hou FF, Liu Y. Klotho ameliorates kidney injury and fibrosis and normalizes blood pressure by targeting the renin-angiotensin system. Am J Pathol. 2015;185:3211–3223. PubMed PMC
Fujihara CK, Velho M, Malheiros DM, Zatz R. An extremely high dose of losartan affords superior renoprotection in the remnant model. Kidney Int. 2005;67:1913–1924. PubMed
Ripley E. Complementary effects of angiotensin-converting enzyme inhibitors and angiotensin receptors blockers in slowing the progression of chronic kidney disease. Am Heart J. 2009;157:S7–S16. PubMed
Ptinopolou AG, Pikilidou MI, Lasaridis N. The effect of antihypertensive drugs on chronic kidney disease: a comprehensive review. Hypertens Res. 2013;36:91–101. PubMed
Kakinuma Y, Kawamura T, Bills T, Yoshioka T, Ichikawa I, Fogo A. Blood pressure-independent effect of angiotensin inhibition on vascular lesions of chronic renal failure. Kidney Int. 1992;42:46–55. PubMed
Berl T. Renal protection by inhibition of the renin-angiotensin-aldosterone system. J Renin Angiotensin Aldosterone Syst. 2009;10:1–8. PubMed
Adamczam M, Gross ML, Krtil J, Koch A, Tyralla K, Amann K, Ritz E. Reversal of glomerulosclerosis after highdose enalapril treatment in subtotally nephrectomized rats. J Am Soc Nephrol. 2003;14:2833–2842. PubMed
Remuzi A, Gagliardinin E, Sangalli F, Bonomelli M, Piccinelli M, Benigni A, Remuzii G. ACE inhibition reduces glomerulosclerosis and regenerates glomerular tissue in a model of progressive renal disease. Kidney Int. 2006;69:1124–1130. PubMed
Remuzzi A, Sangalli F, Macconi D, Tomason S, Cattaneo I, Rizzo P, Bonandrini B, Bresciani E, Longaretti L, Gagliardini E, Conti S, Benigni A, Remuzzi G. Regression of renal disease by angiotensin II antagonism is caused by regeneration of kidney vasculature. J Am Soc Nephrol. 2016;27:699–705. PubMed PMC
Bidani AK, Polichnowski AJ, Loutzenhiser R, Griffin KA. Renal microvascular dysfunction, hypertension and CKD progression. Curr Opin Nephrol Hypertens. 2013;22:1–9. PubMed PMC
Griffin KA, Abu-Amarah I, Picken MM, Bidani AK. Renoprotection by ACE inhibition or aldosterone blockade is blood pressure-dependent. Hypertension. 2003;41:201–206. PubMed
Griffin KA, Picken MM, Bidani AK. Blood pressure lability and glomerulosclerosis after normotensive 5/6 renal mass reduction in rat. Kidney Int. 2004;65:209–218. PubMed
Perico N, Amuchastegui SC, Colosio V, Sonzogni G, Bertani T, Remuzzi G. Evidence that an angiotensinconverting enzyme inhibitor has a different effect on glomerular injury according to the different phase of the disease at which the treatment is started. J Am Soc Nephrol. 1994;5:1139–1146. PubMed
Gordon J, Kopp JB. Off the beaten renin-angiotensin-aldoserone system pathway: new perspectives on antiproteinuric therapy. Adv Chron Kidney Dis. 2011;18:300–311. PubMed PMC
Certikova Chabova V, Cervenka L. The dilemma of dual renin-angiotensin system blockade in chronic kidney disease: why beneficial in animal experiments but not in the clinic? Physiol Res. 2017;66:181–192. PubMed
Huang H, Morisseau C, Wang JF, Yang T, Falck JR, Hammock BD, Wang MH. Increasing or stabilizing renal epoxyeicosatrienoic acid production attenuates abnormal renal function and hypertension in obese rats. Am J Physiol. 2007;293:F342–F349. PubMed
Lee CR, Imig JD, Edin ML, Foley J, DeGraff LM, Bradbury JA, Graves JP, Lih Fb, Clark J, Myers P, Perrow AL, Lepp AN, Kannon MA, Ronnekleiv OK, Alkayed NJ, Falck JR, Tomer KB, Zeldin DC. Endothelial expression of human cytochrome P450 epoxygenases lowers blood pressure and attenuates hypertension-induced renal injury in mice. FASEB J. 2010;24:3770–3781. PubMed PMC
Neckar J, Kopkan L, Huskova Z, Kolar F, Papousek F, Kramer HJ, Hwang SH, Hammck BD, Imig JD, Maly J, Netuka I, Ostadal B, Cervenka L. Inhibition of soluble epoxide hydrolase by cis-4-[4-(3-adamantan-I-ylureido) cyclohexyl-oxy]benzoic acid exhibits antihypertensive and cardioprotective actions in transgenic rats with angiotensin II-dependent hypertension. Clin Sci. 2012;122:513–525. PubMed PMC
Honetschlàgerova Z, Sporkova A, Kopkan L, Huskova Z, Hwang SH, Hammock BD, Imig JD, Kramer HJ, Kujal P, Certikova Chabova V, Tesar V, Cervenka L. Inhibition of soluble epoxide hydrolase improves the impaired pressure-natriuresis relationship and attenuates the development of hypertension and hypertension-associated end-organ damage in Cyp1a1-Ren-2 transgenic rats. J Hypertens. 2011;29:1590–1601. PubMed PMC
Imig JD. Epoxyeicosatrienoic acids, hypertension, and kidney injury. Hypertension. 2015;65:476–482. PubMed PMC
Fan F, Muoya Y, Roman RJ. Cytochrome P450 eicosanoids in hypertension and renal disease. Curr Opin Nephrol Hypertens. 2015;24:37–46. PubMed PMC
Elmarakby AA. Reno-protective mechanisms of epoxyeicosatrienoic acids in cardiovascular disease. Am J Physiol. 2012;302:R321–R330. PubMed
Shimamura T, Morrison AB. A progressive glomerulosclerosis occurring in partial five-sixths nephrectomized rats. Am J Pathol. 1975;79:95–106. PubMed PMC
Mullins JJ, Peters J, Ganten D. Fulminant hypertension in transgenic rats harbouring the mouse Ren-2 gene. Nature. 1990;344:541–544. PubMed
Kujal P, Certikova Chabova V, Skaroupkova P, Huskova Z, Vernerova Z, Kramer HJ, Walkowska A, Kompanowska- Jezierska E, Sadowski J, Kitada K, Nishiyama A, Hwang SH, Hammock BD, Imig JD, Cervenka L. Inhibition of soluble epoxide hydrolase is renoprotective in 5/6 nephrectomized Ren-2 transgenic rats. Clin Exp Pharmacol Physiol. 2014;41:227–237. PubMed PMC
Huskova Z, Kopkan L, Cervenkova L, Dolezelova S, Vanourkova Z, Skaroupkova P, Nishiyama A, Kompanowska- Jezierska E, Sadowski J, Kramer HJ, Cervenka L. Intrarenal alterations of the angiotensin-converting type 2/ angiotensin 1-7 complex of the renin-angiotensin system do not alter the course of malignant hypertension in Cyp1a1-Ren-2 transgenic rats. Clin Exp Pharmacol Physiol. 2016;43:438–449. PubMed
Kurtz TW, Griffin KA, Bidani AK, Davisson RL, Hall JE. Recommendations for blood pressure measurements in humans and experimental animals. Part 2: Blood pressure measurements in experimental animals. Hypertension. 2005;45:299–310. PubMed
Nakano Y, Hirano T, Uehara K, Nishibayashi S, Hattori K, Aihara M, Yamada Y. New rat model induced by anti-glomerular basement membrane antibody shows severe glomerular adhesion in early stage and quickly progress to end-stage renal failure. Pathol Int. 2008;58:361–370. PubMed
Huskova Z, Kramer HJ, Vanourkova Z, Cervenka L. Effects of changes in sodium balance on plasma and kidney angiotensin II levels in anesthetized and conscious Ren-2 trangenic rats. J Hypertens. 2006;24:517–522. PubMed
Rivera J, Ward N, Hodgson J, Hodgson J, Puddey IB, Falck JR, Croft KD. Measurement of 20-hydroxyeicosatetraenoic acid in human urine by gas chromatography-mass spectrometry. Clin Chem. 2004;50:224–226. PubMed
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. 2001;25:402–408. PubMed
Bas A, Forsberg G, Hammarstrom S, Hammarstrom ML. Utility of the housekeeping genes 18S rRNA, betaactin and glyceraldehyde-3-phosphate-dehydrogenase for normalization in real-time quantitative reverse transcriptase-polymerase chain reaction analysis of gene expression in human T lymphocytes. Scand J Immunol. 2004;59:566–573. PubMed
Jichova S, Dolezelova S, Kopkan L, Kompanowska-Jezierska E, Sadowski J, Cervenka L. Fenofibrate attenuates malignant hypertension by suppression of the renin-angiotensin system: a study in Cyp1a1-Ren-2 transgenic rats. Am J Med Sci. 2016;352:618–630. PubMed
Sporkova A, Certikova Chabova V, Dolezelova S, Jichova S, Kopkan L, Vanourkova Z, Kompanowska-Jezierska E, Sadowski J, Maxova H, Cervenka L. Fenofibrate attenuates hypertension in Goldblatt hypertensive rats: role of 20-hydroxyeicosatetraenoic acid in the nonclipped kidney. Am J Med Sci. 2017;353:568–579. PubMed
Zhao G, Tu L, Li X, Yang S, Chen C, Xu X, Wang P, Wang DW. Delivery of AAV2-CYP2J2 protects remnant kidney in the 5/6-nephrectomized rat via inhibition of apoptosis and fibrosis. Hum Gene Ther. 2012;23:688–699. PubMed
Jung O, Jansen F, Mieth A, Barbosa-Sicard E, Pliquett RU, Babelova A, Morisseau C, Hwang SH, Tsai C, Hammock BD, Schaefer L, Geisslinger G, Amann K, Brandes RP. Inhibition of the soluble epoxide hydrolase promotes albuminuria in mice with progressive renal disease. PloS One. 2010;5:e11979. PubMed PMC
Wolf G. Renal injury due to renin-angiotensin-aldosterone system activation of the transforming growth factor-β pathway. Kidney Int. 2006;70:1914–1919. PubMed
Wu LL, Cox A, Roe CJ, Dziadek M, Cooper ME, Gilbert RE. Transforming growth factor β1 and renal injury following subtotal nephrectomy in the rat: role of the renin-angiotensin system. Kidney Int. 1997;51:1553–1567. PubMed
Lv LL, Liu BC. Role of non-classical renin-angiotensin system axis in renal fibrosis. Front Physiol. 2015;6:117. PubMed PMC
Varcabova S, Huskova Z, Kramer HJ, Hwang SH, Hammock BD, Imig JD, Kitada K, Cervenka L. Antihypertensive action of soluble epoxide hydrolase inhibition in Ren-2 transgenic rats is mediated by suppression of the intrarenal renin-angiotensin system. Clin Exp Pharmacol Physiol. 2012;40:273–281. PubMed PMC
Jichova S, Kopkan L, Huskova Z, Dolezelova S, Neckar J, Kujal P, Vernerova Z, Kramer HJ, Sadowski J, Kompanowska-Jezierska E, Redy RN, Falck JR, Imig JD, Cervenka L. Epoxyeicosatrienoic acid analog attenuates the development of malignant hypertension, but does not reverse it once established: a study in Cyp1a1-Ren-2 transgenic rats. J Hypertens. 2016;34:2008–2025. PubMed PMC
Santos RA. Angiotensin-(1–7) Hypertension. 2014;63:1138–1147. PubMed
Kobori H, Nishiyama A, Harrison-Bernard LM, Navar LG. Urinary angiotensinogen as an indicator of intrarenal angiotensin status in hypertension. Hypertension. 2003;41:42–49. PubMed PMC
Kobori H, Urushihara M. Augmented intrarenal and urinary angiotensinogen in hypertension and chronic kidney disease. Pflugers Arch - Eur J Physiol. 2013;465:3–12. PubMed PMC
Cao Z, Bonnet F, Davis B, Allen TJ, Cooper ME. Additive and anti-albuminuric effects of angiotensin-converting enzyme inhibition and angiotensin receptor antagonist in diabetic spontaneously hypertensive rats. Clin Sci. 2001;100:591–599. PubMed
Azizi M, Ménard J. Combined blockade of the renin-angiotensin system with angiotensin-converting enzyme inhibitors and angiotensin II type 1 receptor antagonists. Circulation. 2004;109:2492–2499. PubMed
Kim J, Imig JD, Yang J, Hammock BD, Padanilam BJ. Inhibition of soluble epoxide hydrolase prevents renal interstitial fibrosis and inflammation. Am J Physiol. 2014;307:F971–F980. PubMed PMC
Xiao Y, Liu J, Peng Y, Huang L, Yang H, Zhang J, Tao L. GSTA3 attenuates renal interstitial fibrosis by inhibiting TGF-beta-induced tubular epithelial-mesenchymal transition and fibronectin expression. PLoS One. 2016;11:e0160855. PubMed PMC
Gewin L, Zent R, Pozzi A. Progression of chronic kidney disease: too much cellular talk causes damage. Kidney Int. 2017;91:52–560. PubMed PMC
Leaf IA, Duffield JS. What can target kidney fibrosis? Nephrol Dial Transplant. 2017;32:i89–i97. PubMed
Schnaper HW. The tubulointerstitial pathophysiology of progressive kidney disease. Adv Chronic Kidney Dis. 2017;24:107–116. PubMed PMC