Epoxyeicosatrienoic acid analog attenuates the development of malignant hypertension, but does not reverse it once established: a study in Cyp1a1-Ren-2 transgenic rats
Jazyk angličtina Země Nizozemsko Médium print
Typ dokumentu časopisecké články
Grantová podpora
P01 DK038226
NIDDK NIH HHS - United States
P01 HL034300
NHLBI NIH HHS - United States
R01 HL111392
NHLBI NIH HHS - United States
PubMed
27428043
PubMed Central
PMC5510029
DOI
10.1097/hjh.0000000000001029
Knihovny.cz E-zdroje
- MeSH
- albuminurie farmakoterapie MeSH
- angiotensin I metabolismus MeSH
- angiotensin II metabolismus MeSH
- časové faktory MeSH
- cytochrom P-450 CYP1A1 genetika MeSH
- hypertenze maligní chemicky indukované patofyziologie prevence a kontrola MeSH
- indoly MeSH
- krevní tlak účinky léků MeSH
- krysa rodu Rattus MeSH
- kyselina 8,11,14-eikosatrienová analogy a deriváty terapeutické užití MeSH
- ledviny metabolismus MeSH
- peptidové fragmenty metabolismus MeSH
- potkani transgenní MeSH
- renin-angiotensin systém účinky léků MeSH
- renin genetika MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- angiotensin I (1-7) MeSH Prohlížeč
- angiotensin I MeSH
- angiotensin II MeSH
- cytochrom P-450 CYP1A1 MeSH
- indole-3-carbinol MeSH Prohlížeč
- indoly MeSH
- kyselina 8,11,14-eikosatrienová MeSH
- peptidové fragmenty MeSH
- Ren2 protein, rat MeSH Prohlížeč
- renin MeSH
OBJECTIVE: We evaluated the therapeutic effectiveness of a new, orally active epoxyeicosatrienoic acid analog (EET-A) in rats with angiotensin II (ANG II)-dependent malignant hypertension. METHODS: Malignant hypertension was induced in Cyp1a1-Ren-2 transgenic rats by activation of the renin gene using indole-3-carbinol (I3C), a natural xenobiotic. EET-A treatment was started either simultaneously with I3C induction process (early treatment) or 10 days later during established hypertension (late treatment). Blood pressure (BP) (radiotelemetry), indices of renal and cardiac injury, and plasma and kidney levels of the components of the renin-angiotensin system (RAS) were determined. RESULTS: In I3C-induced hypertensive rats, early EET-A treatment attenuated BP increase (to 175 ± 3 versus 193 ± 4 mmHg, P < 0.05, on day 13), reduced albuminuria (15 ± 1 versus 28 ± 2 mg/24 h, P < 0.05), and cardiac hypertrophy as compared with untreated I3C-induced rats. This was associated with suppression of plasma and kidney ANG II levels (48 ± 6 versus 106 ± 9 and 122 ± 19 versus 346 ± 11 fmol ml or g, respectively, P < 0.05) and increases in plasma and kidney angiotensin (1-7) concentrations (84 ± 9 versus 37 ± 6 and 199 ± 12 versus 68 ± 9 fmol/ml or g, respectively, P < 0.05). Remarkably, late EET-A treatment did not lower BP or improve renal and cardiac injury; indices of RAS activity were not affected. CONCLUSION: The new, orally active EET-A attenuated the development of experimental ANG II-dependent malignant hypertension, likely via suppression of the hypertensiogenic axis and augmentation of the vasodilatory/natriuretic axis of RAS.
Zobrazit více v PubMed
Volhard F, Fahr T. Die Brightsche Nierenkrankeit: Klinik, Pathologie und Atlas. Berlin: Springer; 1914.
Byrom FB. The hypertensive vascular crisis. London: William Heinemann Medical Books Ltd; 1969.
Giese J. The renin–angiotensin system and the pathogenesis of vascular disease in malignant hypertension. Clin Sci Mol Med. 1976;51:19–21. PubMed
Kawazo N, Eto T, Abe I, Takishita S, Ueno M, Kobayashi K, et al. Pathophysiology in malignant hypertension: with special reference to the renin–angiotensin system. Clin Cardiol. 1987;10:513–518. PubMed
Laragh JH. Laragh’s lessons in pathophysiology and clinical pearls for treating hypertension. Am J Hypertens. 2001;14:186–194. PubMed
Van den Born BJ, Koopmans RP, van Montfrans GA. The renin–angiotensin system in malignant hypertension revisited: plasma renin activity, microangiopathic hemolysis, and renal failure in malignant hypertension. Am J Hypertens. 2007;20:900–906. PubMed
Guerin C, Gonthier R, Berthoux FC. Long-term prognosis in malignant or accelerated hypertension. Nephrol Dial Transplant. 1988;3:33–37. PubMed
Lane DA, Lip GYH, Beevers DG. Improving survival of malignant hypertension patients over 40 years. Am J Hypertens. 2009;22:1199–1204. PubMed
Shantsila A, Lane D, Beevers DG, Lip GYH. Lack of impact of pulse pressure on outcomes in patients with malignant phase hypertension: the West Birmingham Malignant Hypertension study. J Hypertens. 2012;30:974–979. PubMed
Mancia G, Fagard R, Narkiewicz K, Redán J, Zanchetti A, Böhm M, et al. 2013 Practice guidelines for the management of arterial hypertension of the European Society of Hypertension (ESH) and European Society of Cardiology (ESC): ESH/ESC Task Force for the Management of Arterial Hypertension. J Hypertens. 2013;31:1925–1938. PubMed
Laragh JH, Baer L, Brunner HR, Buhler FR, Sealey JE, Vaughan ED., Jr Renin, angiotensin and aldosterone system in pathogenesis and management of hypertensive vascular disease. Am J Med. 1972;52:633–652. PubMed
Laragh JH, Sealey JE, Atlas SA. The renin system for understanding human hypertension: evidence for blood pressure control by a bipolar vasoconstriction-volume mechanism. Prorenin as a determinant of renin secretion. Clin Exp Hypertens. 1982;4:2303–2337. PubMed
Laragh JH, Sealey JE. Renin system understanding for analysis and treatment of hypertensive patients: a means to quantify the vasoconstrictor elements, diagnose curable renal and adrenal causes, assess risk of cardiovascular morbidity, and find the best-fit drug regimen. In: Laragh JH, Brenner BM, editors. Hypertension: pathophysiology, diagnosis and management. New York, NY: Raven Press, Publishers; 1990. pp. 1813–1836.
Kincaid-Smith P. Malignant hypertension. J Hypertens. 1991;9:893–899. PubMed
Fleming S. Malignant hypertension – the role of the paracrine renin–angiotensin system. J Pathol. 2000;192:135–139. PubMed
Fleming I. The pharmacology of the cytochrome P450 epoxygenase/soluble epoxide hydrolase axis in the vasculature and cardiovascular disease. Pharmacol Rev. 2014;66:1106–1140. PubMed
Imig JD. Epoxyeicosatrienoic acids, hypertension, and kidney injury. Hypertension. 2015;65:476–482. PubMed PMC
Elmarakby AA. Reno-protective mechanisms of epoxyeicosatrienoic acids in cardiovascular disease. Am J Physiol. 2012;302:R321–R330. PubMed
Fan F, Muoya Y, Roman RJ. Cytochrome P450 eicosanoids in hypertension and renal disease. Curr Opin Nephrol Hypertens. 2015;24:37–46. PubMed PMC
Huang H, Morisseau C, Wang JF, Yang T, Falck JR, Hammock BD, Wang MH. Increasing or stabilizing renal epoxyeicosatrienoic acid production attenuates abnormal renal function and hypertension in obese rats. Am J Physiol. 2007;293:F342–F349. PubMed
Lee CR, Imig JD, Edin ML, Foley J, DeGraff LM, Bradbury JA, et al. Endothelial expression of human cytochrome P450 epoxygenases lowers blood pressure and attenuates hypertension-induced renal injury in mice. FASEB J. 2010;24:3770–3781. PubMed PMC
Sporková A, Kopkan L, Varcabová A, Husková Z, Hwang SH, Hammock BD, et al. Role of cytochrome P450 metabolites in the regulation of renal function and blood pressure in 2-kidney, 1-clip hypertensive rats. Am J Physiol. 2011;300:R1468–R1475. PubMed PMC
Neckář J, Kopkan L, Husková Z, Kolář F, Papoušek F, Kramer HJ, et al. Inhibition of soluble epoxide hydrolase by cis-4-[4-(3-adamantan-I-ylureido)cyclohexy-loxy]benzoic acid exhibits antihypertensive and cardioprotective actions in transgenic rats with angiotensin II-dependent hypertension. Clin Sci. 2012;122:513–525. PubMed PMC
Honetschlägerová Z, Husková Z, Vaňourková Z, Sporková A, Kramer HJ, Hwang SH, et al. Renal mechanisms contributing to the antihypertensive action of soluble epoxide hydrolase inhibition in Ren-2 transgenic rats with inducible hypertension. J Physiol. 2011;589:207–219. PubMed PMC
Varcabová Š, Husková Z, Kramer HJ, Hwang SH, Hammock BD, Imig JD, et al. Antihypertensive action of soluble epoxide hydrolase inhibition in Ren-2 transgenic rats is mediated by suppression of the intrarenal renin–angiotensin system. Clin Exp Pharmacol Physiol. 2013;40:273–281. PubMed PMC
Honetschlägerová Z, Sporková A, Kopkan L, Husková Z, Hwang SH, Hammock BD, et al. Inhibition of soluble epoxide hydrolase improves the impaired pressure-natriuresis relationship and attenuates the development of hypertension and hypertension-associated end-organ damage in Cyp1a1-Ren-2 transgenic rats. J Hypertens. 2011;29:1590–1601. PubMed PMC
Minuz P, Jiang H, Fava C, Turolo L, Tacconelli S, Ricci M, et al. Altered release of cytochrome P450 metabolites of arachidonic acid in renovascular disease. Hypertension. 2008;51:1379–1385. PubMed PMC
Catella F, Lawson JA, Fitzgerald DJ, FitzGerald GA. Endogenous biosynthesis of arachidonic acid epoxides in humans: increased formation in pregnancy-induced hypertension. Proc Natl Acad Sci U S A. 1990;87:5893–5897. PubMed PMC
Schuck RN, Theken KN, Edin ML, Caughey M, Bass A, Ellis K, et al. Cytochrome P450-derived eicosanoids and vascular dysfunction in coronary artery disease patients. Atherosclerosis. 2013;227:442–448. PubMed PMC
Bellien J, Iacob M, Remy-Jouet I, Lucas D, Monteil C, Gutierrez L, et al. Epoxyeicosatrienoic acids contribute with altered nitric oxide and endothelin-1 pathways to conduit artery endothelial dysfunction in essential hypertension. Circulation. 2012;125:1266–1275. PubMed
Bellien J, Joannides R. Epoxyeicosatrienoic acid pathway in human health and diseases. J Cardiovasc Pharmacol. 2013;61:188–196. PubMed
Falck JR, Kodela R, Manne R, Atcha R, Puli N, Dubasi N, et al. 14,15-Epoxyeicosa-5,8,11-trienoic acid (14,15-EET) surrogates containing epoxide bioisosteres: influence upon vascular relaxation and soluble epoxide hydrolase inhibition. J Med Chem. 2009;52:5069–5075. PubMed PMC
Imig JD, Elmarakby A, Nithipatikom K, Wei S, Capdevila JH, Tuniki RV, et al. Development of epoxyeiocastrienoic acids analogs with in vivo antihypertensive actions. Front Physiol. 2010;1:157. PubMed PMC
Hye Khan MA, Pavlov TS, Christain SV, Neckář J, Staruschenko A, Gauthier KM, et al. Epoxyeicosatrienoic acid analogue lowers blood pressure through vasodilatation and sodium channel inhibition. Clin Sci. 2014;127:463–474. PubMed PMC
Alánová P, Husková Z, Kopkan L, Sporková A, Jíchová Š, Neckář J, et al. Orally active epoxyeicosatrienoic acid analog does not exhibit anti-hypertensive and reno- or cardioprotective actions in two-kidney, one-clip Goldblatt hypertensive rats. Vascul Pharmacol. 2015;73:45–56. PubMed
Kantachuvesiri S, Fleming S, Peters J, Peters B, Brooker G, Lammie AG, et al. Controlled hypertension, a transgenic toggle switch reveals differential mechanisms underlying vascular disease. J Biol Chem. 2001;276:36727–36733. PubMed
Husková Z, Vaňourková Z, Erbanová M, Thumová M, Opočenský M, Mullins JJ, et al. Inappropriately high circulating and intrarenal angiotensin II levels during dietary salt loading exacerbate hypertension in Cyp1a1-Ren-2 transgenic rats. J Hypertens. 2010;28:495–509. PubMed
Honetschlägerová Z, Kitada K, Husková Z, Sporková A, Kopkan L, Bürgelová M, et al. Antihypertensive and renoprotective actions of soluble epoxide hydrolase inhibition in ANG II-dependent malignant hypertension are abolished by pretreatment with L-NAME. J Hypertens. 2013;31:321–332. PubMed PMC
Vaňourková Z, Kramer HJ, Husková Z, Vaněčková I, Opočenský M, Čertíková Chábová V, et al. AT1 receptor blockade is superior to conventional triple therapy in protecting against end-organ damage in Cyp1a1-Ren-2 transgenic rats with inducible hypertension. J Hypertens. 2006;24:2465–2472. PubMed
Erbanová M, Thumová M, Husková Z, Vaněčková I, Vaňourková Z, Mullins JJ, et al. Impairment of the autoregulation of renal hemodynamics and of the pressure-natriuresis relationship precedes the development of hypertension in Cyp1a1-Ren-2 transgenic rats. J Hypertens. 2009;27:575–586. PubMed
Sporková A, Jíchová Š, Husková Z, Kopkan L, Nishiyama A, Hwang SH, et al. Different mechanisms of acute versus long-term antihypertensive effects of soluble epoxide hydrolase inhibition: Studies in Cyp1a1-Ren-2 transgenic rats. Clin Exp Pharmacol Physiol. 2014;41:1003–1013. PubMed PMC
Mitchell KD, Bagatell SJ, Miller CS, Mouton CR, Seth DM, Mullins JJ. Genetic clamping of renin gene expression induces hypertension and elevation of intrarenal angiotensin II levels of graded severity in Cyp1a1-Ren2 transgenic rats. JRAAS. 2006;7:74–86. PubMed
Peters B, Grisk O, Becher B, Wanka H, Kuttler B, Ludemann J, et al. Dose-dependent titration of prorenin and blood pressure in Cyp1a1-Ren-2 transgenic rats: absence of prorenin-induced glomerulosclerosis. J Hypertens. 2008;26:102–109. PubMed
Kurtz TW, Griffin KA, Bidani AK, Davisson RL, Hall JE. Recommendations for blood pressure measurements in humans and experimental animals. Part 2: Blood pressure measurements in experimental animals. Hypertension. 2005;45:299–310. PubMed
Husková Z, Kramer HJ, Vaňourková Z, Červenka L. Effects of changes in sodium balance on plasma and kidney angiotensin II levels in anesthetized and conscious Ren-2 transgenic rats. J Hypertens. 2006;24:517–527. PubMed
Fox J, Guan S, Hymel AA, Navar LG. Dietary Na and ACE inhibition effects on renal tissue angiotensin I and II and ACE activity in rats. Am J Physiol. 1992;262:F902–F909. PubMed
Červenka L, Bíbová J, Husková Z, Vaňourková Z, Kramer HJ, Herget J, et al. Combined suppression of the intrarenal and circulating vasoconstrictor renin-ACE-ANG II axis and augmentation of the vasodilator ACE2-ANG 1-7-Mas axis attenuates the systemic hypertension in Ren-2 transgenic rats exposed to chronic hypoxia. Physiol Res. 2015;64:11–24. PubMed
Bürgelová M, Vaňourková Z, Thumová M, Dvořák P, Opočenský M, Kramer HJ, et al. Impairment of the angiotensin-converting enzyme 2-angiotensin-(1–7)-Mas axis contributes to the acceleration of two-kidney, one-clip Goldblatt hypertension. J Hypertens. 2009;27:1988–2000. PubMed
Hampl V, Herget J, Bíbová J, Baňasová A, Husková Z, Vaňourková Z, et al. Intrapulmonary activation of the angiotensin-converting enzyme type 2/angiotensin 1–7/G-protein-coupled mas receptor axis attenuates pulmonary hypertension in Ren-2 transgenic rats exposed to chronic hypoxia. Physiol Res. 2015;64:25–38. PubMed
Husková Z, Kopkan L, Červenková L, Doleželová Š, Vaňourková Z, Škaroupková P, et al. Intrarenal alterations of the angiotensin-converting enzyme type 2/angiotensin 1–7 complex of the renin–angiotensin system do not alter the course of malignant hypertension in Cyp1a1-Ren-2 transgenic rats. Clin Exp Pharmacol Physiol. 2016;43:438–449. PubMed
Wang CT, Chin SY, Navar LG. Impairment of pressure-natriuresis and renal autoregulation in ANG II-infused hypertensive rats. Am J Physiol. 2000;279:F319–F325. PubMed
Elased KM, Cunha TS, Marcondes FK, Morris M. Brain angiotensin-converting enzyme 2 in processing angiotensin II in mice. Exp Physiol. 2008;93:665–675. PubMed PMC
Madhun ZT, Goldthwait DA, McKay D, Hopfer U, Douglas JG. An epoxygenase metabolite of arachidonic acid mediates angiotensin II-induced rises in cytosolic calcium in rabbit proximal tubule epithelial cells. J Clin Invest. 1991;88:456–461. PubMed PMC
Sakairi Y, Jacobson HR, Noland DT, Capdevila JH, Falck JR, Breyer MD. 5,6-EET inhibits ion transport in collecting duct by stimulating endogenous prostaglandin synthesis. Am J Physiol. 1995;268:F931–F939. PubMed
Sigmon DH, Beierwaltes WH. Renal nitric oxide and angiotensin II interaction in renovascular hypertension. Hypertension. 1993;22:237–242. PubMed
Navar LG, Ichihara A, Chin SY, Imig JD. Nitric oxide–angiotensin II interactions in angiotensin II-dependent hypertension. Acta Physiol Scand. 2000;168:139–147. PubMed
Reckelhoff JF, Romero JC. Role of oxidative stress in angiotensin-induced hypertension. Am J Physiol. 2003;284:R893–R912. PubMed
Kawada N, Imai E, Karber A, Welch W, Wilcox CS. A mouse model of angiotensin II slow pressor response: role of oxidative stress. J Am Soc Nephrol. 2002;13:2860–2868. PubMed
Kopkan L, Husková Z, Vaňourková Z, Thumová M, Škaroupková P, Červenka L, Majid DSW. Superoxide and its interaction with nitric oxide modulates renal function in prehypertensive Ren-2 transgenic rats. J Hypertens. 2007;25:2257–2265. PubMed
Majid DSW, Kopkan L. Nitric oxide and superoxide interactions in the kidney and their implication in the development of salt-sensitive hypertension. Clin Exp Pharmacol Physiol. 2007;34:946–952. PubMed
Hercule HC, Schunck WH, Gross V, Seringer J, Leung FP, Weldon SM, et al. Interaction between P450 eicosanoids and nitric oxide in the control of arterial tone in mice. Arterioscler Thromb Vasc Biol. 2009;29:54–60. PubMed
Patterson ME, Mullins JJ, Mitchell KD. Renoprotective effects of neuronal NOS-derived nitric oxide and cyclooxygenase-2 metabolites in transgenic rats with inducible malignant hypertension. Am J Physiol. 2008;294:F205–F211. PubMed
Kobori H, Nangaku M, Navar LG, Nishiyama A. The intrarenal renin–angiotensin system: from physiology to the pathobiology of hypertension and kidney disease. Pharmacol Rev. 2007;59:251–287. PubMed
Gonzalez-Villalobos RA, Janjoulia T, Fletcher NK, Giani JF, Nguyen MTX, Riquier-Brison AD, et al. The absence of intrarenal ACE protects against hypertension. J Clin Invest. 2013;123:2011–2023. PubMed PMC
Ferrario CM, Santos RA, Brosnihan KB, Block CH, Schiavone MT, Khosla MC, et al. A hypothesis regarding the function of angiotensin peptides in the brain. Clin Exp Hypertens. 1988;10(Suppl 1):107–121. PubMed
Ferrario CM, Brosnihan KB, Diz DI, Jaiswal N, Khosla MC, Milsted A, et al. Angiotensin-(1–7): a new hormone of the angiotensin system. Hypertension. 1991;18(Suppl 5):126–133. PubMed
Ferrario CM. ACE2: more Ang-(1–7) or less Ang II? Curr Opin Nephrol Hypertens. 2011;20:1–6. PubMed PMC
Epoxyeicosanoids in hypertension