Epoxyeicosatrienoic acid analog EET-B attenuates post-myocardial infarction remodeling in spontaneously hypertensive rats
Jazyk angličtina Země Velká Británie, Anglie Médium electronic-print
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
R01 DK103616
NIDDK NIH HHS - United States
R01 HL111392
NHLBI NIH HHS - United States
R01 HL132908
NHLBI NIH HHS - United States
PubMed
30979784
PubMed Central
PMC6492034
DOI
10.1042/cs20180728
PII: CS20180728
Knihovny.cz E-zdroje
- Klíčová slova
- blood pressure, epoxyeicosatrienoic acid, heart failure, myocardial infarction, spontaneously hypertensive rat,
- MeSH
- hemoxygenasa-1 genetika metabolismus MeSH
- infarkt myokardu farmakoterapie genetika metabolismus patofyziologie MeSH
- krevní tlak MeSH
- krysa rodu Rattus MeSH
- kyseliny arachidonové aplikace a dávkování chemie MeSH
- lidé MeSH
- modely nemocí na zvířatech MeSH
- potkani inbrední SHR MeSH
- srdce patofyziologie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- hemoxygenasa-1 MeSH
- kyseliny arachidonové MeSH
Epoxyeicosatrienoic acids (EETs) and their synthetic analogs have cardiovascular protective effects. Here, we investigated the action of a novel EET analog EET-B on the progression of post-myocardial infarction (MI) heart failure in spontaneously hypertensive rats (SHR). Adult male SHR were divided into vehicle- and EET-B (10 mg/kg/day; p.o., 9 weeks)-treated groups. After 2 weeks of treatment, rats were subjected to 30-min left coronary artery occlusion or sham operation. Systolic blood pressure (SBP) and echocardiography (ECHO) measurements were performed at the beginning of study, 4 days before, and 7 weeks after MI. At the end of the study, tissue samples were collected for histological and biochemical analyses. We demonstrated that EET-B treatment did not affect blood pressure and cardiac parameters in SHR prior to MI. Fractional shortening (FS) was decreased to 18.4 ± 1.0% in vehicle-treated MI rats compared with corresponding sham (30.6 ± 1.0%) 7 weeks following MI induction. In infarcted SHR hearts, EET-B treatment improved FS (23.7 ± 0.7%), markedly increased heme oxygenase-1 (HO-1) immunopositivity in cardiomyocytes and reduced cardiac inflammation and fibrosis (by 13 and 19%, respectively). In conclusion, these findings suggest that EET analog EET-B has beneficial therapeutic actions to reduce cardiac remodeling in SHR subjected to MI.
Department of Biochemistry University of Texas Southwestern Medical Center Dallas TX U S A
Department of Pharmacology and Toxicology Medical College of Wisconsin Milwaukee WI U S A
Institute of Anatomy 1st Faculty of Medicine Charles University Prague Czech Republic
Zobrazit více v PubMed
Roger VL (2013) Epidemiology of heart failure. Circ. Res 113, 646–59 PubMed PMC
Imig JD (2012) Epoxides and soluble epoxide hydrolase in cardiovascular physiology. Physiol. Rev 92, 101–30 PubMed PMC
Oni-Orisan A, Alsaleh N, Lee CR and Seubert JM (2014) Epoxyeicosatrienoic acids and cardioprotection: the road to translation. J. Mol. Cell. Cardiol 74, 199–208 PubMed PMC
Batchu SN, Lee SB, Samokhvalov V, Chaudhary KR, El-Sikhry H, Weldon SM et al. (2012) Novel soluble epoxide hydrolase inhibitor protects mitochondrial function following stress. Can. J. Physiol. Pharmacol 90, 811–23 PubMed
Chaudhary KR, Abukhashim M, Hwang SH, Hammock BD and Seubert JM (2010) Inhibition of soluble epoxide hydrolase by trans-4-[4-(3-adamantan-1-yl-ureido)-cyclohexyloxy]-benzoic acid is protective against ischemia-reperfusion injury. J. Cardiovasc. Pharmacol 55, 67–73 PubMed PMC
Motoki A, Merkel MJ, Packwood WH, Cao Z, Liu L, Iliff J et al. (2008) Soluble epoxide hydrolase inhibition and gene deletion are protective against myocardial ischemia-reperfusion injury in vivo. Am. J. Physiol. Heart Circ. Physiol 295, H2128–34 PubMed PMC
Neckář J, Kopkan L, Husková Z, Kolář F, Papoušek F, Kramer HJ et al. (2012) Inhibition of soluble epoxide hydrolase by cis-4-[4-(3-adamantan-1-ylureido)cyclohexyl-oxy]benzoic acid exhibits antihypertensive and cardioprotective actions in transgenic rats with angiotensin II-dependent hypertension. Clin. Sci. (Lond) 122, 513–25 PubMed PMC
Kompa AR, Wang BH, Xu G, Zhang Y, Ho PY, Eisennagel S et al. (2013) Soluble epoxide hydrolase inhibition exerts beneficial anti-remodeling actions post-myocardial infarction. Int. J. Cardiol 167, 210–9 PubMed
Li L, Li N, Pang W, Zhang X, Hammock BD, Ai D et al. (2014) Opposite effects of gene deficiency and pharmacological inhibition of soluble epoxide hydrolase on cardiac fibrosis. PLoS One 9,e94092. PubMed PMC
Merabet N, Bellien J, Glevarec E, Nicol L, Lucas D, Remy-Jouet I et al. (2012) Soluble epoxide hydrolase inhibition improves myocardial perfusion and function in experimental heart failure. J. Mol. Cell. Cardiol 52, 660–6 PubMed
Sirish P, Li N, Liu JY, Lee KS, Hwang SH, Qiu H et al. (2013) Unique mechanistic insights into the beneficial effects of soluble epoxide hydrolase inhibitors in the prevention of cardiac fibrosis. Proc. Natl. Acad. Sci. U S A 110, 5618–23 PubMed PMC
Alánová P, Husková Z, Kopkan L, Sporková A, Jíchová Š, Neckář J et al. (2015) Orally active epoxyeicosatrienoic acid analog does not exhibit antihypertensive and reno- or cardioprotective actions in two-kidney, one-clip Goldblatt hypertensive rats. Vascul. Pharmacol 73, 45–56 PubMed
Batchu SN, Lee SB, Qadhi RS, Chaudhary KR, El-Sikhry H, Kodela R et al. (2011) Cardioprotective effect of a dual acting epoxyeicosatrienoic acid analogue towards ischaemia reperfusion injury. Br. J. Pharmacol 162, 897–907 PubMed PMC
Neckář J, Hsu A, Hye Khan MA, Gross GJ, Nithipatikom K, Cyprová M et al. (2018) Infarct size-limiting effect of epoxyeicosatrienoic acid analog EET-B is mediated by hypoxia inducible factor-1α via down regulation of prolyl hydroxylase 3. Am. J. Physiol. Heart Circ. Physiol 315, H1148–58 PubMed PMC
Hye Khan MA, Neckář J, Manthati V, Errabelli R, Pavlov TS, Staruschenko A et al. (2013) Orally active epoxyeicosatrienoic acid analog attenuates kidney injury in hypertensive Dahl salt-sensitive rat. Hypertension 62, 905–13 PubMed PMC
Hye Khan MA, Pavlov TS, Christain SV, Neckář J, Staruschenko A, Gauthier KM et al. (2014) Epoxyeicosatrienoic acid analogue lowers blood pressure through vasodilation and sodium channel inhibition. Clin. Sci. (Lond) 127: 463–74 PubMed PMC
Yeboah MM, Hye Khan MA, Chesnik MA, Sharma A, Paudyal MP, Falck JR et al. (2016) The epoxyeicosatrienoic acid analog PVPA ameliorates cyclosporine-induced hypertension and renal injury in rats. Am. J. Physiol. Renal Physiol 311, F576–85 PubMed PMC
Cao J, Tsenovoy PL, Thompson EA, Falck JR, Touchon R, Sodhi K et al. (2015) Agonists of epoxyeicosatrienoic acids reduce infarct size and ameliorate cardiac dysfunction via activation of HO-1 and Wnt1 canonical pathway. Prostaglandins Other Lipid Mediat 116-117, 76–86 PubMed PMC
Červenka L, Husková Z, Kopkan L, Kikerlová S, Sedláková L, Vaňourková Z et al. (2018) Two pharmacological epoxyeicosatrienoic acid-enhancing therapies are effectively antihypertensive and reduce the severity of ischemic arrhythmias in rats with angiotensin II-dependent hypertension. J. Hypertens 36, 1326–41 PubMed PMC
Singh SP, Bellner L, Vanella L, Cao J, Falck JR, Kappas A et al. (2016) Downregulation of PGC-1α prevents the beneficial effect of EET-heme oxygenase-1 on mitochondrial integrity and associated metabolic function in obese mice. J. Nutr. Metab 2016, 9039754. PubMed PMC
Chandler MP and DiCarlo SE (1998) Arterial baroreflex resetting mediates postexercise reductions in arterial pressure and heart rate. Am. J. Physiol 275, H1627–34 PubMed
Romashko M, Schragenheim J, Abraham NG and McClung JA (2016) Epoxyeicosatrienoic acid as therapy for diabetic and ischemic cardiomyopathy. Trends Pharmacol. Sci 37, 945–962 PubMed
Imig JD, Falck JR, Campbell WB (2015) Epoxyeicosatrienoic acid analogs and methods of making and using the same. U.S. Patent 9, 127, 027 B2
Imig JD, Falck JR, Campbell WB (2016) Epoxyeicosatrienoic acid analogs and methods of making and using the same. U.S. Patent 9, 422, 318
Falck JR, Koduru SR, Mohapatra S, Manne R, Atcha KR, Manthati VL, et al. (2014) Robust surrogates of 14,15-epoxyeicosa-5,8,11-trienoic acid (14,15-EET): carboxylate modifications. Med. Chem 57, 6965–72 PubMed PMC
Neckář J, Papoušek F, Nováková O, Oštádal B and Kolář F (2002) Cardioprotective effects of chronic hypoxia and ischaemic preconditioning are not additive. Basic Res. Cardiol 97, 161–7 PubMed
Asemu G, Neckář J, Szárszoi O, Papousek F, Ostádal B, Kolář F (2000) Effects of adaptation to intermittent high altitude hypoxia on ischemic ventricular arrhythmias in rats. Physiol. Res 49, 597–606. PubMed
Imig JD and Hammock BD (2009) Soluble epoxide hydrolase as a therapeutic target for cardiovascular diseases. Nat. Rev. Drug Discov 8, 794–805 PubMed PMC
Luo P, Chang HH, Zhou Y, Zhang S, Hwang SH, Morisseau C et al. (2010) Inhibition or deletion of soluble epoxide hydrolase prevents hyperglycemia, promotes insulin secretion, and reduces islet apoptosis. J. Pharmacol. Exp. Ther 334, 430–8 PubMed PMC
Roche C, Besnier M, Cassel R, Harouki N, Coquerel D, Guerrot D et al. (2015) Soluble epoxide hydrolase inhibition improves coronary endothelial function and prevents the development of cardiac alterations in obese insulin-resistant mice. Am. J. Physiol. Heart Circ. Physiol 308, H1020–9 PubMed PMC
Pozzi A, Macias-Perez I, Abair T, Wei S, Su Y, Zent R et al. (2005) Characterization of 5,6- and 8,9-epoxyeicosatrienoic acids (5,6- and 8,9-EET) as potent in vivo angiogenic lipids. J. Biol.Chem 280, 27138–46 PubMed
Xu DY, Davis BB, Wang ZH, Zhao SP, Wasti B, Liu ZL et al. (2013) A potent soluble epoxide hydrolase inhibitor, t-AUCB, acts through PPARγ to modulate the function of endothelial progenitor cells from patients with acute myocardial infarction. Int. J. Cardiol 167, 1298–304 PubMed PMC
Gross GJ, Baker JE, Hsu A, Wu HE, Falck JR, Nithipatikom K (2008) Effects of the selective EET antagonist, 14,15-EEZE, on cardioprotection produced by exogenous or endogenous EETs in the canine heart. Am. J. Physiol. Heart Circ. Physiol 294, H2838–44 PubMed PMC
Gross GJ, Hsu A, Pfeiffer AW and Nithipatikom K (2013) Roles of endothelial nitric oxide synthase (eNOS) and mitochondrial permeability transition pore (MPTP) in epoxyeicosatrienoic acid (EET)-induced cardioprotection against infarction in intact rat hearts. J. Mol. Cell. Cardiol 59, 20–9 PubMed PMC
Batchu SN, Lee SB, Qadhi RS, Chaudhary KR, El-Sikhry H, Kodela R et al. (2011) Cardioprotective effect of a dual acting epoxyeicosatrienoic acid analogue towards ischaemia reperfusion injury. Br. J. Pharmacol 162, 897–907 PubMed PMC
Khan MA, Liu J, Kumar G, Skapek SX, Falck JR, Imig JD (2013) Novel orally active epoxyeicosatrienoic acid (EET) analogs attenuate cisplatin nephrotoxicity. FASEB J 27, 2946–56 PubMed PMC
Ai D, Pang W, Li N, Xu M, Jones PD, Yang J et al. (2009) Soluble epoxide hydrolase plays an essential role in angiotensin II-induced cardiac hypertrophy. Proc. Natl. Acad. Sci. U S A 106, 564–9 PubMed PMC
Jíchová Š, Kopkan L, Husková Z, Doleželová Š, Neckář J, Kujal P et al. (2016) Epoxyeicosatrienoic acid analog attenuates the development of malignant hypertension, but does not reverse it once established: a study in Cyp1a1-Ren-2 transgenic rats. J. Hypertens 34, 2008–25 PubMed PMC
Kujal P, Čertíková Chábová V, Śkaroupková P, Husková Z, Vernerová Z, Kramer HJ et al. (2014) Inhibition of soluble epoxide hydrolase is renoprotective in 5/6 nephrectomized Ren-2 transgenic hypertensive rats. Clin. Exp. Pharmacol. Physiol 41, 227–37 PubMed PMC
Monti J, Fischer J, Paskas S, Heinig M, Schulz H, Gösele C et al. (2008) Soluble epoxide hydrolase is a susceptibility factor for heart failure in a rat model of human disease. Nat. Genet 40, 529–37 PubMed PMC
Wang X, Ni L, Yang L, Duan Q, Chen C, Edin ML, Zeldin DC et al. (2014) CYP2J2-derived epoxyeicosatrienoic acids suppress endoplasmic reticulum stress in heart failure. Mol. Pharmacol 85, 105–15 PubMed PMC
Xu D, Li N, He Y, Timofeyev V, Lu L, Tsai HJ et al. (2006) Prevention and reversal of cardiac hypertrophy by soluble epoxide hydrolase inhibitors. Proc. Natl. Acad. Sci. U S A 103, 18733–8 PubMed PMC
Shen HC, Ding FX, Deng Q, Xu S, Chen HS, Tong X et al. (2009) Discovery of 3,3-disubstituted piperidine-derived trisubstituted ureas as highly potent soluble epoxide hydrolase inhibitors. Bioorg. Med. Chem. Lett 19, 5314–20 PubMed
Khan AH, Falck JR, Manthati VL, Campbell WB and Imig JD (2014) Epoxyeicosatrienoic acid analog attenuates angiotensin II hypertension and kidney injury. Front. Pharmacol 5, 216. PubMed PMC
Braunwald E (2015) The war against heart failure: the Lancet lecture. Lancet 385, 812–24 PubMed
Zhang K, Liu Y, Liu X, Chen J, Cai Q, Wang J et al. (2015) Apocynin improving cardiac remodeling in chronic renal failure disease is associated with up-regulation of epoxyeicosatrienoic acids. Oncotarget 6, 24699–708 PubMed PMC
Schuck RN, Theken KN, Edin ML, Caughey M, Bass A, Ellis K et al. (2013) Cytochrome P450-derived eicosanoids and vascular dysfunction in coronary artery disease patients. Atherosclerosis 227, 442–8 PubMed PMC
Akhnokh MK, Yang FH, Samokhvalov V, Jamieson KL, Cho WJ, Wagg C et al. (2016) Inhibition of soluble epoxide hydrolase limits mitochondrial damage and preserves function following ischemic injury. Front. Pharmacol 7, 133. PubMed PMC
Hrdlička J, Neckář J, Papoušek F, Husková Z, Kikerlová S, Vańourková Z et al. (2019) Epoxyeicosatrienoic acid-based therapy attenuates the progression of postischemic heart failure in normotensive Sprague-Dawley but not in hypertensive Ren-2 transgenic rats. Front. Pharmacol 10, 159. PubMed PMC
Morgan LA, Olzinski AR, Upson JJ, Zhao S, Wang T, Eisennagel SH et al. (2013). Soluble epoxide hydrolase inhibition does not prevent cardiac remodeling and dysfunction after aortic constriction in rats and mice. J. Cardiovasc. Pharmacol 61, 291–301 PubMed
Červenka L, Melenovský V, Husková Z, Škaroupková P, Nishiyama A, and Sadowski J (2015). Inhibition of soluble epoxide hydrolase counteracts the development of renal dysfunction and progression of congestive heart failure in Ren-2 transgenic hypertensive rats with aorto-caval fistula. Clin. Exp. Pharmacol. Physiol 42, 795–807 PubMed
Červenka L, Melenovský V, Husková Z, Sporková A, Bürgelová M, Škaroupková P et al. (2015). Inhibition of soluble epoxide hydrolase does not improve the course of congestive heart failure and the development of renal dysfunction in rats with volume overload induced by aorto-caval fistula. Physiol. Res 64, 857–73 PubMed PMC
Vacková Š, Kopkan L, Kikerlová S, Husková Z, Sadowski J, Kompanowska-Jezierska E et al. (2019). Pharmacological blockade of soluble epoxide hydrolase attenuates the progression of congestive heart failure combined with chronic kidney disease: insights from studies with Fawn-hooded hypertensive rats. Front. Pharmacol 10, 18. PubMed PMC
He Z, Zhang X, Chen C, Wen Z, Hoopes SL, Zeldin DC et al. (2015) Cardiomyocyte-specific expression of CYP2J2 prevents development of cardiac remodelling induced by angiotensin II. Cardiovasc. Res 105, 304–17 PubMed PMC
Xiao B, Li X, Yan J, Yu X, Yang G, Xiao X et al. (2010) Overexpression of cytochrome P450 epoxygenases prevents development of hypertension in spontaneously hypertensive rats by enhancing atrial natriuretic peptide. J. Pharmacol. Exp. Ther 334, 784–94 PubMed PMC
Hutchens MP, Nakano T, Dunlap J, Traystman RJ, Hurn PD, Alkayed NJ (2008) Soluble epoxide hydrolase gene deletion reduces survival after cardiac arrest and cardiopulmonary resuscitation. Resuscitation 76, 89–94 PubMed PMC
Sacerdoti D, Pesce P, Di Pascoli M and Bolognesi M (2016) EETs and HO-1 cross-talk. Prostaglandins Other Lipid Mediat 125, 65–79 PubMed
Cao J, Singh SP, McClung JA, Joseph G, Vanella L, Barbagallo I et al. (2017) EET intervention on Wnt1, NOV, and HO-1 signaling prevents obesity-induced cardiomyopathy in obese mice. Am. J. Physiol. Heart Circ. Physiol 313, H368–H380 PubMed PMC
Otterbein LE, Foresti R and Motterlini R (2016) Heme oxygenase-1 and carbon monoxide in the heart: the balancing act between danger signaling and pro-survival. Circ. Res 118, 1940–1959 PubMed PMC
Chen T, Li J, Liu L, Fan L, Li XY, Wang YT et al. (2013) Effects of heme oxygenase-1 upregulation on blood pressure and cardiac function in an animal model of hypertensive myocardial infarction. Int. J. Mol. Sci 14, 2684–706 PubMed PMC
Elmarakby AA, Faulkner J, Posey SP and Sullivan JC (2010) Induction of heme oxygenase-1 attenuates the hypertension and renal inflammation in spontaneously hypertensive rats. Pharmacol. Res 62, 400–407 PubMed
Sixty Years of Heart Research in the Institute of Physiology of the Czech Academy of Sciences
Epoxylipids and soluble epoxide hydrolase in heart diseases