Epoxyeicosatrienoic acid analog EET-B attenuates post-myocardial infarction remodeling in spontaneously hypertensive rats

. 2019 Apr 30 ; 133 (8) : 939-951. [epub] 20190429

Jazyk angličtina Země Velká Británie, Anglie Médium electronic-print

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid30979784

Grantová podpora
R01 DK103616 NIDDK NIH HHS - United States
R01 HL111392 NHLBI NIH HHS - United States
R01 HL132908 NHLBI NIH HHS - United States

Epoxyeicosatrienoic acids (EETs) and their synthetic analogs have cardiovascular protective effects. Here, we investigated the action of a novel EET analog EET-B on the progression of post-myocardial infarction (MI) heart failure in spontaneously hypertensive rats (SHR). Adult male SHR were divided into vehicle- and EET-B (10 mg/kg/day; p.o., 9 weeks)-treated groups. After 2 weeks of treatment, rats were subjected to 30-min left coronary artery occlusion or sham operation. Systolic blood pressure (SBP) and echocardiography (ECHO) measurements were performed at the beginning of study, 4 days before, and 7 weeks after MI. At the end of the study, tissue samples were collected for histological and biochemical analyses. We demonstrated that EET-B treatment did not affect blood pressure and cardiac parameters in SHR prior to MI. Fractional shortening (FS) was decreased to 18.4 ± 1.0% in vehicle-treated MI rats compared with corresponding sham (30.6 ± 1.0%) 7 weeks following MI induction. In infarcted SHR hearts, EET-B treatment improved FS (23.7 ± 0.7%), markedly increased heme oxygenase-1 (HO-1) immunopositivity in cardiomyocytes and reduced cardiac inflammation and fibrosis (by 13 and 19%, respectively). In conclusion, these findings suggest that EET analog EET-B has beneficial therapeutic actions to reduce cardiac remodeling in SHR subjected to MI.

Zobrazit více v PubMed

Roger VL (2013) Epidemiology of heart failure. Circ. Res 113, 646–59 PubMed PMC

Imig JD (2012) Epoxides and soluble epoxide hydrolase in cardiovascular physiology. Physiol. Rev 92, 101–30 PubMed PMC

Oni-Orisan A, Alsaleh N, Lee CR and Seubert JM (2014) Epoxyeicosatrienoic acids and cardioprotection: the road to translation. J. Mol. Cell. Cardiol 74, 199–208 PubMed PMC

Batchu SN, Lee SB, Samokhvalov V, Chaudhary KR, El-Sikhry H, Weldon SM et al. (2012) Novel soluble epoxide hydrolase inhibitor protects mitochondrial function following stress. Can. J. Physiol. Pharmacol 90, 811–23 PubMed

Chaudhary KR, Abukhashim M, Hwang SH, Hammock BD and Seubert JM (2010) Inhibition of soluble epoxide hydrolase by trans-4-[4-(3-adamantan-1-yl-ureido)-cyclohexyloxy]-benzoic acid is protective against ischemia-reperfusion injury. J. Cardiovasc. Pharmacol 55, 67–73 PubMed PMC

Motoki A, Merkel MJ, Packwood WH, Cao Z, Liu L, Iliff J et al. (2008) Soluble epoxide hydrolase inhibition and gene deletion are protective against myocardial ischemia-reperfusion injury in vivo. Am. J. Physiol. Heart Circ. Physiol 295, H2128–34 PubMed PMC

Neckář J, Kopkan L, Husková Z, Kolář F, Papoušek F, Kramer HJ et al. (2012) Inhibition of soluble epoxide hydrolase by cis-4-[4-(3-adamantan-1-ylureido)cyclohexyl-oxy]benzoic acid exhibits antihypertensive and cardioprotective actions in transgenic rats with angiotensin II-dependent hypertension. Clin. Sci. (Lond) 122, 513–25 PubMed PMC

Kompa AR, Wang BH, Xu G, Zhang Y, Ho PY, Eisennagel S et al. (2013) Soluble epoxide hydrolase inhibition exerts beneficial anti-remodeling actions post-myocardial infarction. Int. J. Cardiol 167, 210–9 PubMed

Li L, Li N, Pang W, Zhang X, Hammock BD, Ai D et al. (2014) Opposite effects of gene deficiency and pharmacological inhibition of soluble epoxide hydrolase on cardiac fibrosis. PLoS One 9,e94092. PubMed PMC

Merabet N, Bellien J, Glevarec E, Nicol L, Lucas D, Remy-Jouet I et al. (2012) Soluble epoxide hydrolase inhibition improves myocardial perfusion and function in experimental heart failure. J. Mol. Cell. Cardiol 52, 660–6 PubMed

Sirish P, Li N, Liu JY, Lee KS, Hwang SH, Qiu H et al. (2013) Unique mechanistic insights into the beneficial effects of soluble epoxide hydrolase inhibitors in the prevention of cardiac fibrosis. Proc. Natl. Acad. Sci. U S A 110, 5618–23 PubMed PMC

Alánová P, Husková Z, Kopkan L, Sporková A, Jíchová Š, Neckář J et al. (2015) Orally active epoxyeicosatrienoic acid analog does not exhibit antihypertensive and reno- or cardioprotective actions in two-kidney, one-clip Goldblatt hypertensive rats. Vascul. Pharmacol 73, 45–56 PubMed

Batchu SN, Lee SB, Qadhi RS, Chaudhary KR, El-Sikhry H, Kodela R et al. (2011) Cardioprotective effect of a dual acting epoxyeicosatrienoic acid analogue towards ischaemia reperfusion injury. Br. J. Pharmacol 162, 897–907 PubMed PMC

Neckář J, Hsu A, Hye Khan MA, Gross GJ, Nithipatikom K, Cyprová M et al. (2018) Infarct size-limiting effect of epoxyeicosatrienoic acid analog EET-B is mediated by hypoxia inducible factor-1α via down regulation of prolyl hydroxylase 3. Am. J. Physiol. Heart Circ. Physiol 315, H1148–58 PubMed PMC

Hye Khan MA, Neckář J, Manthati V, Errabelli R, Pavlov TS, Staruschenko A et al. (2013) Orally active epoxyeicosatrienoic acid analog attenuates kidney injury in hypertensive Dahl salt-sensitive rat. Hypertension 62, 905–13 PubMed PMC

Hye Khan MA, Pavlov TS, Christain SV, Neckář J, Staruschenko A, Gauthier KM et al. (2014) Epoxyeicosatrienoic acid analogue lowers blood pressure through vasodilation and sodium channel inhibition. Clin. Sci. (Lond) 127: 463–74 PubMed PMC

Yeboah MM, Hye Khan MA, Chesnik MA, Sharma A, Paudyal MP, Falck JR et al. (2016) The epoxyeicosatrienoic acid analog PVPA ameliorates cyclosporine-induced hypertension and renal injury in rats. Am. J. Physiol. Renal Physiol 311, F576–85 PubMed PMC

Cao J, Tsenovoy PL, Thompson EA, Falck JR, Touchon R, Sodhi K et al. (2015) Agonists of epoxyeicosatrienoic acids reduce infarct size and ameliorate cardiac dysfunction via activation of HO-1 and Wnt1 canonical pathway. Prostaglandins Other Lipid Mediat 116-117, 76–86 PubMed PMC

Červenka L, Husková Z, Kopkan L, Kikerlová S, Sedláková L, Vaňourková Z et al. (2018) Two pharmacological epoxyeicosatrienoic acid-enhancing therapies are effectively antihypertensive and reduce the severity of ischemic arrhythmias in rats with angiotensin II-dependent hypertension. J. Hypertens 36, 1326–41 PubMed PMC

Singh SP, Bellner L, Vanella L, Cao J, Falck JR, Kappas A et al. (2016) Downregulation of PGC-1α prevents the beneficial effect of EET-heme oxygenase-1 on mitochondrial integrity and associated metabolic function in obese mice. J. Nutr. Metab 2016, 9039754. PubMed PMC

Chandler MP and DiCarlo SE (1998) Arterial baroreflex resetting mediates postexercise reductions in arterial pressure and heart rate. Am. J. Physiol 275, H1627–34 PubMed

Romashko M, Schragenheim J, Abraham NG and McClung JA (2016) Epoxyeicosatrienoic acid as therapy for diabetic and ischemic cardiomyopathy. Trends Pharmacol. Sci 37, 945–962 PubMed

Imig JD, Falck JR, Campbell WB (2015) Epoxyeicosatrienoic acid analogs and methods of making and using the same. U.S. Patent 9, 127, 027 B2

Imig JD, Falck JR, Campbell WB (2016) Epoxyeicosatrienoic acid analogs and methods of making and using the same. U.S. Patent 9, 422, 318

Falck JR, Koduru SR, Mohapatra S, Manne R, Atcha KR, Manthati VL, et al. (2014) Robust surrogates of 14,15-epoxyeicosa-5,8,11-trienoic acid (14,15-EET): carboxylate modifications. Med. Chem 57, 6965–72 PubMed PMC

Neckář J, Papoušek F, Nováková O, Oštádal B and Kolář F (2002) Cardioprotective effects of chronic hypoxia and ischaemic preconditioning are not additive. Basic Res. Cardiol 97, 161–7 PubMed

Asemu G, Neckář J, Szárszoi O, Papousek F, Ostádal B, Kolář F (2000) Effects of adaptation to intermittent high altitude hypoxia on ischemic ventricular arrhythmias in rats. Physiol. Res 49, 597–606. PubMed

Imig JD and Hammock BD (2009) Soluble epoxide hydrolase as a therapeutic target for cardiovascular diseases. Nat. Rev. Drug Discov 8, 794–805 PubMed PMC

Luo P, Chang HH, Zhou Y, Zhang S, Hwang SH, Morisseau C et al. (2010) Inhibition or deletion of soluble epoxide hydrolase prevents hyperglycemia, promotes insulin secretion, and reduces islet apoptosis. J. Pharmacol. Exp. Ther 334, 430–8 PubMed PMC

Roche C, Besnier M, Cassel R, Harouki N, Coquerel D, Guerrot D et al. (2015) Soluble epoxide hydrolase inhibition improves coronary endothelial function and prevents the development of cardiac alterations in obese insulin-resistant mice. Am. J. Physiol. Heart Circ. Physiol 308, H1020–9 PubMed PMC

Pozzi A, Macias-Perez I, Abair T, Wei S, Su Y, Zent R et al. (2005) Characterization of 5,6- and 8,9-epoxyeicosatrienoic acids (5,6- and 8,9-EET) as potent in vivo angiogenic lipids. J. Biol.Chem 280, 27138–46 PubMed

Xu DY, Davis BB, Wang ZH, Zhao SP, Wasti B, Liu ZL et al. (2013) A potent soluble epoxide hydrolase inhibitor, t-AUCB, acts through PPARγ to modulate the function of endothelial progenitor cells from patients with acute myocardial infarction. Int. J. Cardiol 167, 1298–304 PubMed PMC

Gross GJ, Baker JE, Hsu A, Wu HE, Falck JR, Nithipatikom K (2008) Effects of the selective EET antagonist, 14,15-EEZE, on cardioprotection produced by exogenous or endogenous EETs in the canine heart. Am. J. Physiol. Heart Circ. Physiol 294, H2838–44 PubMed PMC

Gross GJ, Hsu A, Pfeiffer AW and Nithipatikom K (2013) Roles of endothelial nitric oxide synthase (eNOS) and mitochondrial permeability transition pore (MPTP) in epoxyeicosatrienoic acid (EET)-induced cardioprotection against infarction in intact rat hearts. J. Mol. Cell. Cardiol 59, 20–9 PubMed PMC

Batchu SN, Lee SB, Qadhi RS, Chaudhary KR, El-Sikhry H, Kodela R et al. (2011) Cardioprotective effect of a dual acting epoxyeicosatrienoic acid analogue towards ischaemia reperfusion injury. Br. J. Pharmacol 162, 897–907 PubMed PMC

Khan MA, Liu J, Kumar G, Skapek SX, Falck JR, Imig JD (2013) Novel orally active epoxyeicosatrienoic acid (EET) analogs attenuate cisplatin nephrotoxicity. FASEB J 27, 2946–56 PubMed PMC

Ai D, Pang W, Li N, Xu M, Jones PD, Yang J et al. (2009) Soluble epoxide hydrolase plays an essential role in angiotensin II-induced cardiac hypertrophy. Proc. Natl. Acad. Sci. U S A 106, 564–9 PubMed PMC

Jíchová Š, Kopkan L, Husková Z, Doleželová Š, Neckář J, Kujal P et al. (2016) Epoxyeicosatrienoic acid analog attenuates the development of malignant hypertension, but does not reverse it once established: a study in Cyp1a1-Ren-2 transgenic rats. J. Hypertens 34, 2008–25 PubMed PMC

Kujal P, Čertíková Chábová V, Śkaroupková P, Husková Z, Vernerová Z, Kramer HJ et al. (2014) Inhibition of soluble epoxide hydrolase is renoprotective in 5/6 nephrectomized Ren-2 transgenic hypertensive rats. Clin. Exp. Pharmacol. Physiol 41, 227–37 PubMed PMC

Monti J, Fischer J, Paskas S, Heinig M, Schulz H, Gösele C et al. (2008) Soluble epoxide hydrolase is a susceptibility factor for heart failure in a rat model of human disease. Nat. Genet 40, 529–37 PubMed PMC

Wang X, Ni L, Yang L, Duan Q, Chen C, Edin ML, Zeldin DC et al. (2014) CYP2J2-derived epoxyeicosatrienoic acids suppress endoplasmic reticulum stress in heart failure. Mol. Pharmacol 85, 105–15 PubMed PMC

Xu D, Li N, He Y, Timofeyev V, Lu L, Tsai HJ et al. (2006) Prevention and reversal of cardiac hypertrophy by soluble epoxide hydrolase inhibitors. Proc. Natl. Acad. Sci. U S A 103, 18733–8 PubMed PMC

Shen HC, Ding FX, Deng Q, Xu S, Chen HS, Tong X et al. (2009) Discovery of 3,3-disubstituted piperidine-derived trisubstituted ureas as highly potent soluble epoxide hydrolase inhibitors. Bioorg. Med. Chem. Lett 19, 5314–20 PubMed

Khan AH, Falck JR, Manthati VL, Campbell WB and Imig JD (2014) Epoxyeicosatrienoic acid analog attenuates angiotensin II hypertension and kidney injury. Front. Pharmacol 5, 216. PubMed PMC

Braunwald E (2015) The war against heart failure: the Lancet lecture. Lancet 385, 812–24 PubMed

Zhang K, Liu Y, Liu X, Chen J, Cai Q, Wang J et al. (2015) Apocynin improving cardiac remodeling in chronic renal failure disease is associated with up-regulation of epoxyeicosatrienoic acids. Oncotarget 6, 24699–708 PubMed PMC

Schuck RN, Theken KN, Edin ML, Caughey M, Bass A, Ellis K et al. (2013) Cytochrome P450-derived eicosanoids and vascular dysfunction in coronary artery disease patients. Atherosclerosis 227, 442–8 PubMed PMC

Akhnokh MK, Yang FH, Samokhvalov V, Jamieson KL, Cho WJ, Wagg C et al. (2016) Inhibition of soluble epoxide hydrolase limits mitochondrial damage and preserves function following ischemic injury. Front. Pharmacol 7, 133. PubMed PMC

Hrdlička J, Neckář J, Papoušek F, Husková Z, Kikerlová S, Vańourková Z et al. (2019) Epoxyeicosatrienoic acid-based therapy attenuates the progression of postischemic heart failure in normotensive Sprague-Dawley but not in hypertensive Ren-2 transgenic rats. Front. Pharmacol 10, 159. PubMed PMC

Morgan LA, Olzinski AR, Upson JJ, Zhao S, Wang T, Eisennagel SH et al. (2013). Soluble epoxide hydrolase inhibition does not prevent cardiac remodeling and dysfunction after aortic constriction in rats and mice. J. Cardiovasc. Pharmacol 61, 291–301 PubMed

Červenka L, Melenovský V, Husková Z, Škaroupková P, Nishiyama A, and Sadowski J (2015). Inhibition of soluble epoxide hydrolase counteracts the development of renal dysfunction and progression of congestive heart failure in Ren-2 transgenic hypertensive rats with aorto-caval fistula. Clin. Exp. Pharmacol. Physiol 42, 795–807 PubMed

Červenka L, Melenovský V, Husková Z, Sporková A, Bürgelová M, Škaroupková P et al. (2015). Inhibition of soluble epoxide hydrolase does not improve the course of congestive heart failure and the development of renal dysfunction in rats with volume overload induced by aorto-caval fistula. Physiol. Res 64, 857–73 PubMed PMC

Vacková Š, Kopkan L, Kikerlová S, Husková Z, Sadowski J, Kompanowska-Jezierska E et al. (2019). Pharmacological blockade of soluble epoxide hydrolase attenuates the progression of congestive heart failure combined with chronic kidney disease: insights from studies with Fawn-hooded hypertensive rats. Front. Pharmacol 10, 18. PubMed PMC

He Z, Zhang X, Chen C, Wen Z, Hoopes SL, Zeldin DC et al. (2015) Cardiomyocyte-specific expression of CYP2J2 prevents development of cardiac remodelling induced by angiotensin II. Cardiovasc. Res 105, 304–17 PubMed PMC

Xiao B, Li X, Yan J, Yu X, Yang G, Xiao X et al. (2010) Overexpression of cytochrome P450 epoxygenases prevents development of hypertension in spontaneously hypertensive rats by enhancing atrial natriuretic peptide. J. Pharmacol. Exp. Ther 334, 784–94 PubMed PMC

Hutchens MP, Nakano T, Dunlap J, Traystman RJ, Hurn PD, Alkayed NJ (2008) Soluble epoxide hydrolase gene deletion reduces survival after cardiac arrest and cardiopulmonary resuscitation. Resuscitation 76, 89–94 PubMed PMC

Sacerdoti D, Pesce P, Di Pascoli M and Bolognesi M (2016) EETs and HO-1 cross-talk. Prostaglandins Other Lipid Mediat 125, 65–79 PubMed

Cao J, Singh SP, McClung JA, Joseph G, Vanella L, Barbagallo I et al. (2017) EET intervention on Wnt1, NOV, and HO-1 signaling prevents obesity-induced cardiomyopathy in obese mice. Am. J. Physiol. Heart Circ. Physiol 313, H368–H380 PubMed PMC

Otterbein LE, Foresti R and Motterlini R (2016) Heme oxygenase-1 and carbon monoxide in the heart: the balancing act between danger signaling and pro-survival. Circ. Res 118, 1940–1959 PubMed PMC

Chen T, Li J, Liu L, Fan L, Li XY, Wang YT et al. (2013) Effects of heme oxygenase-1 upregulation on blood pressure and cardiac function in an animal model of hypertensive myocardial infarction. Int. J. Mol. Sci 14, 2684–706 PubMed PMC

Elmarakby AA, Faulkner J, Posey SP and Sullivan JC (2010) Induction of heme oxygenase-1 attenuates the hypertension and renal inflammation in spontaneously hypertensive rats. Pharmacol. Res 62, 400–407 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...