Programmed Cell Death in the Left and Right Ventricle of the Late Phase of Post-Infarction Heart Failure
Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
APVV-15-607
APVV
VEGA-1/0271/16, 1/0016/20
VEGA-1/0271/16, 1/0016/20
FaF UK/15/2019
FaF UK
grant No. 15-27735A
Czech Health Research Council
PubMed
33096720
PubMed Central
PMC7589581
DOI
10.3390/ijms21207782
PII: ijms21207782
Knihovny.cz E-resources
- Keywords
- autophagy, cell death, heart failure, necroptosis,
- MeSH
- Apoptosis * physiology MeSH
- Autophagy physiology MeSH
- Myocardial Infarction complications pathology MeSH
- Necroptosis physiology MeSH
- Rats, Sprague-Dawley MeSH
- Rats, Wistar MeSH
- Protein Serine-Threonine Kinases metabolism MeSH
- Receptor-Interacting Protein Serine-Threonine Kinases metabolism MeSH
- Signal Transduction MeSH
- Heart Ventricles pathology MeSH
- Heart Failure etiology metabolism pathology MeSH
- Organ Size MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Protein Serine-Threonine Kinases MeSH
- RIPK1 protein, rat MeSH Browser
- Ripk3 protein, rat MeSH Browser
- Receptor-Interacting Protein Serine-Threonine Kinases MeSH
While necroptosis has been shown to contribute to the pathogenesis of post-infarction heart failure (HF), the role of autophagy remains unclear. Likewise, linkage between these two cell death modalities has not been sufficiently investigated. HF was induced by 60-min left coronary occlusion in adult Wistar rats and heart function was assessed 6 weeks later followed by immunoblotting analysis of necroptotic and autophagic proteins in both the left (LV) and right ventricle (RV). HF had no effect on RIP1 and RIP3 expression. PhosphoSer229-RIP3, acting as a pro-necroptotic signal, was increased in LV while deceased in RV of failing hearts. Total MLKL was elevated in RV only. Decrease in pSer555-ULK1, increase in pSer473-Akt and no significant elevation in beclin-1 and LC3-II/I ratio indicated rather a lowered rate of autophagy in LV. No beclin-1 upregulation and decreased LC3 processing also suggested the inhibition of both autophagosome formation and maturation in RV of failing hearts. In contrast, p89 PARP1 fragment, a marker of executed apoptosis, was increased in RV only. This is the first study showing a different signaling in ventricles of the late phase of post-infarction HF, highlighting necroptosis itself rather than its linkage with autophagy in LV, and apoptosis in RV.
See more in PubMed
Pasumarthi K.B., Field L.J. Cardiomyocyte cell cycle regulation. Circ. Res. 2002;90:1044–1054. doi: 10.1161/01.RES.0000020201.44772.67. PubMed DOI
Konstantinidis K., Whelan R.S., Kitsis R.N. Mechanisms of cell death in heart disease. Arter. Thromb. Vasc. Biol. 2012;32:1552–1562. doi: 10.1161/ATVBAHA.111.224915. PubMed DOI PMC
Moe G.W., Marin-Garcia J. Role of cell death in the progression of heart failure. Heart Fail. Rev. 2016;21:157–167. doi: 10.1007/s10741-016-9532-0. PubMed DOI
Corsetti G., Chen-Scarabelli C., Romano C., Pasini E., Dioguardi F.S., Onorati F., Knight R., Patel H., Saravolatz L., Faggian G., et al. Autophagy and Oncosis/Necroptosis Are Enhanced in Cardiomyocytes from Heart Failure Patients. Med. Sci. Monit. Basic Res. 2019;25:33–44. doi: 10.12659/MSMBR.913436. PubMed DOI PMC
Liu J., Wu P., Wang Y., Du Y., Nan A., Liu S., Zhang Y., Zhou N., Xu Z., Yang Z. Ad-HGF improves the cardiac remodeling of rat following myocardial infarction by upregulating autophagy and necroptosis and inhibiting apoptosis. Am. J. Transl. Res. 2016;8:4605–4627. PubMed PMC
Wang X., Guo Z., Ding Z., Mehta J.L. Inflammation, Autophagy, and Apoptosis After Myocardial Infarction. J. Am. Heart Assoc. 2018;7:e008024. doi: 10.1161/JAHA.117.008024. PubMed DOI PMC
Szobi A., Goncalvesova E., Varga Z.V., Leszek P., Kusmierczyk M., Hulman M., Kyselovic J., Ferdinandy P., Adameova A. Analysis of necroptotic proteins in failing human hearts. J. Transl. Med. 2017;15:86. doi: 10.1186/s12967-017-1189-5. PubMed DOI PMC
Lichy M., Szobi A., Hrdlicka J., Horvath C., Kormanova V., Rajtik T., Neckar J., Kolar F., Adameova A. Different signalling in infarcted and non-infarcted areas of rat failing hearts: A role of necroptosis and inflammation. J. Cell Mol. Med. 2019;23:6429–6441. doi: 10.1111/jcmm.14536. PubMed DOI PMC
Oerlemans M.I., Liu J., Arslan F., den Ouden K., van Middelaar B.J., Doevendans P.A., Sluijter J.P. Inhibition of RIP1-dependent necrosis prevents adverse cardiac remodeling after myocardial ischemia-reperfusion in vivo. Basic Res. Cardiol. 2012;107:270. doi: 10.1007/s00395-012-0270-8. PubMed DOI
Zhang T., Zhang Y., Cui M., Jin L., Wang Y., Lv F., Liu Y., Zheng W., Shang H., Zhang J., et al. CaMKII is a RIP3 substrate mediating ischemia- and oxidative stress-induced myocardial necroptosis. Nat. Med. 2016;22:175–182. doi: 10.1038/nm.4017. PubMed DOI
Degterev A., Huang Z., Boyce M., Li Y., Jagtap P., Mizushima N., Cuny G.D., Mitchison T.J., Moskowitz M.A., Yuan J. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat. Chem. Biol. 2005;1:112–119. doi: 10.1038/nchembio711. PubMed DOI
Cho Y.S., Challa S., Moquin D., Genga R., Ray T.D., Guildford M., Chan F.K. Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell. 2009;137:1112–1123. doi: 10.1016/j.cell.2009.05.037. PubMed DOI PMC
Sun L., Wang H., Wang Z., He S., Chen S., Liao D., Wang L., Yan J., Liu W., Lei X., et al. Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell. 2012;148:213–227. doi: 10.1016/j.cell.2011.11.031. PubMed DOI
Galluzzi L., Kepp O., Chan F.K., Kroemer G. Necroptosis: Mechanisms and Relevance to Disease. Annu. Rev. Pathol. 2017;12:103–130. doi: 10.1146/annurev-pathol-052016-100247. PubMed DOI PMC
Chen W., Zhou Z., Li L., Zhong C.Q., Zheng X., Wu X., Zhang Y., Ma H., Huang D., Li W., et al. Diverse sequence determinants control human and mouse receptor interacting protein 3 (RIP3) and mixed lineage kinase domain-like (MLKL) interaction in necroptotic signaling. J. Biol. Chem. 2013;288:16247–16261. doi: 10.1074/jbc.M112.435545. PubMed DOI PMC
Ros U., Pena-Blanco A., Hanggi K., Kunzendorf U., Krautwald S., Wong W.W., Garcia-Saez A.J. Necroptosis Execution Is Mediated by Plasma Membrane Nanopores Independent of Calcium. Cell Rep. 2017;19:175–187. doi: 10.1016/j.celrep.2017.03.024. PubMed DOI PMC
Cai Z., Jitkaew S., Zhao J., Chiang H.C., Choksi S., Liu J., Ward Y., Wu L.G., Liu Z.G. Plasma membrane translocation of trimerized MLKL protein is required for TNF-induced necroptosis. Nat. Cell Biol. 2014;16:55–65. doi: 10.1038/ncb2883. PubMed DOI PMC
Cai Z., Liu Z.G. Execution of RIPK3-regulated necrosis. Mol. Cell Oncol. 2014;1:e960759. doi: 10.4161/23723548.2014.960759. PubMed DOI PMC
Mishra P.K., Adameova A., Hill J.A., Baines C.P., Kang P.M., Downey J.M., Narula J., Takahashi M., Abbate A., Piristine H.C., et al. Guidelines for evaluating myocardial cell death. Am. J. Physiol. Heart Circ. Physiol. 2019;317:H891–H922. doi: 10.1152/ajpheart.00259.2019. PubMed DOI PMC
Moujalled D.M., Cook W.D., Okamoto T., Murphy J., Lawlor K.E., Vince J.E., Vaux D.L. TNF can activate RIPK3 and cause programmed necrosis in the absence of RIPK1. Cell Death Dis. 2013;4:e465. doi: 10.1038/cddis.2012.201. PubMed DOI PMC
Glick D., Barth S., Macleod K.F. Autophagy: Cellular and molecular mechanisms. J. Pathol. 2010;221:3–12. doi: 10.1002/path.2697. PubMed DOI PMC
Zhu H., Tannous P., Johnstone J.L., Kong Y., Shelton J.M., Richardson J.A., Le V., Levine B., Rothermel B.A., Hill J.A. Cardiac autophagy is a maladaptive response to hemodynamic stress. J. Clin. Invest. 2007;117:1782–1793. doi: 10.1172/JCI27523. PubMed DOI PMC
Egan D., Kim J., Shaw R.J., Guan K.L. The autophagy initiating kinase ULK1 is regulated via opposing phosphorylation by AMPK and mTOR. Autophagy. 2011;7:643–644. doi: 10.4161/auto.7.6.15123. PubMed DOI PMC
Kim J., Kundu M., Viollet B., Guan K.L. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat. Cell Biol. 2011;13:132–141. doi: 10.1038/ncb2152. PubMed DOI PMC
Russell R.C., Tian Y., Yuan H., Park H.W., Chang Y.Y., Kim J., Kim H., Neufeld T.P., Dillin A., Guan K.L. ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase. Nat. Cell Biol. 2013;15:741–750. doi: 10.1038/ncb2757. PubMed DOI PMC
Dikic I., Elazar Z. Mechanism and medical implications of mammalian autophagy. Nat. Rev. Mol. Cell Biol. 2018;19:349–364. doi: 10.1038/s41580-018-0003-4. PubMed DOI
Wu J., Dang Y., Su W., Liu C., Ma H., Shan Y., Pei Y., Wan B., Guo J., Yu L. Molecular cloning and characterization of rat LC3A and LC3B--two novel markers of autophagosome. Biochem. Biophys. Res. Commun. 2006;339:437–442. doi: 10.1016/j.bbrc.2005.10.211. PubMed DOI
Weidberg H., Shvets E., Shpilka T., Shimron F., Shinder V., Elazar Z. LC3 and GATE-16/GABARAP subfamilies are both essential yet act differently in autophagosome biogenesis. EMBO J. 2010;29:1792–1802. doi: 10.1038/emboj.2010.74. PubMed DOI PMC
Nishida K., Kyoi S., Yamaguchi O., Sadoshima J., Otsu K. The role of autophagy in the heart. Cell Death Differ. 2009;16:31–38. doi: 10.1038/cdd.2008.163. PubMed DOI
Adameova A., Goncalvesova E., Szobi A., Dhalla N.S. Necroptotic cell death in failing heart: Relevance and proposed mechanisms. Heart Fail. Rev. 2016;21:213–221. doi: 10.1007/s10741-016-9537-8. PubMed DOI
Basit F., Cristofanon S., Fulda S. Obatoclax (GX15-070) triggers necroptosis by promoting the assembly of the necrosome on autophagosomal membranes. Cell Death Differ. 2013;20:1161–1173. doi: 10.1038/cdd.2013.45. PubMed DOI PMC
Ogasawara M., Yano T., Tanno M., Abe K., Ishikawa S., Miki T., Kuno A., Tobisawa T., Muratsubaki S., Ohno K., et al. Suppression of autophagic flux contributes to cardiomyocyte death by activation of necroptotic pathways. J. Mol. Cell Cardiol. 2017;108:203–213. doi: 10.1016/j.yjmcc.2017.06.008. PubMed DOI
Zhu H., Sun A. Programmed necrosis in heart disease: Molecular mechanisms and clinical implications. J. Mol. Cell Cardiol. 2018;116:125–134. doi: 10.1016/j.yjmcc.2018.01.018. PubMed DOI
De Meyer G.R., De Keulenaer G.W., Martinet W. Role of autophagy in heart failure associated with aging. Heart Fail. Rev. 2010;15:423–430. doi: 10.1007/s10741-010-9166-6. PubMed DOI
Liu X., Zhang C., Zhang C., Li J., Guo W., Yan D., Yang C., Zhao J., Xia T., Wang Y., et al. Heat shock protein 70 inhibits cardiomyocyte necroptosis through repressing autophagy in myocardial ischemia/reperfusion injury. In Vitro Cell Dev. Biol. Anim. 2016;52:690–698. doi: 10.1007/s11626-016-0039-8. PubMed DOI
Jose Corbalan J., Vatner D.E., Vatner S.F. Myocardial apoptosis in heart disease: Does the emperor have clothes? Basic Res. Cardiol. 2016;111:31. doi: 10.1007/s00395-016-0549-2. PubMed DOI
Luedde M., Lutz M., Carter N., Sosna J., Jacoby C., Vucur M., Gautheron J., Roderburg C., Borg N., Reisinger F., et al. RIP3, a kinase promoting necroptotic cell death, mediates adverse remodelling after myocardial infarction. Cardiovasc. Res. 2014;103:206–216. doi: 10.1093/cvr/cvu146. PubMed DOI
Vanden Berghe T., Linkermann A., Jouan-Lanhouet S., Walczak H., Vandenabeele P. Regulated necrosis: The expanding network of non-apoptotic cell death pathways. Nat. Rev. Mol. Cell Biol. 2014;15:135–147. doi: 10.1038/nrm3737. PubMed DOI
Wang H., Sun L., Su L., Rizo J., Liu L., Wang L.F., Wang F.S., Wang X. Mixed lineage kinase domain-like protein MLKL causes necrotic membrane disruption upon phosphorylation by RIP3. Mol. Cell. 2014;54:133–146. doi: 10.1016/j.molcel.2014.03.003. PubMed DOI
Hara T., Takamura A., Kishi C., Iemura S., Natsume T., Guan J.L., Mizushima N. FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells. J. Cell Biol. 2008;181:497–510. doi: 10.1083/jcb.200712064. PubMed DOI PMC
Fujita N., Hayashi-Nishino M., Fukumoto H., Omori H., Yamamoto A., Noda T., Yoshimori T. An Atg4B mutant hampers the lipidation of LC3 paralogues and causes defects in autophagosome closure. Mol. Biol. Cell. 2008;19:4651–4659. doi: 10.1091/mbc.e08-03-0312. PubMed DOI PMC
Memmott R.M., Dennis P.A. Akt-dependent and -independent mechanisms of mTOR regulation in cancer. Cell Signal. 2009;21:656–664. doi: 10.1016/j.cellsig.2009.01.004. PubMed DOI PMC
Stennicke H.R., Jurgensmeier J.M., Shin H., Deveraux Q., Wolf B.B., Yang X., Zhou Q., Ellerby H.M., Ellerby L.M., Bredesen D., et al. Pro-caspase-3 is a major physiologic target of caspase-8. J. Biol. Chem. 1998;273:27084–27090. doi: 10.1074/jbc.273.42.27084. PubMed DOI
Zhang H., Yin Y., Liu Y., Zou G., Huang H., Qian P., Zhang G., Zhang J. Necroptosis Mediated by Impaired Autophagy Flux Contributes to Adverse Ventricular Remodeling after Myocardial Infarction. Biochem. Pharm. 2020;175:113915. doi: 10.1016/j.bcp.2020.113915. PubMed DOI
Hrdlicka J., Neckar J., Papousek F., Vasinova J., Alanova P., Kolar F. Beneficial effect of continuous normobaric hypoxia on ventricular dilatation in rats with post-infarction heart failure. Physiol. Res. 2016;65:867–870. doi: 10.33549/physiolres.933308. PubMed DOI
Bai X., Jiang Y. Key factors in mTOR regulation. Cell Mol. Life Sci. 2010;67:239–253. doi: 10.1007/s00018-009-0163-7. PubMed DOI PMC
Figueiredo V.C., Markworth J.F., Cameron-Smith D. Considerations on mTOR regulation at serine 2448: Implications for muscle metabolism studies. Cell Mol. Life Sci. 2017;74:2537–2545. doi: 10.1007/s00018-017-2481-5. PubMed DOI PMC
Herzig S., Shaw R.J. AMPK: Guardian of metabolism and mitochondrial homeostasis. Nat. Rev. Mol. Cell Biol. 2018;19:121–135. doi: 10.1038/nrm.2017.95. PubMed DOI PMC
Liu Z., Sin K.W.T., Ding H., Doan H.A., Gao S., Miao H., Wei Y., Wang Y., Zhang G., Li Y.P. p38beta MAPK mediates ULK1-dependent induction of autophagy in skeletal muscle of tumor-bearing mice. Cell Stress. 2018;2:311–324. doi: 10.15698/cst2018.11.163. PubMed DOI PMC
Degterev A., Hitomi J., Germscheid M., Ch’en I.L., Korkina O., Teng X., Abbott D., Cuny G.D., Yuan C., Wagner G., et al. Identification of RIP1 kinase as a specific cellular target of necrostatins. Nat. Chem. Biol. 2008;4:313–321. doi: 10.1038/nchembio.83. PubMed DOI PMC
Ye Y.C., Yu L., Wang H.J., Tashiro S., Onodera S., Ikejima T. TNFalpha-induced necroptosis and autophagy via supression of the p38-NF-kappaB survival pathway in L929 cells. J. Pharm. Sci. 2011;117:160–169. doi: 10.1254/jphs.11105FP. PubMed DOI
Goodall M.L., Fitzwalter B.E., Zahedi S., Wu M., Rodriguez D., Mulcahy-Levy J.M., Green D.R., Morgan M., Cramer S.D., Thorburn A. The Autophagy Machinery Controls Cell Death Switching between Apoptosis and Necroptosis. Dev. Cell. 2016;37:337–349. doi: 10.1016/j.devcel.2016.04.018. PubMed DOI PMC
Kang T.B., Yang S.H., Toth B., Kovalenko A., Wallach D. Caspase-8 blocks kinase RIPK3-mediated activation of the NLRP3 inflammasome. Immunity. 2013;38:27–40. doi: 10.1016/j.immuni.2012.09.015. PubMed DOI
Lawlor K.E., Khan N., Mildenhall A., Gerlic M., Croker B.A., D’Cruz A.A., Hall C., Kaur Spall S., Anderton H., Masters S.L., et al. RIPK3 promotes cell death and NLRP3 inflammasome activation in the absence of MLKL. Nat. Commun. 2015;6:1–19. doi: 10.1038/ncomms7282. PubMed DOI PMC
Wong W.W., Vince J.E., Lalaoui N., Lawlor K.E., Chau D., Bankovacki A., Anderton H., Metcalf D., O’Reilly L., Jost P.J., et al. cIAPs and XIAP regulate myelopoiesis through cytokine production in an RIPK1- and RIPK3-dependent manner. Blood. 2014;123:2562–2572. doi: 10.1182/blood-2013-06-510743. PubMed DOI
Liu J., Wang H., Li J. Inflammation and Inflammatory Cells in Myocardial Infarction and Reperfusion Injury: A Double-Edged Sword. Clin. Med. Insights Cardiol. 2016;10:79–84. doi: 10.4137/CMC.S33164. PubMed DOI PMC
Frangogiannis N.G. The immune system and the remodeling infarcted heart: Cell biological insights and therapeutic opportunities. J. Cardiovasc. Pharm. 2014;63:185–195. doi: 10.1097/FJC.0000000000000003. PubMed DOI PMC
Kuranaga E., Miura M. Nonapoptotic functions of caspases: Caspases as regulatory molecules for immunity and cell-fate determination. Trends Cell Biol. 2007;17:135–144. doi: 10.1016/j.tcb.2007.01.001. PubMed DOI
Communal C., Sumandea M., de Tombe P., Narula J., Solaro R.J., Hajjar R.J. Functional consequences of caspase activation in cardiac myocytes. Proc. Natl. Acad. Sci. USA. 2002;99:6252–6256. doi: 10.1073/pnas.092022999. PubMed DOI PMC
Cervenka L., Huskova Z., Kopkan L., Kikerlova S., Sedlakova L., Vanourkova Z., Alanova P., Kolar F., Hammock B.D., Hwang S.H., et al. Two pharmacological epoxyeicosatrienoic acid-enhancing therapies are effectively antihypertensive and reduce the severity of ischemic arrhythmias in rats with angiotensin II-dependent hypertension. J. Hypertens. 2018;36:1326–1341. doi: 10.1097/HJH.0000000000001708. PubMed DOI PMC
Curtis M.J., Alexander S., Cirino G., Docherty J.R., George C.H., Giembycz M.A., Hoyer D., Insel P.A., Izzo A.A., Ji Y., et al. Experimental design and analysis and their reporting II: Updated and simplified guidance for authors and peer reviewers. Br. J. Pharm. 2018;175:987–993. doi: 10.1111/bph.14153. PubMed DOI PMC
Neckar J., Hye Khan M.A., Gross G.J., Cyprova M., Hrdlicka J., Kvasilova A., Falck J.R., Campbell W.B., Sedlakova L., Skutova S., et al. Epoxyeicosatrienoic acid analog EET-B attenuates post-myocardial infarction remodeling in spontaneously hypertensive rats. Clin. Sci. (Lond.) 2019;133:939–951. doi: 10.1042/CS20180728. PubMed DOI PMC
Sixty Years of Heart Research in the Institute of Physiology of the Czech Academy of Sciences