Necrosis-like cell death modes in heart failure: the influence of aetiology and the effects of RIP3 inhibition

. 2025 Mar 15 ; () : . [epub] 20250315

Status Publisher Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40088261

Grantová podpora
APVV-20-0242 Agentúra na Podporu Výskumu a Vývoja
APPV-15-0607 Agentúra na Podporu Výskumu a Vývoja
NU21J-02-00039 Agentura Pro Zdravotnický Výzkum České Republiky
NU22-01-00096 Agentura Pro Zdravotnický Výzkum České Republiky
LX22NPO5104 National Institute for Research of Metabolic and Cardiovascular Diseases, Programme EXCELES
09I03-03-V04-00231 European Union - Next generation EU
IN 00023001 Ministerstvo Zdravotnictví Ceské Republiky

Odkazy

PubMed 40088261
DOI 10.1007/s00395-025-01101-4
PII: 10.1007/s00395-025-01101-4
Knihovny.cz E-zdroje

Since cell dying in heart failure (HF) may vary based on the aetiology, we examined the main forms of regulated necrosis, such as necroptosis and pyroptosis, in the hearts damaged due to myocardial infarction (MI) or pressure overload. We also investigated the effects of a drug inhibiting RIP3, a proposed convergent point for both these necrosis-like cell death modes. In rat hearts, left ventricular function, remodelling, pro-cell death, and pro-inflammatory events were investigated, and the pharmacodynamic action of RIP3 inhibitor (GSK'872) was assessed. Regardless of the HF aetiology, the heart cells were dying due to necroptosis, albeit the upstream signals may be different. Pyroptosis was observed only in post-MI HF. The dysregulated miRNAs in post-MI hearts were accompanied by higher levels of a predicted target, HMGB1, its receptors (TLRs), as well as the exacerbation of inflammation likely originating from macrophages. The RIP3 inhibitor suppressed necroptosis, unlike pyroptosis, normalised the dysregulated miRNAs and tended to decrease collagen content and affect macrophage infiltration without affecting cardiac function or structure. The drug also mitigated the local heart inflammation and normalised the higher circulating HMGB1 in rats with post-MI HF. Elevated serum levels of HMGB1 were also detected in HF patients and positively correlated with C-reactive protein, highlighting pro-inflammatory axis. In conclusion, in MI-, but not pressure overload-induced HF, both necroptosis and pyroptosis operate and might underlie HF pathogenesis. The RIP3-targeting pharmacological intervention might protect the heart by preventing pro-death and pro-inflammatory mechanisms, however, additional strategies targeting multiple pro-death pathways may exhibit greater cardioprotection.

Zobrazit více v PubMed

Adameova A, Goncalvesova E, Szobi A, Dhalla NS (2016) Necroptotic cell death in failing heart: relevance and proposed mechanisms. Heart Fail Rev 21:213–221. https://doi.org/10.1007/s10741-016-9537-8 PubMed DOI

Badoer E (2022) New Insights Into the Role of Inflammation in the Brain in Heart Failure. Front Physiol 13. https://doi.org/10.3389/FPHYS.2022.837723

Bai Y, Sun X, Chu Q, Li A, Qin Y, Li Y, Yue E, Wang H, Li GY, Zahra SM, Dong C, Jiang Y (2018) Caspase-1 regulate AngII-induced cardiomyocyte hypertrophy via upregulation of IL-1β. Biosci Rep. https://doi.org/10.1042/BSR20171438

Bergsbaken T, Fink SL, Cookson BT (2009) Pyroptosis: host cell death and inflammation. Nat Rev Microbiol 7:99–109. https://doi.org/10.1038/nrmicro2070 PubMed DOI PMC

Bertheloot D, Latz E, Franklin BS (2021) Necroptosis, pyroptosis and apoptosis: an intricate game of cell death. Cell Mol Immunol 18:1106–1121. https://doi.org/10.1038/S41423-020-00630-3 PubMed DOI PMC

Bettink SI, Reil JC, Kazakov A, Körbel C, Millenaar D, Laufs U, Scheller B, Böhm M, Schirmer SH (2022) Inhibition of TRIF-dependent inflammation decelerates afterload-induced myocardial remodeling. Biomedicines. https://doi.org/10.3390/BIOMEDICINES10102636/S1 PubMed DOI PMC

Briasoulis A, Androulakis E, Christophides T, Tousoulis D (2016) The role of inflammation and cell death in the pathogenesis, progression and treatment of heart failure. Heart Fail Rev 21:169–176. https://doi.org/10.1007/S10741-016-9533-Z PubMed DOI

Cao T, Ni R, Ding W, Ji X, Li L, Liao G, Lu Y, Fan GC, Zhang Z, Peng T (2022) MLKL-mediated necroptosis is a target for cardiac protection in mouse models of type-1 diabetes. Cardiovasc Diabetol. https://doi.org/10.1186/S12933-022-01602-9 PubMed DOI PMC

Conos SA, Chen KW, De Nardo D, Hara H, Whitehead L, Núñez G, Masters SL, Murphy JM, Schroder K, Vaux DL, Lawlor KE, Lindqvist LM, Vince JE (2017) Active MLKL triggers the NLRP3 inflammasome in a cell-intrinsic manner. Proc Natl Acad Sci USA 114:E961–E969. https://doi.org/10.1073/pnas.1613305114 PubMed DOI PMC

Council NR (2010) Guide for the Care and Use of Laboratory Animals: Eighth Edition. Guide for the Care and Use of Laboratory Animals. https://doi.org/10.17226/12910

Dondelinger Y, Declercq W, Montessuit S, Roelandt R, Goncalves A, Bruggeman I, Hulpiau P, Weber K, Sehon CAA, Marquis RWW, Bertin J, Gough PJJ, Savvides S, Martinou J-C, Bertrand MJMJM, Vandenabeele P, DeclercDondelinger Y, Declercq W, Montessuit S, Roelandt R, Goncalves A, Bruggeman I, Vandenabeele P (2014) MLKL compromises plasma membrane integrity by binding to phosphatidylinositol phosphates. Cell Rep 7(4):971–981. https://doi.org/10.1016/j.celrep.2014.04.026 PubMed DOI

Ferrara M, Chialli G, Ferreira LM, Ruggieri E, Careccia G, Preti A, Piccirillo R, Bianchi ME, Sitia G, Venereau E (2020) Oxidation of HMGB1 is a dynamically regulated process in physiological and pathological conditions. Front Immunol 11:544164. https://doi.org/10.3389/FIMMU.2020.01122/BIBTEX DOI

Han Y, Qiu H, Pei X, Fan Y, Tian H, Geng J (2018) Low-dose sinapic acid abates the pyroptosis of macrophages by downregulation of lncRNA-MALAT1 in rats with diabetic atherosclerosis. J Cardiovasc Pharmacol 71:104–112. https://doi.org/10.1097/FJC.0000000000000550 PubMed DOI

Heidenreich PA, Bozkurt B, Aguilar D, Allen LA, Byun JJ, Colvin MM, Deswal A, Drazner MH, Dunlay SM, Evers LR, Fang JC, Fedson SE, Fonarow GC, Hayek SS, Hernandez AF, Khazanie P, Kittleson MM, Lee CS, Link MS, Milano CA, Nnacheta LC, Sandhu AT, Stevenson LW, Vardeny O, Vest AR, Yancy CW (2022) 2022 AHA/ACC/HFSA guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association Joint Committee on clinical practice guidelines. J Am Coll Cardiol 79:e263–e421. https://doi.org/10.1016/j.jacc.2021.12.012 PubMed DOI

Heusch G (2020) (2020) Myocardial ischaemia–reperfusion injury and cardioprotection in perspective. Nat Rev Cardiol 17:773–789. https://doi.org/10.1038/s41569-020-0403-y PubMed DOI

Heusch G (2024) Myocardial ischemia/reperfusion: Translational pathophysiology of ischemic heart disease. Med 5:10–31. https://doi.org/10.1016/J.MEDJ.2023.12.007 PubMed DOI

Horvath C, Jarabicova I, Kura B, Kalocayova B, Faurobert E, Davidson SM, Adameova A (2023) Novel, non-conventional pathways of necroptosis in the heart and other organs: Molecular mechanisms, regulation and inter-organelle interplay. Biochim Biophys Acta Mol Cell Res. https://doi.org/10.1016/J.BBAMCR.2023.119534 PubMed DOI

Hu W, Wu X, Yu D, Zhao L, Zhu X, Li X, Huang T, Chu Z, Xu Y (2020) Regulation of JNK signaling pathway and RIPK3/AIF in necroptosis-mediated global cerebral ischemia/reperfusion injury in rats. Exp Neurol. https://doi.org/10.1016/J.EXPNEUROL.2020.113374 PubMed DOI

Jarabicová I, Horváth C, Chudý M, Goncalvesová E, Adameová A (2024) Analysis of the serum levels of RIP3 and Drp1 in patients with heart failure. ESC Heart Fail. https://doi.org/10.1002/EHF2.14771 PubMed DOI PMC

Jarabicová I, Horváth C, Veľasová E, Bies Piváčková L, Vetešková J, Klimas J, Křenek P, Adameová A (2022) Analysis of necroptosis and its association with pyroptosis in organ damage in experimental pulmonary arterial hypertension. J Cell Mol Med 26:2633–2645. https://doi.org/10.1111/JCMM.17272 PubMed DOI PMC

Kaiser WJ, Sridharan H, Huang C, Mandal P, Upton JW, Gough PJ, Sehon CA, Marquis RW, Bertin J, Mocarski ES (2013) Toll-like Receptor 3-mediated Necrosis via TRIF, RIP3, and MLKL. J Biol Chem 288:31268. https://doi.org/10.1074/JBC.M113.462341 PubMed DOI PMC

Kolář F, Papoušek F, Pelouch V, Ošťádal B (1998) Pressure overload induced in newborn rats: effects on left ventricular growth, morphology, and function. Pediatr Res 43:521–526. https://doi.org/10.1203/00006450-199804000-00014 PubMed DOI

Lawlor KE, Khan N, Mildenhall A, Gerlic M, Croker BA, D’Cruz AA, Hall C, Kaur Spall S, Anderton H, Masters SL, Rashidi M, Wicks IP, Alexander WS, Mitsuuchi Y, Benetatos CA, Condon SM, Wong WWL, Silke J, Vaux DL, Vince JE (2015) RIPK3 promotes cell death and NLRP3 inflammasome activation in the absence of MLKL. Nat Commun. https://doi.org/10.1038/NCOMMS7282 PubMed DOI

Lichý M, Szobi A, Hrdlička J, Horváth C, Kormanová V, Rajtík T, Neckář J, Kolář F, Adameová A (2019) Different signalling in infarcted and non-infarcted areas of rat failing hearts: A role of necroptosis and inflammation. J Cell Mol Med. https://doi.org/10.1111/jcmm.14536 PubMed DOI PMC

Lichý M, Szobi A, Hrdlička J, Neckář J, Kolář F, Adameová A (2020) Programmed cell death in the left and right ventricle of the late phase of post-infarction heart failure. Int J Mol Sci 21:1–18. https://doi.org/10.3390/ijms21207782 DOI

Liu S, Liu H, Johnston A, Hanna-Addams S, Reynoso E, Xiang Y, Wang Z (2017) MLKL forms disulfide bond-dependent amyloid-like polymers to induce necroptosis. Proc Natl Acad Sci USA 114:E7450–E7459. https://doi.org/10.1073/PNAS.1707531114 PubMed DOI PMC

Liu T, Zhang DY, Zhou YH, Han QF, Wang LH, Wu L, Yao HC (2015) Increased serum HMGB1 level may predict the fatal outcomes in patients with chronic heart failure. Int J Cardiol 184:318–320. https://doi.org/10.1016/j.ijcard.2015.02.088 PubMed DOI

Mishra PK, Adameova A, Hill JA, Baines CP, Kang PM, Downey JM, Narula J, Takahashi M, Abbate A, Piristine HC, Kar S, Su S, Higa JK, Kawasaki NK, Matsui T (2019) Guidelines in cardiovascular research: guidelines for evaluating myocardial cell death. Am J Physiol Heart Circ Physiol 317:H891. https://doi.org/10.1152/AJPHEART.00259.2019 PubMed DOI PMC

Moe GW, Marín-García J (2016) Role of cell death in the progression of heart failure. Heart Fail Rev 21:157–167. https://doi.org/10.1007/s10741-016-9532-0 PubMed DOI

Novotny J, Hrbasová M, Kolář F, Svoboda P (2003) Cardiomegaly induced by pressure overload in newborn rats is accompanied by altered expression of the long isoform of G s α protein and deranged signaling of adenylyl cyclase. Mol Cell Biochem 245:157–166. https://doi.org/10.1023/A:1022828430565/METRICS PubMed DOI

Puggia I, Rowland TJ, Miyamoto SD, Sinagra G, Mestroni L (2018) Molecular and Cellular Mechanisms in Heart Failure. Heart Failure Child Young Adult. https://doi.org/10.1016/B978-0-12-802393-8.00001-6 DOI

Riehle C, Bauersachs J (2019) Key inflammatory mechanisms underlying heart failure. Herz 44:96. https://doi.org/10.1007/S00059-019-4785-8 PubMed DOI PMC

Roger VL (2021) Epidemiology of heart failure. Circ Res 128:1421–1434. https://doi.org/10.1161/CIRCRESAHA.121.318172 PubMed DOI

Salo H, Qu H, Mitsiou D, Aucott H, Han J, Zhang XM, Aulin C, Harris HE (2021) Disulfide and fully reduced hmgb1 induce different macrophage polarization and migration patterns. Biomolecules. https://doi.org/10.3390/BIOM11060800/S1 PubMed DOI PMC

Sander H, Wallace S, Plouse R, Tiwari S, Gomes AV (2019) Ponceau S waste: Ponceau S staining for total protein normalization. Anal Biochem 575:44–53. https://doi.org/10.1016/j.ab.2019.03.010 PubMed DOI PMC

Shi H, Gao Y, Dong Z, Yang J, Gao R, Li X, Zhang S, Ma L, Sun X, Wang Z, Zhang F, Hu K, Sun A, Ge J (2021) GSDMD-mediated cardiomyocyte pyroptosis promotes myocardial I/R injury. Circ Res 129:383–396. https://doi.org/10.1161/CIRCRESAHA.120.318629 PubMed DOI PMC

Sutovska H, Molcan L, Majzunova M, Sykora M, Kopkan L, Zeman M (2023) Mineralocorticoid receptor blockade protects the kidneys but does not affect inverted blood pressure rhythm in hypertensive transgenic (mRen-2)27 rats. Mol Cell Endocrinol. https://doi.org/10.1016/J.MCE.2023.111967 PubMed DOI

Szobi A, Farkašová-Ledvényiová V, Lichý M, Muráriková M, Čarnická S, Ravingerová T, Adameová A (2018) Cardioprotection of ischaemic preconditioning is associated with inhibition of translocation of MLKL within the plasma membrane. J Cell Mol Med 22:4183. https://doi.org/10.1111/JCMM.13697 PubMed DOI PMC

Szobi A, Gonçalvesová E, Varga Z, Leszek P, Kuśmierczyk M, Hulman M, Kyselovič J, Ferdinandy P, Adameová A (2017) Analysis of necroptotic proteins in failing human hearts. J Transl Med 15:86. https://doi.org/10.1186/S12967-017-1189-5 PubMed DOI PMC

Timmers L, Sluijter JPG, Van Keulen JK, Hoefer IE, Nederhoff MGJ, Goumans MJ, Doevendans PA, Van Echteld CJA, Joles JA, Quax PH, Piek JJ, Pasterkamp G, De Kleijn DPV (2008) Toll-like receptor 4 mediates maladaptive left ventricular remodeling and impairs cardiac function after myocardial infarction. Circ Res 102:257–264. https://doi.org/10.1161/CIRCRESAHA.107.158220 PubMed DOI

Upton JW, Kaiser WJ, Mocarski ES (2012) DAI/ZBP1/DLM-1 complexes with RIP3 to mediate virus-induced programmed necrosis that is targeted by murine cytomegalovirus vIRA. Cell Host Microbe 11:290–297. https://doi.org/10.1016/J.CHOM.2012.01.016 PubMed DOI PMC

Volz HC, Laohachewin D, Schellberg D, Wienbrandt AR, Nelles M, Zugck C, Kaya Z, Katus HA, Andrassy M (2012) HMGB1 is an independent predictor of death and heart transplantation in heart failure. Clin Res Cardiol 101:427–435. https://doi.org/10.1007/s00392-011-0409-x PubMed DOI

Wang H, Sun L, Su L, Rizo J, Liu L, Wang LF, Wang FS, Wang X (2014) Mixed lineage kinase domain-like protein MLKL causes necrotic membrane disruption upon phosphorylation by RIP3. Mol Cell 54:133–146. https://doi.org/10.1016/j.molcel.2014.03.003 PubMed DOI

Wang J, Deng B, Liu Q, Huang Y, Chen W, Li J, Zhou Z, Zhang L, Liang B, He J, Chen Z, Yan C, Yang Z, Xian S (2020) Pyroptosis and ferroptosis induced by mixed lineage kinase 3 (MLK3) signaling in cardiomyocytes are essential for myocardial fibrosis in response to pressure overload. Cell Death Dis 11:1–19. https://doi.org/10.1038/s41419-020-02777-3 PubMed DOI PMC

Wang LJ, Lu L, Zhang FR, Chen QJ, De Caterina R, Shen WF (2011) Increased serum high-mobility group box-1 and cleaved receptor for advanced glycation endproducts levels and decreased endogenous secretory receptor for advanced glycation endproducts levels in diabetic and non-diabetic patients with heart failure. Eur J Heart Fail 13:440–449. https://doi.org/10.1093/EURJHF/HFQ231 PubMed DOI

Yang F, Shang L, Wang S, Liu Y, Ren H, Zhu W, Shi X (2019) TNF α-mediated necroptosis aggravates ischemia-reperfusion injury in the fatty liver by regulating the inflammatory response. Oxid Med Cell Longev. https://doi.org/10.1155/2019/2301903 PubMed DOI PMC

Yang XS, Yi TL, Zhang S, Xu ZW, Yu ZQ, Sun HT, Yang C, Tu Y, Cheng SX (2017) Hypoxia-inducible factor-1 alpha is involved in RIP-induced necroptosis caused by in vitro and in vivo ischemic brain injury. Sci Rep. https://doi.org/10.1038/S41598-017-06088-0 PubMed DOI PMC

Yang Y, Lv J, Jiang S, Ma Z, Wang D, Hu W, Deng C, Fan C, Di S, Sun Y, Yi W (2016) The emerging role of Toll-like receptor 4 in myocardial inflammation. Cell Death Dis 7:e2234. https://doi.org/10.1038/CDDIS.2016.140 PubMed DOI PMC

Yu L, Feng Z (2018) The role of toll-like receptor signaling in the progression of heart failure. Mediators Inflamm. https://doi.org/10.1155/2018/9874109 PubMed DOI PMC

Yue R, Zheng Z, Luo Y, Wang X, Lv M, Qin D, Tan Q, Zhang Y, Wang T (2021) Hu H (2021) NLRP3-mediated pyroptosis aggravates pressure overload-induced cardiac hypertrophy, fibrosis, and dysfunction in mice: cardioprotective role of irisin. Cell Death Discov 7:1–11. https://doi.org/10.1038/s41420-021-00434-y DOI

Zhang H, Zhou L, Zhou Y, Wang L, Jiang W, Liu L, Yue S, Zheng P, Liu H (2021) Intermittent hypoxia aggravates non-alcoholic fatty liver disease via RIPK3-dependent necroptosis-modulated Nrf2/NFκB signaling pathway. Life Sci. https://doi.org/10.1016/J.LFS.2021.119963 PubMed DOI PMC

Zhang J, Cao J, Qian J, Gu X, Zhang W, Chen X (2023) Regulatory mechanism of CaMKII δ mediated by RIPK3 on myocardial fibrosis and reversal effects of RIPK3 inhibitor GSK’872. Biomed Pharmacother. https://doi.org/10.1016/J.BIOPHA.2023.115380 PubMed DOI PMC

Zhang Y, Bauersachs J, Langer HF (2017) Immune mechanisms in heart failure. Eur J Heart Fail 19:1379–1389. https://doi.org/10.1002/ejhf.942 PubMed DOI

Zhang Y, Liu X, Bai X, Lin Y, Li Z, Fu J, Li M, Zhao T, Yang H, Xu R, Li J, Ju J, Cai B, Xu C, Yang B (2018) Melatonin prevents endothelial cell pyroptosis via regulation of long noncoding RNA MEG3/miR-223/NLRP3 axis. J Pineal Res. https://doi.org/10.1111/JPI.12449 PubMed DOI PMC

Zuliani-Alvarez L, Marzeda AM, Deligne C, Schwenzer A, McCann FE, Marsden BD, Piccinini AM (2017) Midwood KS (2017) Mapping tenascin-C interaction with toll-like receptor 4 reveals a new subset of endogenous inflammatory triggers. Nat Commun 8:1–14. https://doi.org/10.1038/s41467-017-01718-7 DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...