Epoxylipids and soluble epoxide hydrolase in heart diseases
Language English Country Great Britain, England Media print-electronic
Document type Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't, Review
Grant support
R01 DK103616
NIDDK NIH HHS - United States
R01 DK126452
NIDDK NIH HHS - United States
PubMed
34863976
PubMed Central
PMC8712413
DOI
10.1016/j.bcp.2021.114866
PII: S0006-2952(21)00492-5
Knihovny.cz E-resources
- Keywords
- Coronary artery, Cytochrome P450, Eicosanoids, Heart failure, Hypertension, Inflammation, Mitochondrial function, Myocardial infarction, Soluble epoxide hydrolase,
- MeSH
- Epoxide Hydrolases antagonists & inhibitors metabolism MeSH
- Epoxy Compounds chemistry metabolism MeSH
- Myocardial Infarction drug therapy enzymology metabolism MeSH
- Enzyme Inhibitors therapeutic use MeSH
- Tachycardia, Ventricular drug therapy enzymology metabolism MeSH
- Humans MeSH
- Fatty Acids metabolism MeSH
- Heart Diseases drug therapy enzymology metabolism MeSH
- Solubility MeSH
- Arrhythmias, Cardiac drug therapy enzymology metabolism MeSH
- Heart Failure drug therapy enzymology metabolism MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Research Support, N.I.H., Extramural MeSH
- Names of Substances
- Epoxide Hydrolases MeSH
- Epoxy Compounds MeSH
- Enzyme Inhibitors MeSH
- Fatty Acids MeSH
Cardiovascular and heart diseases are leading causes of morbidity and mortality. Coronary artery endothelial and vascular dysfunction, inflammation, and mitochondrial dysfunction contribute to progression of heart diseases such as arrhythmias, congestive heart failure, and heart attacks. Classes of fatty acid epoxylipids and their enzymatic regulation by soluble epoxide hydrolase (sEH) have been implicated in coronary artery dysfunction, inflammation, and mitochondrial dysfunction in heart diseases. Likewise, genetic and pharmacological manipulations of epoxylipids have been demonstrated to have therapeutic benefits for heart diseases. Increasing epoxylipids reduce cardiac hypertrophy and fibrosis and improve cardiac function. Beneficial actions for epoxylipids have been demonstrated in cardiac ischemia reperfusion injury, electrical conductance abnormalities and arrhythmias, and ventricular tachycardia. This review discusses past and recent findings on the contribution of epoxylipids in heart diseases and the potential for their manipulation to treat heart attacks, arrhythmias, ventricular tachycardia, and heart failure.
See more in PubMed
Townsend N, Kazakiewicz D, Lucy Wright F, Timmis A, Huculeci R, Torbica A, Gale CP, Achenbach S, Weidinger F, Vardas P. Epidemiology of cardiovascular disease in Europe. Nat Rev Cardiol. 2021. September 8. doi: 10.1038/s41569-021-00607-3. Epub ahead of print. PubMed DOI
Saglietto A, Manfredi R, Elia E, D’Ascenzo F, DE Ferrari GM, Biondi-Zoccai G, Munzel T. Cardiovascular disease burden: Italian and global perspectives. Minerva Cardiol Angiol. 2021. June;69(3):231–240. doi: 10.23736/S2724-5683.21.05538-9. Epub 2021 Mar 11. PubMed DOI
Francula-Zaninovic S, Nola IA. Management of Measurable Variable Cardiovascular Disease’ Risk Factors. Curr Cardiol Rev. 2018;14(3):153–163. doi: 10.2174/1573403X14666180222102312. PubMed DOI PMC
van Trier TJ, Mohammadnia N, Snaterse M, Peters RJG, Jørstad HT, Bax WA, Mackenbach JD. An appeal to our government for nationwide policies in the prevention of cardiovascular disease. Neth Heart J. 2021. October 4:1–5. doi: 10.1007/s12471-021-01628-w. Epub ahead of print. PubMed DOI PMC
Garcia RA, Spertus JA. Using Patient-Reported Outcomes to Assess Healthcare Quality: Toward Better Measurement of Patient-Centered Care in Cardiovascular Disease. Methodist Debakey Cardiovasc J. 2021. April 5;17(1):e1–e9. doi: 10.14797/VUWD7697. PubMed DOI PMC
Figtree GA, Broadfoot K, Casadei B, Califf R, Crea F, Drummond GR, Freedman JE, Guzik TJ, Harrison D, Hausenloy DJ, Hill JA, Januzzi JL, Kingwell BA, Lam CSP, MacRae CA, Misselwitz F, Miura T, Ritchie RH, Tomaszewski M, Wu JC, Xiao J, Zannad F. A Call to Action for New Global Approaches to Cardiovascular Disease Drug Solutions. Circulation. 2021. July 13;144(2):159–169. doi: 10.1161/CIR.0000000000000981. Epub 2021 Apr 20. PubMed DOI
Paz Landim M, Cosenso-Martin LN, Polegati Santos A, Roma Uyemura JR, Barufi Fernandes L, da Silva Lopes V, Yugar-Toledo JC, Vilela-Martin JF. Predictive Factors for Target Organ Injuries in Hypertensive Individuals. Integr Blood Press Control. 2021. August 14;14:113–121. doi: 10.2147/IBPC.S324151. PubMed DOI PMC
Dahlöf B Cardiovascular disease risk factors: epidemiology and risk assessment. Am J Cardiol. 2010. January 4;105(1 Suppl):3A–9A. doi: 10.1016/j.amjcard.2009.10.007. PubMed DOI
Versari D, Daghini E, Virdis A, Ghiadoni L, Taddei S. Endothelial dysfunction as a target for prevention of cardiovascular disease. Diabetes Care. 2009. November;32 Suppl 2(Suppl 2):S314–21. doi: 10.2337/dc09-S330. PubMed DOI PMC
Heitzer T, Schlinzig T, Krohn K, Meinertz T, Münzel T. Endothelial dysfunction, oxidative stress, and risk of cardiovascular events in patients with coronary artery disease. Circulation. 2001. November 27;104(22):2673–8. doi: 10.1161/hc4601.099485. Erratum in: Circulation. 2003 Jul 29;108(4):500. PubMed DOI
Tsutsui H, Kinugawa S, Matsushima S. Oxidative stress and heart failure. Am J Physiol Heart Circ Physiol. 2011. December;301(6):H2181–90. doi: 10.1152/ajpheart.00554.2011. Epub 2011 Sep 23. PubMed DOI
Mei Y, Thompson MD, Cohen RA, Tong X. Autophagy and oxidative stress in cardiovascular diseases. Biochim Biophys Acta. 2015. February;1852(2):243–51. doi: 10.1016/j.bbadis.2014.05.005. Epub 2014 May 13. PubMed DOI PMC
Imig JD, Jankiewicz WK, Khan AH. Epoxy Fatty Acids: From Salt Regulation to Kidney and Cardiovascular Therapeutics: 2019 Lewis K. Dahl Memorial Lecture. Hypertension. 2020. July;76(1):3–15. doi: 10.1161/HYPERTENSIONAHA.120.13898. Epub 2020 Jun 1. PubMed DOI PMC
Jamieson KL, Endo T, Darwesh AM, Samokhvalov V, Seubert JM. Cytochrome P450-derived eicosanoids and heart function. Pharmacol Ther. 2017. November;179:47–83. doi:10.1016/j.pharmthera.2017.05.005. Epub 2017 May 25. PubMed DOI
Imig JD. Prospective for cytochrome P450 epoxygenase cardiovascular and renal therapeutics. Pharmacol Ther. 2018. December;192:1–19. doi: 10.1016/j.pharmthera.2018.06.015. Epub 2018 Jun 30. PubMed DOI PMC
Schunck WH, Konkel A, Fischer R, Weylandt KH. Therapeutic potential of omega-3 fatty acid-derived epoxyeicosanoids in cardiovascular and inflammatory diseases. Pharmacol Ther. 2018. March;183:177–204. doi: 10.1016/j.pharmthera.2017.10.016. Epub 2017 Nov 7. PubMed DOI
Imig JD. Epoxides and soluble epoxide hydrolase in cardiovascular physiology. Physiol Rev. 2012. January;92(1):101–30. doi: 10.1152/physrev.00021.2011. PubMed DOI PMC
Imig JD, Hammock BD. Soluble epoxide hydrolase as a therapeutic target for cardiovascular diseases. Nat Rev Drug Discov. 2009. October;8(10):794–805. doi: 10.1038/nrd2875. PubMed DOI PMC
Bellien J, Joannides R. Epoxyeicosatrienoic acid pathway in human health and diseases. J Cardiovasc Pharmacol. 2013. March;61(3):188–96. doi: 10.1097/FJC.0b013e318273b007. PubMed DOI
Bellien J, Iacob M, Remy-Jouet I, Lucas D, Monteil C, Gutierrez L, Vendeville C, Dreano Y, Mercier A, Thuillez C, Joannides R. Epoxyeicosatrienoic acids contribute with altered nitric oxide and endothelin-1 pathways to conduit artery endothelial dysfunction in essential hypertension. Circulation. 2012. March 13;125(10):1266–75. doi: 10.1161/CIRCULATIONAHA.111.070680. PubMed DOI
Aliwarga T, Evangelista EA, Sotoodehnia N, Lemaitre RN, Totah RA. Regulation of CYP2J2 and EET Levels in Cardiac Disease and Diabetes. Int J Mol Sci. 2018. June 29;19(7):1916. doi: 10.3390/ijms19071916. PubMed DOI PMC
Akasaka T, Sueta D, Arima Y, Tabata N, Takashio S, Izumiya Y, Yamamoto E, Tsujita K, Kojima S, Kaikita K, Kajiwara A, Morita K, Oniki K, Saruwatari J, Nakagawa K, Hokimoto S. CYP2C19 variants and epoxyeicosatrienoic acids in patients with microvascular angina. Int J Cardiol Heart Vasc. 2017. April 12;15:15–20. doi: 10.1016/j.ijcha.2017.03.001. PubMed DOI PMC
Theken KN, Schuck RN, Edin ML, Tran B, Ellis K, Bass A, Lih FB, Tomer KB, Poloyac SM, Wu MC, Hinderliter AL, Zeldin DC, Stouffer GA, Lee CR. Evaluation of cytochrome P450-derived eicosanoids in humans with stable atherosclerotic cardiovascular disease. Atherosclerosis. 2012. June;222(2):530–6. doi: 10.1016/j.atherosclerosis.2012.03.022. Epub 2012 Mar 27. PubMed DOI PMC
Xu Y, Ding H, Peng J, Cui G, Liu L, Cianflone K, Wang DW. Association between polymorphisms of CYP2J2 and EPHX2 genes and risk of coronary artery disease. Pharmacogenet Genomics. 2011. August;21(8):489–94. doi: 10.1097/FPC.0b013e3283485eb2. PubMed DOI
Polonikov A, Bykanova M, Ponomarenko I, Sirotina S, Bocharova A, Vagaytseva K, Stepanov V, Churnosov M, Bushueva O, Solodilova M, Shvetsov Y, Ivanov V. The contribution of CYP2C gene subfamily involved in epoxygenase pathway of arachidonic acids metabolism to hypertension susceptibility in Russian population. Clin Exp Hypertens. 2017;39(4):306–311. doi:10.1080/10641963.2016.1246562. Epub 2017 May 17. PubMed DOI
Wu SN, Zhang Y, Gardner CO, Chen Q, Li Y, Wang GL, Gao PJ, Zhu DL. Evidence for association of polymorphisms in CYP2J2 and susceptibility to essential hypertension. Ann Hum Genet. 2007. July;71(Pt 4):519–25. doi: 10.1111/j.1469-1809.2007.00346.x. Epub 2007 Feb 5. PubMed DOI
Ward NC, Croft KD, Blacker D, Hankey GJ, Barden A, Mori TA, Puddey IB, Beer CD. Cytochrome P450 metabolites of arachidonic acid are elevated in stroke patients compared with healthy controls. Clin Sci (Lond). 2011. December;121(11):501–7. doi: 10.1042/CS20110215. PubMed DOI
Monti J, Fischer J, Paskas S, Heinig M, Schulz H, Gösele C, Heuser A, Fischer R, Schmidt C, Schirdewan A, Gross V, Hummel O, Maatz H, Patone G, Saar K, Vingron M, Weldon SM, Lindpaintner K, Hammock BD, Rohde K, Dietz R, Cook SA, Schunck WH, Luft FC, Hubner N. Soluble epoxide hydrolase is a susceptibility factor for heart failure in a rat model of human disease. Nat Genet. 2008. May;40(5):529–37. doi: 10.1038/ng.129. PubMed DOI PMC
Zhao X, Pollock DM, Inscho EW, Zeldin DC, Imig JD. Decreased renal cytochrome P450 2C enzymes and impaired vasodilation are associated with angiotensin salt-sensitive hypertension. Hypertension. 2003. March;41(3 Pt 2):709–14. doi: 10.1161/01.HYP.0000047877.36743.FA. Epub 2002 Dec 16. PubMed DOI
Imig JD, Zhao X, Capdevila JH, Morisseau C, Hammock BD. Soluble epoxide hydrolase inhibition lowers arterial blood pressure in angiotensin II hypertension. Hypertension. 2002. February;39(2 Pt 2):690–4. doi: 10.1161/hy0202.103788. PubMed DOI
Jung O, Brandes RP, Kim IH, Schweda F, Schmidt R, Hammock BD, Busse R, Fleming I. Soluble epoxide hydrolase is a main effector of angiotensin II-induced hypertension. Hypertension. 2005. April;45(4):759–65. doi: 10.1161/01.HYP.0000153792.29478.1d. Epub 2005 Feb 7. PubMed DOI
Lee CR, Imig JD, Edin ML, Foley J, DeGraff LM, Bradbury JA, Graves JP, Lih FB, Clark J, Myers P, Perrow AL, Lepp AN, Kannon MA, Ronnekleiv OK, Alkayed NJ, Falck JR, Tomer KB, Zeldin DC. Endothelial expression of human cytochrome P450 epoxygenases lowers blood pressure and attenuates hypertension-induced renal injury in mice. FASEB J. 2010. October;24(10):3770–81. doi: 10.1096/fj.10-160119. Epub 2010 May 21. PubMed DOI PMC
Seubert JM, Sinal CJ, Graves J, DeGraff LM, Bradbury JA, Lee CR, Goralski K, Carey MA, Luria A, Newman JW, Hammock BD, Falck JR, Roberts H, Rockman HA, Murphy E, Zeldin DC. Role of soluble epoxide hydrolase in postischemic recovery of heart contractile function. Circ Res. 2006. August 18;99(4):442–50. doi: 10.1161/01.RES.0000237390.92932.37. Epub 2006 Jul 20. PubMed DOI PMC
Zhou C, Huang J, Li Q, Zhan C, Xu X, Zhang X, Ai D, Zhu Y, Wen Z, Wang DW. CYP2J2-derived EETs attenuated ethanol-induced myocardial dysfunction through inducing autophagy and reducing apoptosis. Free Radic Biol Med. 2018. March;117:168–179. doi: 10.1016/j.freeradbiomed.2018.02.009. Epub 2018 Feb 8. PubMed DOI
Yang L, Ni L, Duan Q, Wang X, Chen C, Chen S, Chaugai S, Zeldin DC, Tang JR, Wang DW. CYP epoxygenase 2J2 prevents cardiac fibrosis by suppression of transmission of pro-inflammation from cardiomyocytes to macrophages. Prostaglandins Other Lipid Mediat. 2015. Jan-Mar;116–117:64–75. doi: 10.1016/j.prostaglandins.2015.01.004. Epub 2015 Feb 14. PubMed DOI PMC
Manhiani M, Quigley JE, Knight SF, Tasoobshirazi S, Moore T, Brands MW, Hammock BD, Imig JD. Soluble epoxide hydrolase gene deletion attenuates renal injury and inflammation with DOCA-salt hypertension. Am J Physiol Renal Physiol. 2009. September;297(3):F740–8. doi: 10.1152/ajprenal.00098.2009. Epub 2009 Jun 24. PubMed DOI PMC
Campbell WB, Imig JD, Schmitz JM, Falck JR. Orally Active Epoxyeicosatrienoic Acid Analogs. J Cardiovasc Pharmacol. 2017. October;70(4):211–224. doi: 10.1097/FJC.0000000000000523. PubMed DOI PMC
Seubert JM, Zeldin DC, Nithipatikom K, Gross GJ. Role of epoxyeicosatrienoic acids in protecting the myocardium following ischemia/reperfusion injury. Prostaglandins Other Lipid Mediat. 2007. January;82(1–4):50–9. doi: 10.1016/j.prostaglandins.2006.05.017. Epub 2006 Jul 10. PubMed DOI PMC
El-Sikhry HE, Alsaleh N, Dakarapu R, Falck JR, Seubert JM. Novel Roles of Epoxyeicosanoids in Regulating Cardiac Mitochondria. PLoS One. 2016. August 5;11(8):e0160380. doi: 10.1371/journal.pone.0160380. PubMed DOI PMC
Gross GJ, Hsu A, Pfeiffer AW, Nithipatikom K. Roles of endothelial nitric oxide synthase (eNOS) and mitochondrial permeability transition pore (MPTP) in epoxyeicosatrienoic acid (EET)-induced cardioprotection against infarction in intact rat hearts. J Mol Cell Cardiol. 2013. June;59:20–9. doi: 10.1016/j.yjmcc.2013.02.003. Epub 2013 Feb 16. PubMed DOI PMC
Chaudhary KR, Cho WJ, Yang F, Samokhvalov V, El-Sikhry HE, Daniel EE, Seubert JM. Effect of ischemia reperfusion injury and epoxyeicosatrienoic acids on caveolin expression in mouse myocardium. J Cardiovasc Pharmacol. 2013. March;61(3):258–63. doi 10.1097/FJC.0b013e31827afcee. PubMed DOI
Katragadda D, Batchu SN, Cho WJ, Chaudhary KR, Falck JR, Seubert JM. Epoxyeicosatrienoic acids limit damage to mitochondrial function following stress in cardiac cells. J Mol Cell Cardiol. 2009. June;46(6):867–75. doi: 10.1016/j.yjmcc.2009.02.028. Epub 2009 Mar 12. PubMed DOI
Batchu SN, Chaudhary KR, El-Sikhry H, Yang W, Light PE, Oudit GY, Seubert JM. Role of PI3Kα and sarcolemmal ATP-sensitive potassium channels in epoxyeicosatrienoic acid mediated cardioprotection. J Mol Cell Cardiol. 2012. July;53(1):43–52. doi: 10.1016/j.yjmcc.2012.04.008. Epub 2012 Apr 27. PubMed DOI
Dhanasekaran A, Gruenloh SK, Buonaccorsi JN, Zhang R, Gross GJ, Falck JR, Patel PK, Jacobs ER, Medhora M. Multiple antiapoptotic targets of the PI3K/Akt survival pathway are activated by epoxyeicosatrienoic acids to protect cardiomyocytes from hypoxia/anoxia. Am J Physiol Heart Circ Physiol. 2008. February;294(2):H724–35. doi: 10.1152/ajpheart.00979.2007. Epub 2007 Nov 30. PubMed DOI PMC
Dai M, Wu L, He Z, Zhang S, Chen C, Xu X, Wang P, Gruzdev A, Zeldin DC, Wang DW. Epoxyeicosatrienoic acids regulate macrophage polarization and prevent LPS-induced cardiac dysfunction. J Cell Physiol. 2015. September;230(9):2108–19. doi: 10.1002/jcp.24939. PubMed DOI PMC
Oppedisano F, Macrì R, Gliozzi M, Musolino V, Carresi C, Maiuolo J, Bosco F, Nucera S, Caterina Zito M, Guarnieri L, Scarano F, Nicita C, Coppoletta AR, Ruga S, Scicchitano M, Mollace R, Palma E, Mollace V. The Anti-Inflammatory and Antioxidant Properties of n-3 PUFAs: Their Role in Cardiovascular Protection. Biomedicines. 2020. August 25;8(9):306. doi: 10.3390/biomedicines8090306. PubMed DOI PMC
Breslow JL. n-3 fatty acids and cardiovascular disease. Am J Clin Nutr. 2006. June;83(6 Suppl):1477S–1482S. doi: 10.1093/ajcn/83.6.1477S. PubMed DOI
Macartney MJ, Peoples GE, McLennan PL. Cardiac contractile dysfunction, during and following ischaemia, is attenuated by low-dose dietary fish oil in rats. Eur J Nutr. 2021. June 13. doi: 10.1007/s00394-021-02608-x. Epub ahead of print. PubMed DOI
Hsu HC, Chen CY, Chen MF. N-3 polyunsaturated fatty acids decrease levels of doxorubicin-induced reactive oxygen species in cardiomyocytes -- involvement of uncoupling protein UCP2. J Biomed Sci. 2014. November 18;21(1):101. doi: 10.1186/s12929-014-0101-3. PubMed DOI PMC
Engelbrecht AM, Engelbrecht P, Genade S, Niesler C, Page C, Smuts M, Lochner A. Long-chain polyunsaturated fatty acids protect the heart against ischemia/reperfusion-induced injury via a MAPK dependent pathway. J Mol Cell Cardiol. 2005. December;39(6):940–54. doi: 10.1016/j.yjmcc.2005.08.004. Epub 2005 Oct 10. PubMed DOI
Samokhvalov V, Jamieson KL, Vriend J, Quan S, Seubert JM. CYP-epoxygenase metabolites of docosahexaenoic acid protect HL-1 cardiac cells against LPS-induced cytotoxicity Through SIRT1. Cell Death Discov. 2015. November 23;1:15054–. doi: 10.1038/cddiscovery.2015.54. PubMed DOI PMC
Sergiel JP, Martine L, Raederstorff D, Grynberg A, Demaison L. Individual effects of dietary EPA and DHA on the functioning of the isolated working rat heart. Can J Physiol Pharmacol. 1998. Jul-Aug;76(7–8):728–36. doi: 10.1139/cjpp-76-7-8-728. PubMed DOI
Darwesh AM, Jamieson KL, Wang C, Samokhvalov V, Seubert JM. Cardioprotective effects of CYP-derived epoxy metabolites of docosahexaenoic acid involve limiting NLRP3 inflammasome activation 1. Can J Physiol Pharmacol. 2019. June;97(6):544–556. doi: 10.1139/cjpp-2018-0480. Epub 2018 Oct 16. PubMed DOI
Chen J, Shearer GC, Chen Q, Healy CL, Beyer AJ, Nareddy VB, Gerdes AM, Harris WS, O’Connell TD, Wang D. Omega-3 fatty acids prevent pressure overload-induced cardiac fibrosis through activation of cyclic GMP/protein kinase G signaling in cardiac fibroblasts. Circulation. 2011. February 15;123(6):584–93. doi: 10.1161/CIRCULATIONAHA.110.971853. Epub 2011 Jan 31. PubMed DOI PMC
Eclov JA, Qian Q, Redetzke R, Chen Q, Wu SC, Healy CL, Ortmeier SB, Harmon E, Shearer GC, O’Connell TD. EPA, not DHA, prevents fibrosis in pressure overload-induced heart failure: potential role of free fatty acid receptor 4. J Lipid Res. 2015. December;56(12):2297–308. doi: 10.1194/jlr.M062034. Epub 2015 Oct 4. PubMed DOI PMC
Takamura M, Kurokawa K, Ootsuji H, Inoue O, Okada H, Nomura A, Kaneko S, Usui S. Long-Term Administration of Eicosapentaenoic Acid Improves Post-Myocardial Infarction Cardiac Remodeling in Mice by Regulating Macrophage Polarization. J Am Heart Assoc. 2017. February 21;6(2):e004560. doi: 10.1161/JAHA.116.004560. PubMed DOI PMC
Tułowiecka N, Kotlęga D, Prowans P, Szczuko M. The Role of Resolvins: EPA and DHA Derivatives Can Be Useful in the Prevention and Treatment of Ischemic Stroke. Int J Mol Sci. 2020. October 15;21(20):7628. doi: 10.3390/ijms21207628. PubMed DOI PMC
Nelson JR, Raskin S. The eicosapentaenoic acid:arachidonic acid ratio and its clinical utility in cardiovascular disease. Postgrad Med. 2019 May;131(4):268–277. doi: 10.1080/00325481.2019.1607414. Epub 2019 May 7. PubMed DOI
Takahashi M, Ando J, Shimada K, Nishizaki Y, Tani S, Ogawa T, Yamamoto M, Nagao K, Hirayama A, Yoshimura M, Daida H, Nagai R, Komuro I. The ratio of serum n-3 to n-6 polyunsaturated fatty acids is associated with diabetes mellitus in patients with prior myocardial infarction: a multicenter cross-sectional study. BMC Cardiovasc Disord. 2017. January 26;17(1):41. doi: 10.1186/s12872-017-0479-4. PubMed DOI PMC
Xu D, Li N, He Y, Timofeyev V, Lu L, Tsai HJ, Kim IH, Tuteja D, Mateo RK, Singapuri A, Davis BB, Low R, Hammock BD, Chiamvimonvat N. Prevention and reversal of cardiac hypertrophy by soluble epoxide hydrolase inhibitors. Proc Natl Acad Sci U S A. 2006. December 5;103(49):18733–8. doi: 10.1073/pnas.0609158103. Epub 2006 Nov 27. PubMed DOI PMC
Roche C, Besnier M, Cassel R, Harouki N, Coquerel D, Guerrot D, Nicol L, Loizon E, Remy-Jouet I, Morisseau C, Mulder P, Ouvrard-Pascaud A, Madec AM, Richard V, Bellien J. Soluble epoxide hydrolase inhibition improves coronary endothelial function and prevents the development of cardiac alterations in obese insulin-resistant mice. Am J Physiol Heart Circ Physiol. 2015. May 1;308(9):H1020–9. doi: 10.1152/ajpheart.00465.2014. Epub 2015 Feb 27. PubMed DOI PMC
Darwesh AM, Keshavarz-Bahaghighat H, Jamieson KL, Seubert JM. Genetic Deletion or Pharmacological Inhibition of Soluble Epoxide Hydrolase Ameliorates Cardiac Ischemia/Reperfusion Injury by Attenuating NLRP3 Inflammasome Activation. Int J Mol Sci. 2019. July 17;20(14):3502. doi: 10.3390/ijms20143502. PubMed DOI PMC
Islam O, Patil P, Goswami SK, Razdan R, Inamdar MN, Rizwan M, Mathew J, Inceoglu B, Stephen Lee KS, Hwang SH, Hammock BD. Inhibitors of soluble epoxide hydrolase minimize ischemiareperfusion-induced cardiac damage in normal, hypertensive, and diabetic rats. Cardiovasc Ther. 2017. June;35(3):10.1111/1755–5922.12259. doi: 10.1111/1755-5922.12259. PubMed DOI PMC
Gross GJ, Gauthier KM, Moore J, Falck JR, Hammock BD, Campbell WB, Nithipatikom K. Effects of the selective EET antagonist, 14,15-EEZE, on cardioprotection produced by exogenous or endogenous EETs in the canine heart. Am J Physiol Heart Circ Physiol. 2008. June;294(6):H2838–44. doi: 10.1152/ajpheart.00186.2008. Epub 2008 Apr 25. PubMed DOI PMC
Akhnokh MK, Yang FH, Samokhvalov V, Jamieson KL, Cho WJ, Wagg C, Takawale A, Wang X, Lopaschuk GD, Hammock BD, Kassiri Z, Seubert JM. Inhibition of Soluble Epoxide Hydrolase Limits Mitochondrial Damage and Preserves Function Following Ischemic Injury. Front Pharmacol. 2016. June 7;7:133. doi: 10.3389/fphar.2016.00133. PubMed DOI PMC
Chaudhary KR, Abukhashim M, Hwang SH, Hammock BD, Seubert JM. Inhibition of soluble epoxide hydrolase by trans-4- [4-(3-adamantan-1-yl-ureido)-cyclohexyloxy]-benzoic acid is protective against ischemia-reperfusion injury. J Cardiovasc Pharmacol. 2010. January;55(1):67–73. doi: 10.1097/FJC.0b013e3181c37d69. PubMed DOI PMC
Merkel MJ, Liu L, Cao Z, Packwood W, Young J, Alkayed NJ, Van Winkle DM. Inhibition of soluble epoxide hydrolase preserves cardiomyocytes: role of STAT3 signaling. Am J Physiol Heart Circ Physiol. 2010. February;298(2):H679–87. doi: 10.1152/ajpheart.00533.2009. Epub 2009 Dec 11. PubMed DOI PMC
Gui Y, Chen J, Hu J, Liao C, Ouyang M, Deng L, Yang J, Xu D. Soluble epoxide hydrolase inhibitors improve angiogenic function of endothelial progenitor cells via ERK/p38-mediated miR-126 upregulation in myocardial infarction mice after exercise. Exp Cell Res. 2020. December 15;397(2):112360. doi: 10.1016/j.yexcr.2020.112360. Epub 2020 Nov 12. PubMed DOI
Batchu SN, Lee SB, Samokhvalov V, Chaudhary KR, El-Sikhry H, Weldon SM, Seubert JM. Novel soluble epoxide hydrolase inhibitor protects mitochondrial function following stress. Can J Physiol Pharmacol. 2012. June;90(6):811–23. doi: 10.1139/y2012-082. Epub 2012 May 24. PubMed DOI
Oni-Orisan A, Alsaleh N, Lee CR, Seubert JM. Epoxyeicosatrienoic acids and cardioprotection: the road to translation. J Mol Cell Cardiol. 2014. September;74:199–208. doi: 10.1016/j.yjmcc.2014.05.016. Epub 2014 Jun 2. PubMed DOI PMC
Li N, Liu JY, Timofeyev V, Qiu H, Hwang SH, Tuteja D, Lu L, Yang J, Mochida H, Low R, Hammock BD, Chiamvimonvat N. Beneficial effects of soluble epoxide hydrolase inhibitors in myocardial infarction model: Insight gained using metabolomic approaches. J Mol Cell Cardiol. 2009. December;47(6):835–45. doi: 10.1016/j.yjmcc.2009.08.017. Epub 2009 Aug 28. PubMed DOI PMC
Kompa AR, Wang BH, Xu G, Zhang Y, Ho PY, Eisennagel S, Thalji RK, Marino JP Jr, Kelly DJ, Behm DJ, Krum H. Soluble epoxide hydrolase inhibition exerts beneficial anti-remodeling actions post-myocardial infarction. Int J Cardiol. 2013. July 15;167(1):210–9. doi: 10.1016/j.ijcard.2011.12.062. Epub 2012 Jan 10. PubMed DOI
Sirish P, Li N, Liu JY, Lee KS, Hwang SH, Qiu H, Zhao C, Ma SM, López JE, Hammock BD, Chiamvimonvat N. Unique mechanistic insights into the beneficial effects of soluble epoxide hydrolase inhibitors in the prevention of cardiac fibrosis. Proc Natl Acad Sci U S A. 2013. April 2;110(14):5618–23. doi: 10.1073/pnas.1221972110. Epub 2013 Mar 14. PubMed DOI PMC
Sirish P, Li N, Timofeyev V, Zhang XD, Wang L, Yang J, Lee KS, Bettaieb A, Ma SM, Lee JH, Su D, Lau VC, Myers RE, Lieu DK, López JE, Young JN, Yamoah EN, Haj F, Ripplinger CM, Hammock BD, Chiamvimonvat N. Molecular Mechanisms and New Treatment Paradigm for Atrial Fibrillation. Circ Arrhythm Electrophysiol. 2016. May;9(5):10.1161/CIRCEP.115.003721 e003721. doi: 10.1161/CIRCEP.115.003721. PubMed DOI PMC
Neckář J, Kopkan L, Husková Z, Kolář F, Papoušek F, Kramer HJ, Hwang SH, Hammock BD, Imig JD, Malý J, Netuka I, Ošťádal B, Červenka L. Inhibition of soluble epoxide hydrolase by cis-4-[4-(3-adamantan-1-ylureido)cyclohexyl-oxy]benzoic acid exhibits antihypertensive and cardioprotective actions in transgenic rats with angiotensin II-dependent hypertension. Clin Sci (Lond). 2012. June;122(11):513–25. doi: 10.1042/CS20110622. PubMed DOI PMC
Vacková Š, Kopkan L, Kikerlová S, Husková Z, Sadowski J, Kompanowska-Jezierska E, Hammock BD, Imig JD, Táborský M, Melenovský V, Červenka L. Pharmacological Blockade of Soluble Epoxide Hydrolase Attenuates the Progression of Congestive Heart Failure Combined With Chronic Kidney Disease: Insights From Studies With Fawn-Hooded Hypertensive Rats. Front Pharmacol. 2019. January 23;10:18. doi: 10.3389/fphar.2019.00018. PubMed DOI PMC
Zhang H, Zhang K, Liang J, Yan W, Wu F, Xu W, Wu Z, Chen Y, Pan R, Wu G. Soluble epoxide hydrolase inhibitor, TUPS, attenuates isoproterenol/angiotensin II-induced cardiac hypertrophy through mammalian target of rapamycin-mediated autophagy inhibition. J Pharm Pharmacol. 2019. August;71(8):1291–1300. doi: 10.1111/jphp.13113. Epub 2019 Jun 18. PubMed DOI
Červenka L, Melenovský V, Husková Z, Sporková A, Bürgelová M, Škaroupková P, Hwang SH, Hammock BD, Imig JD, Sadowski J. Inhibition of soluble epoxide hydrolase does not improve the course of congestive heart failure and the development of renal dysfunction in rats with volume overload induced by aorto-caval fistula. Physiol Res. 2015;64(6):857–73. doi: 10.33549/physiolres.932977. Epub 2015 Jun 5. PubMed DOI PMC
Cao J, Tsenovoy PL, Thompson EA, Falck JR, Touchon R, Sodhi K, Rezzani R, Shapiro JI, Abraham NG. Agonists of epoxyeicosatrienoic acids reduce infarct size and ameliorate cardiac dysfunction via activation of HO-1 and Wnt1 canonical pathway. Prostaglandins Other Lipid Mediat. 2015. Jan-Mar;116–117:76–86. doi: 10.1016/j.prostaglandins.2015.01.002. Epub 2015 Feb 9. PubMed DOI PMC
Batchu SN, Lee SB, Qadhi RS, Chaudhary KR, El-Sikhry H, Kodela R, Falck JR, Seubert JM. Cardioprotective effect of a dual acting epoxyeicosatrienoic acid analogue towards ischaemia reperfusion injury. Br J Pharmacol. 2011. February;162(4):897–907. doi 10.1111/j.1476-5381.2010.01093.x. PubMed DOI PMC
Červenka L, Husková Z, Kopkan L, Kikerlová S, Sedláková L, Vaňourková Z, Alánová P, Kolář F, Hammock BD, Hwang SH, Imig JD, Falck JR, Sadowski J, Kompanowska-Jezierska E, Neckář J. Two pharmacological epoxyeicosatrienoic acid-enhancing therapies are effectively antihypertensive and reduce the severity of ischemic arrhythmias in rats with angiotensin II-dependent hypertension. J Hypertens. 2018. June;36(6):1326–1341. doi: 10.1097/HJH.0000000000001708. PubMed DOI PMC
Kala P, Miklovič M, Jíchová Š, Škaroupková P, Vaňourková Z, Maxová H, Gawrys O, Kompanowska-Jezierska E, Sadowski J, Imig JD, Falck JR, Veselka J, Červenka L, Aiglová R, Vícha M, Gloger V, Táborský M. Effects of Epoxyeicosatrienoic Acid-Enhancing Therapy on the Course of Congestive Heart Failure in Angiotensin II-Dependent Rat Hypertension: From mRNA Analysis towards Functional In Vivo Evaluation. Biomedicines. 2021. August 20;9(8):1053. doi: 10.3390/biomedicines9081053. PubMed DOI PMC
Hye Khan MA, Neckár J, Manthati V, Errabelli R, Pavlov TS, Staruschenko A, Falck JR, Imig JD. Orally active epoxyeicosatrienoic acid analog attenuates kidney injury in hypertensive Dahl salt-sensitive rat. Hypertension. 2013. November;62(5):905–13. doi: 10.1161/HYPERTENSIONAHA.113.01949. Epub 2013 Aug 26. PubMed DOI PMC
Neckář J, Hye Khan MA, Gross GJ, Cyprová M, Hrdlička J, Kvasilová A, Falck JR, Campbell WB, Sedláková L, Škutová Š, Olejníčková V, Gregorovičová M, Sedmera D, Kolář F, Imig JD. Epoxyeicosatrienoic acid analog EET-B attenuates post-myocardial infarction remodeling in spontaneously hypertensive rats. Clin Sci (Lond). 2019. April 29;133(8):939–951. doi: 10.1042/CS20180728. PubMed DOI PMC
Neckář J, Hsu A, Hye Khan MA, Gross GJ, Nithipatikom K, Cyprová M, Benák D, Hlaváčková M, Sotáková-Kašparová D, Falck JR, Sedmera D, Kolář F, Imig JD. Infarct size-limiting effect of epoxyeicosatrienoic acid analog EET-B is mediated by hypoxia-inducible factor-1α via downregulation of prolyl hydroxylase 3. Am J Physiol Heart Circ Physiol. 2018. November 1;315(5):H1148–H1158. doi: 10.1152/ajpheart.00726.2017. Epub 2018 Aug 3. PubMed DOI PMC
Hrdlička J, Neckář J, Papoušek F, Husková Z, Kikerlová S, Vaňourková Z, Vernerová Z, Akat F, Vašinová J, Hammock BD, Hwang SH, Imig JD, Falck JR, Červenka L, Kolář F. Epoxyeicosatrienoic Acid-Based Therapy Attenuates the Progression of Postischemic Heart Failure in Normotensive Sprague-Dawley but Not in Hypertensive Ren-2 Transgenic Rats. Front Pharmacol. 2019. March 1;10:159. doi: 10.3389/fphar.2019.00159. PubMed DOI PMC
Kala P, Sedláková L, Škaroupková P, Kopkan L, Vaňourková Z, Táborský M, Nishiyama A, Hwang SH, Hammock BD, Sadowski J, Melenovský V, Imig JD, Červenka L. Effect of angiotensin-converting enzyme blockade, alone or combined with blockade of soluble epoxide hydrolase, on the course of congestive heart failure and occurrence of renal dysfunction in Ren-2 transgenic hypertensive rats with aorto-caval fistula. Physiol Res. 2018. July 17;67(3):401–415. doi: 10.33549/physiolres.933757. Epub 2018 Mar 12. PubMed DOI PMC
Adebesin AM, Wesser T, Vijaykumar J, Konkel A, Paudyal MP, Lossie J, Zhu C, Westphal C, Puli N, Fischer R, Schunck WH, Falck JR. Development of Robust 17(R),18(S)-Epoxyeicosatetraenoic Acid (17,18-EEQ) Analogues as Potential Clinical Antiarrhythmic Agents. J Med Chem. 2019. November 27;62(22):10124–10143. doi: 10.1021/acs.jmedchem.9b00952. Epub 2019 Nov 19. PubMed DOI
Darwesh AM, Bassiouni W, Adebesin AM, Mohammad AS, Falck JR, Seubert JM. A Synthetic Epoxydocosapentaenoic Acid Analogue Ameliorates Cardiac Ischemia/Reperfusion Injury: The Involvement of the Sirtuin 3-NLRP3 Pathway. Int J Mol Sci. 2020. July 24;21(15):5261. doi: 10.3390/ijms21155261. PubMed DOI PMC
Schunck WH, Wallukat G, Fischer R, Schmidt C, Müller DN, Puli N, Falck JR. Novel eicosanoid derivatives. 2010. (WO 2010/081683).
Fischer R, Konkel A, Wesser T, Westphal P, Schunck WH, Westphal C, Falck JR. Metabolically robust analogs of Cyp-eicosanoids for the treatment of cardiac disease. 2017. (WO 2017/013265).
Gallo G, Volpe M, Battistoni A, Russo D, Tocci G, Musumeci MB. Sacubitril/Valsartan as a Therapeutic Tool Across the Range of Heart Failure Phenotypes and Ejection Fraction Spectrum. Front Physiol. 2021. August 23;12:652163. doi: 10.3389/fphys.2021.652163. PubMed DOI PMC
Lillich FF, Imig JD, Proschak E. Multi-Target Approaches in Metabolic Syndrome. Front Pharmacol. 2021. March 12;11:554961. doi: 10.3389/fphar.2020.554961. PubMed DOI PMC
Hye Khan MA, Hwang SH, Sharma A, Corbett JA, Hammock BD, Imig JD. A dual COX-2/sEH inhibitor improves the metabolic profile and reduces kidney injury in Zucker diabetic fatty rat. Prostaglandins Other Lipid Mediat. 2016. September;125:40–7. doi: 10.1016/j.prostaglandins.2016.07.003. Epub 2016 Jul 16. PubMed DOI PMC
Hye Khan MA, Kolb L, Skibba M, Hartmann M, Blöcher R, Proschak E, Imig JD. A novel dual PPAR-γ agonist/sEH inhibitor treats diabetic complications in a rat model of type 2 diabetes. Diabetologia. 2018. October;61(10):2235–2246. doi: 10.1007/s00125-018-4685-0. Epub 2018 Jul 21. PubMed DOI PMC
Stavniichuk A, Hye Khan MA, Yeboah MM, Chesnik MA, Jankiewicz WK, Hartmann M, Blöcher R, Kircher T, Savchuk O, Proschak E, Imig JD. Dual soluble epoxide hydrolase inhibitor/PPAR-γ agonist attenuates renal fibrosis. Prostaglandins Other Lipid Mediat. 2020. October;150:106472. doi: 10.1016/j.prostaglandins.2020.106472. Epub 2020 Jun 20. PubMed DOI
Falck JR, Koduru SR, Mohapatra S, Manne R, Atcha KR, Atcha R, Manthati VL, Capdevila JH, Christian S, Imig JD, Campbell WB. 14,15-Epoxyeicosa-5,8,11-trienoic Acid (14,15-EET) surrogates: carboxylate modifications. J Med Chem. 2014. August 28;57(16):6965–72. doi: 10.1021/jm500262m. Epub 2014 Aug 19. Erratum in: J Med Chem. 2014 Nov 13;57(21):9218. Atcha, Krishnam Raju [added]. PubMed DOI PMC
Garcia V, Gilani A, Shkolnik B, Pandey V, Zhang FF, Dakarapu R, Gandham SK, Reddy NR, Graves JP, Gruzdev A, Zeldin DC, Capdevila JH, Falck JR, Schwartzman ML. 20-HETE Signals Through G-Protein-Coupled Receptor GPR75 (Gq) to Affect Vascular Function and Trigger Hypertension. Circ Res. 2017. May 26;120(11):1776–1788. doi: 10.1161/CIRCRESAHA.116.310525. Epub 2017 Mar 21. PubMed DOI PMC
Pascale JV, Park EJ, Adebesin AM, Falck JR, Schwartzman ML, Garcia V. Uncovering the signalling, structure and function of the 20-HETE-GPR75 pairing: Identifying the chemokine CCL5 as a negative regulator of GPR75. Br J Pharmacol. 2021. September;178(18):3813–3828. doi: 10.1111/bph.15525. Epub 2021 Jun 15. PubMed DOI PMC
Wong PY, Lai PS, Falck JR. Mechanism and signal transduction of 14 (R), 15 (S)-epoxyeicosatrienoic acid (14,15-EET) binding in guinea pig monocytes. Prostaglandins Other Lipid Mediat. 2000. October;62(4):321–33. doi: 10.1016/s0090-6980(00)00079-4. PubMed DOI
Yang W, Holmes BB, Gopal VR, Kishore RV, Sangras B, Yi XY, Falck JR, Campbell WB. Characterization of 14,15-epoxyeicosatrienoyl-sulfonamides as 14,15-epoxyeicosatrienoic acid agonists: use for studies of metabolism and ligand binding. J Pharmacol Exp Ther. 2007. June;321(3):1023–31. doi: 10.1124/jpet.107.119651. Epub 2007 Feb 27. PubMed DOI
Yang W, Tuniki VR, Anjaiah S, Falck JR, Hillard CJ, Campbell WB. Characterization of epoxyeicosatrienoic acid binding site in U937 membranes using a novel radiolabeled agonist, 20–125i-14,15-epoxyeicosa-8(Z)-enoic acid. J Pharmacol Exp Ther. 2008. March;324(3):1019–27. doi: 10.1124/jpet.107.129577. Epub 2008 Jan 2. PubMed DOI