Long-chain polyunsaturated fatty acid-containing phosphatidylcholines predict survival rate in patients after heart failure

. 2024 Nov 15 ; 10 (21) : e39979. [epub] 20241030

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39553601
Odkazy

PubMed 39553601
PubMed Central PMC11567051
DOI 10.1016/j.heliyon.2024.e39979
PII: S2405-8440(24)16010-0
Knihovny.cz E-zdroje

BACKGROUND: Heart failure (HF) is becoming an increasingly prevalent issue, particularly among the elderly population. Lipids are closely associated with cardiovascular disease (CVD) pathology. Lipidomics as a comprehensive profiling tool is showing to be promising in the prediction of events and mortality due to CVD as well as identifying novel biomarkers. MATERIALS AND METHODS: In this study, eicosanoids and lipid profiles were measured in order to predict survival in patients with de novo or acute decompensated HF. Our study included 50 patients (16 females, mean age 73 years and 34 males, mean age 71 years) with de novo or acute decompensated chronic HF with a median follow-up of 7 months. Lipids were semiquantified using targeted lipidomic liquid chromatography-mass spectrometry (LC-MS/MS) analysis. Eicosanoid concentrations were determined using a commercially available sandwich ELISA assay. RESULTS: From 736 lipids and 3 eicosanoids, 39 significant lipids were selected (by using the Mann-Whitney U test after Benjamini-Hochberg correction) with the highest number of representatives belonging to the polyunsaturated (PUFA) phosphatidylcholines (PC). PC 42:10 (p = 1.44 × 10-4) was found to be the most statistically significantly elevated in the surviving group with receiver operating characteristics of AUC = 0.84 (p = 3.24 × 10-7). A multivariate supervised discriminant analysis based on the aforementioned lipid panel enabled the classification of the groups of surviving and non-surviving patients with 90 % accuracy. CONCLUSIONS: In the present study we describe a trend in PUFA esterified in PC that were systematically increased in surviving patients with HF. This trend in low-abundant and rarely identified PUFA PC (mainly very long chain PUFA containing PC such as PC 42:10 or PC 40:9 containing FA 22:6, FA 20:5 and FA 20:4) suggests candidate biomarkers.

Zobrazit více v PubMed

Conrad N., Judge A., Tran J., Mohseni H., Hedgecott D., Crespillo A.P., Allison M., Hemingway H., Cleland J.G., McMurray J.J.V., Rahimi K. Temporal trends and patterns in heart failure incidence: a population-based study of 4 million individuals. Lancet. 2018;391:572–580. doi: 10.1016/S0140-6736(17)32520-5. PubMed DOI PMC

Roger V.L. Epidemiology of heart failure. Circ. Res. 2013;113:646–659. doi: 10.1161/CIRCRESAHA.113.300268. PubMed DOI PMC

McDonagh T.A., Metra M., Adamo M., Gardner R.S., Baumbach A., Böhm M., Burri H., Butler J., Čelutkienė J., Chioncel O., Cleland J.G.F., Coats A.J.S., Crespo-Leiro M.G., Farmakis D., Gilard M., Heymans S., Hoes A.W., Jaarsma T., Jankowska E.A., Lainscak M., Lam C.S.P., Lyon A.R., McMurray J.J.V., Mebazaa A., Mindham R., Muneretto C., Piepoli F., Price S., Rosano G.M.C., Ruschitzka F., Skibelund K. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: developed by the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. Heart J. 2021;42(2021):3599–3726. doi: 10.1093/eurheartj/ehab368. PubMed DOI

Wang D.D., Toledo E., Hruby A., Rosner B.A., Willett W.C., Sun Q., Razquin C., Zheng Y., Ruiz-Canela M., Guasch-Ferré M., Corella D., Gómez-Gracia E., Fiol M., Estruch R., Ros E., Lapetra J., Fito M., Aros F., Serra-Majem L., Lee C.-H., Clish C.B., Liang L., Salas-Salvadó J., Martínez-González M.A., Hu F.B., Ceramides Plasma. Mediterranean Diet, and Incident Cardiovascular Disease in the PREDIMED Trial (Prevención con Dieta Mediterránea) Circulation. 2017;135:2028–2040. doi: 10.1161/circulationaha.116.024261. PubMed DOI PMC

Peterson L.R., Xanthakis V., Duncan M.S., Gross S., Friedrich N., Völzke H., Felix S.B., Jiang H., Sidhu R., Nauck M., Jiang X., Ory D.S., Dörr M., Vasan R.S., Schaffer J.E. Ceramide remodeling and risk of cardiovascular events and mortality. J. Am. Heart Assoc. 2018;7 doi: 10.1161/JAHA.117.007931. PubMed DOI PMC

Hilvo M., Meikle P.J., Pedersen E.R., Tell G.S., Dhar I., Brenner H., Schöttker B., Lääperi M., Kauhanen D., Koistinen K.M., Jylhä A., Huynh K., Mellett N.A., Tonkin A.M., Sullivan D.R., Simes J., Nestel P., Koenig W., Rothenbacher D., Nygård O., Laaksonen R. Development and validation of a ceramide- and phospholipid-based cardiovascular risk estimation score for coronary artery disease patients. Eur. Heart J. 2020;41:371–380. doi: 10.1093/eurheartj/ehz387. PubMed DOI

Laaksonen R., Ekroos K., Sysi-Aho M., Hilvo M., Vihervaara T., Kauhanen D., Suoniemi M., Hurme R., März W., Scharnagl H., Stojakovic T., Vlachopoulou E., Lokki M.-L., Nieminen M.S., Klingenberg R., Matter C.M., Hornemann T., Jüni P., Rodondi N., Räber L., Windecker S., Gencer B., Pedersen E.R., Tell G.S., Nygård O., Mach F., Sinisalo J., Lüscher T.F. Plasma ceramides predict cardiovascular death in patients with stable coronary artery disease and acute coronary syndromes beyond LDL-cholesterol. Eur. Heart J. 2016;37:1967–1976. doi: 10.1093/eurheartj/ehw148. PubMed DOI PMC

McGurk K.A., Keavney B.D., Nicolaou A. Circulating ceramides as biomarkers of cardiovascular disease: evidence from phenotypic and genomic studies. Atherosclerosis. 2021;327:18–30. doi: 10.1016/j.atherosclerosis.2021.04.021. PubMed DOI

CERAM - Overview MI-heart ceramides, plasma. https://www.mayocliniclabs.com/test-catalog/overview/606777 n.d.

Ridker P.M., Everett B.M., Thuren T., MacFadyen J.G., Chang W.H., Ballantyne C., Fonseca F., Nicolau J., Koenig W., Anker S.D., Kastelein J.J.P., Cornel J.H., Pais P., Pella D., Genest J., Cifkova R., Lorenzatti A., Forster T., Kobalava Z., Vida-Simiti L., Flather M., Shimokawa H., Ogawa H., Dellborg M., Rossi P.R.F., Troquay R.P.T., Libby P., Glynn R.J. CANTOS trial group, antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med. 2017;377:1119–1131. https://www.nejm.org/doi/full/10.1056/nejmoa1707914 PubMed DOI

Imig J.D., Cervenka L., Neckar J. Epoxylipids and soluble epoxide hydrolase in heart diseases. Biochem. Pharmacol. 2022;195 doi: 10.1016/j.bcp.2021.114866. PubMed DOI PMC

Kala P., Sedláková L., Škaroupková P., Kopkan L., Vaňourková Z., Táborský M., Nishiyama A., Hwang S.H., Hammock B.D., Sadowski J., Melenovský V., Imig J.D., Červenka L. Effect of angiotensin-converting enzyme blockade, alone or combined with blockade of soluble epoxide hydrolase, on the course of congestive heart failure and occurrence of renal dysfunction in Ren-2 transgenic hypertensive rats with aorto-caval fistula. Physiol. Res. 2018;67:401–415. doi: 10.33549/physiolres.933757. PubMed DOI PMC

Kala P., Miklovič M., Jíchová Š., Škaroupková P., Vaňourková Z., Maxová H., Gawrys O., Kompanowska-Jezierska E., Sadowski J., Imig J.D., Falck J.R., Veselka J., Červenka L., Aiglová R., Vícha M., Gloger V., Táborský M. Effects of epoxyeicosatrienoic acid-enhancing therapy on the course of congestive heart failure in angiotensin II-dependent rat hypertension: from mRNA analysis towards functional in vivo evaluation. Biomedicines. 2021;9 doi: 10.3390/biomedicines9081053. PubMed DOI PMC

Huang C.-C., Chang M.-T., Leu H.-B., Yin W.-H., Tseng W.-K., Wu Y.-W., Lin T.-H., Yeh H.-I., Chang K.-C., Wang J.-H., Wu C.-C., Shyur L.-F., Chen J.-W. Association of arachidonic acid-derived lipid mediators with subsequent onset of acute myocardial infarction in patients with coronary artery disease. Sci. Rep. 2020;10:8105. doi: 10.1038/s41598-020-65014-z. PubMed DOI PMC

Jamieson K.L., Endo T., Darwesh A.M., Samokhvalov V., Seubert J.M. Cytochrome P450-derived eicosanoids and heart function. Pharmacol. Ther. 2017;179:47–83. doi: 10.1016/j.pharmthera.2017.05.005. PubMed DOI

Lehmann R. From bedside to bench-practical considerations to avoid pre-analytical pitfalls and assess sample quality for high-resolution metabolomics and lipidomics analyses of body fluids. Anal. Bioanal. Chem. 2021;413:5567–5585. doi: 10.1007/s00216-021-03450-0. PubMed DOI PMC

Kala P., Hnat T., Padrova K., Kotaška K., Veselka J. Eicosanoids in human heart failure: pilot study of plasma epoxyeicosatrienoic and dihydroxyeicosatrienoic acid levels. Arch. Med. Sci. 2023;19:513–517. doi: 10.5114/aoms/159313. PubMed DOI PMC

Sarafian M.H., Gaudin M., Lewis M.R., Martin F.-P., Holmes E., Nicholson J.K., Dumas M.-E. Objective set of criteria for optimization of sample preparation procedures for ultra-high throughput untargeted blood plasma lipid profiling by ultra performance liquid chromatography-mass spectrometry. Anal. Chem. 2014;86:5766–5774. doi: 10.1021/ac500317c. PubMed DOI

Kvasnička A., Friedecký D., Brumarová R., Pavlíková M., Pavelcová K., Mašínová J., Hasíková L., Závada J., Pavelka K., Ješina P., Stibůrková B. Alterations in lipidome profiles distinguish early-onset hyperuricemia, gout, and the effect of urate-lowering treatment. Arthritis Res. Ther. 2023;25:234. doi: 10.1186/s13075-023-03204-6. PubMed DOI PMC

Peng B., Kopczynski D., Pratt B.S., Ejsing C.S., Burla B., Hermansson M., Benke P.I., Tan S.H., Chan M.Y., Torta F., Schwudke D., Meckelmann S.W., Coman C., Schmitz O.J., MacLean B., Manke M.-C., Borst O., Wenk M.R., Hoffmann N., Ahrends R. LipidCreator workbench to probe the lipidomic landscape. Nat. Commun. 2020;11:2057. doi: 10.1038/s41467-020-15960-z. PubMed DOI PMC

Kvasnička A., Friedecký D., Tichá A., Hyšpler R., Janečková H., Brumarová R., Najdekr L., Zadák Z. SLIDE-novel approach to apocrine sweat sampling for lipid profiling in healthy individuals. Int. J. Mol. Sci. 2021;22 doi: 10.3390/ijms22158054. PubMed DOI PMC

Drotleff B., Roth S.R., Henkel K., Calderón C., Schlotterbeck J., Neukamm M.A., Lämmerhofer M. Lipidomic profiling of non-mineralized dental plaque and biofilm by untargeted UHPLC-QTOF-MS/MS and SWATH acquisition. Anal. Bioanal. Chem. 2020;412:2303–2314. doi: 10.1007/s00216-019-02364-2. PubMed DOI PMC

Wang M., Wang C., Han X. Selection of internal standards for accurate quantification of complex lipid species in biological extracts by electrospray ionization mass spectrometry-What, how and why? Mass Spectrom. Rev. 2017;36:693–714. doi: 10.1002/mas.21492. PubMed DOI PMC

Köfeler H.C., Ahrends R., Baker E.S., Ekroos K., Han X., Hoffmann N., Holčapek M., Wenk M.R., Liebisch G. Recommendations for good practice in MS-based lipidomics. J. Lipid Res. 2021;62 doi: 10.1016/j.jlr.2021.100138. PubMed DOI PMC

The R. Project for statistical computing. https://www.R-project.org/ n.d.

AlzbetaG, AlzbetaG/Metabol. First version, Zenodo; 2019. DOI

Shannon P., Markiel A., Ozier O., Baliga N.S., Wang J.T., Ramage D., Amin N., Schwikowski B., Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–2504. doi: 10.1101/gr.1239303. PubMed DOI PMC

Benjamini Y., Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. 1995;57:289–300. doi: 10.1111/j.2517-6161.1995.tb02031.x. DOI

Mundra P.A., Barlow C.K., Nestel P.J., Barnes E.H., Kirby A., Thompson P., Sullivan D.R., Alshehry Z.H., Mellett N.A., Huynh K., Jayawardana K.S., Giles C., McConville M.J., Zoungas S., Hillis G.S., Chalmers J., Woodward M., Wong G., Kingwell B.A., Simes J., Tonkin A.M., Meikle P.J. LIPID Study Investigators, Large-scale plasma lipidomic profiling identifies lipids that predict cardiovascular events in secondary prevention. JCI Insight. 2018;3 doi: 10.1172/jci.insight.121326. PubMed DOI PMC

Laaksonen D.E., Nyyssönen K., Niskanen L., Rissanen T.H., Salonen J.T. Prediction of cardiovascular mortality in middle-aged men by dietary and serum linoleic and polyunsaturated fatty acids. Arch. Intern. Med. 2005;165:193–199. doi: 10.1001/archinte.165.2.193. PubMed DOI

Reibel D.K., O'Rourke B., Foster K.A., Hutchinson H., Uboh C.E., Kent R.L. Altered phospholipid metabolism in pressure-overload hypertrophied hearts. Am. J. Physiol. 1986;250:H1–H6. doi: 10.1152/ajpheart.1986.250.1.h1. PubMed DOI

Le C.H., Mulligan C.M., Routh M.A., Bouma G.J., Frye M.A., Jeckel K.M., Sparagna G.C., Lynch J.M., Moore R.L., McCune S.A., Bristow M., Zarini S., Murphy R.C., Chicco A.J. Delta-6-desaturase links polyunsaturated fatty acid metabolism with phospholipid remodeling and disease progression in heart failure. Circ. Heart Fail. 2014;7:172–183. doi: 10.1161/circheartfailure.113.000744. PubMed DOI

Liu W., Xie X., Liu M., Zhang J., Liang W., Chen X. Serum ω-3 polyunsaturated fatty acids and potential influence factors in elderly patients with multiple cardiovascular risk factors. Sci. Rep. 2018;8:1102. doi: 10.1038/s41598-018-19193-5. PubMed DOI PMC

Tarasov K., Ekroos K., Suoniemi M., Kauhanen D., Sylvänne T., Hurme R., Gouni-Berthold I., Berthold H.K., Kleber M.E., Laaksonen R., März W. Molecular lipids identify cardiovascular risk and are efficiently lowered by simvastatin and PCSK9 deficiency. J. Clin. Endocrinol. Metab. 2014;99:E45–E52. doi: 10.1210/jc.2013-2559. PubMed DOI PMC

Toko H., Morita H., Katakura M., Hashimoto M., Ko T., Bujo S., Adachi Y., Ueda K., Murakami H., Ishizuka M., Guo J., Zhao C., Fujiwara T., Hara H., Takeda N., Takimoto E., Shido O., Harada M., Komuro I. Omega-3 fatty acid prevents the development of heart failure by changing fatty acid composition in the heart. Sci. Rep. 2020;10 doi: 10.1038/s41598-020-72686-0. PubMed DOI PMC

Oikonomou E., Vogiatzi G., Karlis D., Siasos G., Chrysohoou C., Zografos T., Lazaros G., Tsalamandris S., Mourouzis K., Georgiopoulos G., Toutouza M., Tousoulis D. Effects of omega-3 polyunsaturated fatty acids on fibrosis, endothelial function and myocardial performance, in ischemic heart failure patients. Clin. Nutr. 2019;38:1188–1197. doi: 10.1016/j.clnu.2018.04.017. PubMed DOI

Theken K.N., Schuck R.N., Edin M.L., Tran B., Ellis K., Bass A., Lih F.B., Tomer K.B., Poloyac S.M., Wu M.C., Hinderliter A.L., Zeldin D.C., Stouffer G.A., Lee C.R. Evaluation of cytochrome P450-derived eicosanoids in humans with stable atherosclerotic cardiovascular disease. Atherosclerosis. 2012;222:530–536. doi: 10.1016/j.atherosclerosis.2012.03.022. PubMed DOI PMC

Tacconelli S., Patrignani P. Inside epoxyeicosatrienoic acids and cardiovascular disease. Front. Pharmacol. 2014;5:239. doi: 10.3389/fphar.2014.00239. PubMed DOI PMC

Ma K., Yang J., Shao Y., Li P., Guo H., Wu J., Zhu Y., Zhang H., Zhang X., Du J., Li Y. Therapeutic and prognostic significance of arachidonic acid in heart failure. Circ. Res. 2022;130:1056–1071. doi: 10.1161/CIRCRESAHA.121.320548. PubMed DOI

Imig J.D. Epoxides and soluble epoxide hydrolase in cardiovascular physiology. Physiol. Rev. 2012;92:101–130. doi: 10.1152/physrev.00021.2011. PubMed DOI PMC

Lai J., Chen C. The role of epoxyeicosatrienoic acids in cardiac remodeling. Front. Physiol. 2021;12 doi: 10.3389/fphys.2021.642470. PubMed DOI PMC

Guan X.-X., Rao D.-N., Liu Y.-Z., Zhou Y., Yang H.-H. Epoxyeicosatrienoic acids and fibrosis: recent insights for the novel therapeutic strategies. Int. J. Mol. Sci. 2021;22 doi: 10.3390/ijms221910714. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace