Long-chain polyunsaturated fatty acid-containing phosphatidylcholines predict survival rate in patients after heart failure
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39553601
PubMed Central
PMC11567051
DOI
10.1016/j.heliyon.2024.e39979
PII: S2405-8440(24)16010-0
Knihovny.cz E-zdroje
- Klíčová slova
- Atherosclerosis, Eicosanoids, HF survival, Heart failure, Lipidomics, PC, PUFA, Phosphatidylcholine, Survival rate,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Heart failure (HF) is becoming an increasingly prevalent issue, particularly among the elderly population. Lipids are closely associated with cardiovascular disease (CVD) pathology. Lipidomics as a comprehensive profiling tool is showing to be promising in the prediction of events and mortality due to CVD as well as identifying novel biomarkers. MATERIALS AND METHODS: In this study, eicosanoids and lipid profiles were measured in order to predict survival in patients with de novo or acute decompensated HF. Our study included 50 patients (16 females, mean age 73 years and 34 males, mean age 71 years) with de novo or acute decompensated chronic HF with a median follow-up of 7 months. Lipids were semiquantified using targeted lipidomic liquid chromatography-mass spectrometry (LC-MS/MS) analysis. Eicosanoid concentrations were determined using a commercially available sandwich ELISA assay. RESULTS: From 736 lipids and 3 eicosanoids, 39 significant lipids were selected (by using the Mann-Whitney U test after Benjamini-Hochberg correction) with the highest number of representatives belonging to the polyunsaturated (PUFA) phosphatidylcholines (PC). PC 42:10 (p = 1.44 × 10-4) was found to be the most statistically significantly elevated in the surviving group with receiver operating characteristics of AUC = 0.84 (p = 3.24 × 10-7). A multivariate supervised discriminant analysis based on the aforementioned lipid panel enabled the classification of the groups of surviving and non-surviving patients with 90 % accuracy. CONCLUSIONS: In the present study we describe a trend in PUFA esterified in PC that were systematically increased in surviving patients with HF. This trend in low-abundant and rarely identified PUFA PC (mainly very long chain PUFA containing PC such as PC 42:10 or PC 40:9 containing FA 22:6, FA 20:5 and FA 20:4) suggests candidate biomarkers.
Zobrazit více v PubMed
Conrad N., Judge A., Tran J., Mohseni H., Hedgecott D., Crespillo A.P., Allison M., Hemingway H., Cleland J.G., McMurray J.J.V., Rahimi K. Temporal trends and patterns in heart failure incidence: a population-based study of 4 million individuals. Lancet. 2018;391:572–580. doi: 10.1016/S0140-6736(17)32520-5. PubMed DOI PMC
Roger V.L. Epidemiology of heart failure. Circ. Res. 2013;113:646–659. doi: 10.1161/CIRCRESAHA.113.300268. PubMed DOI PMC
McDonagh T.A., Metra M., Adamo M., Gardner R.S., Baumbach A., Böhm M., Burri H., Butler J., Čelutkienė J., Chioncel O., Cleland J.G.F., Coats A.J.S., Crespo-Leiro M.G., Farmakis D., Gilard M., Heymans S., Hoes A.W., Jaarsma T., Jankowska E.A., Lainscak M., Lam C.S.P., Lyon A.R., McMurray J.J.V., Mebazaa A., Mindham R., Muneretto C., Piepoli F., Price S., Rosano G.M.C., Ruschitzka F., Skibelund K. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: developed by the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. Heart J. 2021;42(2021):3599–3726. doi: 10.1093/eurheartj/ehab368. PubMed DOI
Wang D.D., Toledo E., Hruby A., Rosner B.A., Willett W.C., Sun Q., Razquin C., Zheng Y., Ruiz-Canela M., Guasch-Ferré M., Corella D., Gómez-Gracia E., Fiol M., Estruch R., Ros E., Lapetra J., Fito M., Aros F., Serra-Majem L., Lee C.-H., Clish C.B., Liang L., Salas-Salvadó J., Martínez-González M.A., Hu F.B., Ceramides Plasma. Mediterranean Diet, and Incident Cardiovascular Disease in the PREDIMED Trial (Prevención con Dieta Mediterránea) Circulation. 2017;135:2028–2040. doi: 10.1161/circulationaha.116.024261. PubMed DOI PMC
Peterson L.R., Xanthakis V., Duncan M.S., Gross S., Friedrich N., Völzke H., Felix S.B., Jiang H., Sidhu R., Nauck M., Jiang X., Ory D.S., Dörr M., Vasan R.S., Schaffer J.E. Ceramide remodeling and risk of cardiovascular events and mortality. J. Am. Heart Assoc. 2018;7 doi: 10.1161/JAHA.117.007931. PubMed DOI PMC
Hilvo M., Meikle P.J., Pedersen E.R., Tell G.S., Dhar I., Brenner H., Schöttker B., Lääperi M., Kauhanen D., Koistinen K.M., Jylhä A., Huynh K., Mellett N.A., Tonkin A.M., Sullivan D.R., Simes J., Nestel P., Koenig W., Rothenbacher D., Nygård O., Laaksonen R. Development and validation of a ceramide- and phospholipid-based cardiovascular risk estimation score for coronary artery disease patients. Eur. Heart J. 2020;41:371–380. doi: 10.1093/eurheartj/ehz387. PubMed DOI
Laaksonen R., Ekroos K., Sysi-Aho M., Hilvo M., Vihervaara T., Kauhanen D., Suoniemi M., Hurme R., März W., Scharnagl H., Stojakovic T., Vlachopoulou E., Lokki M.-L., Nieminen M.S., Klingenberg R., Matter C.M., Hornemann T., Jüni P., Rodondi N., Räber L., Windecker S., Gencer B., Pedersen E.R., Tell G.S., Nygård O., Mach F., Sinisalo J., Lüscher T.F. Plasma ceramides predict cardiovascular death in patients with stable coronary artery disease and acute coronary syndromes beyond LDL-cholesterol. Eur. Heart J. 2016;37:1967–1976. doi: 10.1093/eurheartj/ehw148. PubMed DOI PMC
McGurk K.A., Keavney B.D., Nicolaou A. Circulating ceramides as biomarkers of cardiovascular disease: evidence from phenotypic and genomic studies. Atherosclerosis. 2021;327:18–30. doi: 10.1016/j.atherosclerosis.2021.04.021. PubMed DOI
CERAM - Overview MI-heart ceramides, plasma. https://www.mayocliniclabs.com/test-catalog/overview/606777 n.d.
Ridker P.M., Everett B.M., Thuren T., MacFadyen J.G., Chang W.H., Ballantyne C., Fonseca F., Nicolau J., Koenig W., Anker S.D., Kastelein J.J.P., Cornel J.H., Pais P., Pella D., Genest J., Cifkova R., Lorenzatti A., Forster T., Kobalava Z., Vida-Simiti L., Flather M., Shimokawa H., Ogawa H., Dellborg M., Rossi P.R.F., Troquay R.P.T., Libby P., Glynn R.J. CANTOS trial group, antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med. 2017;377:1119–1131. https://www.nejm.org/doi/full/10.1056/nejmoa1707914 PubMed DOI
Imig J.D., Cervenka L., Neckar J. Epoxylipids and soluble epoxide hydrolase in heart diseases. Biochem. Pharmacol. 2022;195 doi: 10.1016/j.bcp.2021.114866. PubMed DOI PMC
Kala P., Sedláková L., Škaroupková P., Kopkan L., Vaňourková Z., Táborský M., Nishiyama A., Hwang S.H., Hammock B.D., Sadowski J., Melenovský V., Imig J.D., Červenka L. Effect of angiotensin-converting enzyme blockade, alone or combined with blockade of soluble epoxide hydrolase, on the course of congestive heart failure and occurrence of renal dysfunction in Ren-2 transgenic hypertensive rats with aorto-caval fistula. Physiol. Res. 2018;67:401–415. doi: 10.33549/physiolres.933757. PubMed DOI PMC
Kala P., Miklovič M., Jíchová Š., Škaroupková P., Vaňourková Z., Maxová H., Gawrys O., Kompanowska-Jezierska E., Sadowski J., Imig J.D., Falck J.R., Veselka J., Červenka L., Aiglová R., Vícha M., Gloger V., Táborský M. Effects of epoxyeicosatrienoic acid-enhancing therapy on the course of congestive heart failure in angiotensin II-dependent rat hypertension: from mRNA analysis towards functional in vivo evaluation. Biomedicines. 2021;9 doi: 10.3390/biomedicines9081053. PubMed DOI PMC
Huang C.-C., Chang M.-T., Leu H.-B., Yin W.-H., Tseng W.-K., Wu Y.-W., Lin T.-H., Yeh H.-I., Chang K.-C., Wang J.-H., Wu C.-C., Shyur L.-F., Chen J.-W. Association of arachidonic acid-derived lipid mediators with subsequent onset of acute myocardial infarction in patients with coronary artery disease. Sci. Rep. 2020;10:8105. doi: 10.1038/s41598-020-65014-z. PubMed DOI PMC
Jamieson K.L., Endo T., Darwesh A.M., Samokhvalov V., Seubert J.M. Cytochrome P450-derived eicosanoids and heart function. Pharmacol. Ther. 2017;179:47–83. doi: 10.1016/j.pharmthera.2017.05.005. PubMed DOI
Lehmann R. From bedside to bench-practical considerations to avoid pre-analytical pitfalls and assess sample quality for high-resolution metabolomics and lipidomics analyses of body fluids. Anal. Bioanal. Chem. 2021;413:5567–5585. doi: 10.1007/s00216-021-03450-0. PubMed DOI PMC
Kala P., Hnat T., Padrova K., Kotaška K., Veselka J. Eicosanoids in human heart failure: pilot study of plasma epoxyeicosatrienoic and dihydroxyeicosatrienoic acid levels. Arch. Med. Sci. 2023;19:513–517. doi: 10.5114/aoms/159313. PubMed DOI PMC
Sarafian M.H., Gaudin M., Lewis M.R., Martin F.-P., Holmes E., Nicholson J.K., Dumas M.-E. Objective set of criteria for optimization of sample preparation procedures for ultra-high throughput untargeted blood plasma lipid profiling by ultra performance liquid chromatography-mass spectrometry. Anal. Chem. 2014;86:5766–5774. doi: 10.1021/ac500317c. PubMed DOI
Kvasnička A., Friedecký D., Brumarová R., Pavlíková M., Pavelcová K., Mašínová J., Hasíková L., Závada J., Pavelka K., Ješina P., Stibůrková B. Alterations in lipidome profiles distinguish early-onset hyperuricemia, gout, and the effect of urate-lowering treatment. Arthritis Res. Ther. 2023;25:234. doi: 10.1186/s13075-023-03204-6. PubMed DOI PMC
Peng B., Kopczynski D., Pratt B.S., Ejsing C.S., Burla B., Hermansson M., Benke P.I., Tan S.H., Chan M.Y., Torta F., Schwudke D., Meckelmann S.W., Coman C., Schmitz O.J., MacLean B., Manke M.-C., Borst O., Wenk M.R., Hoffmann N., Ahrends R. LipidCreator workbench to probe the lipidomic landscape. Nat. Commun. 2020;11:2057. doi: 10.1038/s41467-020-15960-z. PubMed DOI PMC
Kvasnička A., Friedecký D., Tichá A., Hyšpler R., Janečková H., Brumarová R., Najdekr L., Zadák Z. SLIDE-novel approach to apocrine sweat sampling for lipid profiling in healthy individuals. Int. J. Mol. Sci. 2021;22 doi: 10.3390/ijms22158054. PubMed DOI PMC
Drotleff B., Roth S.R., Henkel K., Calderón C., Schlotterbeck J., Neukamm M.A., Lämmerhofer M. Lipidomic profiling of non-mineralized dental plaque and biofilm by untargeted UHPLC-QTOF-MS/MS and SWATH acquisition. Anal. Bioanal. Chem. 2020;412:2303–2314. doi: 10.1007/s00216-019-02364-2. PubMed DOI PMC
Wang M., Wang C., Han X. Selection of internal standards for accurate quantification of complex lipid species in biological extracts by electrospray ionization mass spectrometry-What, how and why? Mass Spectrom. Rev. 2017;36:693–714. doi: 10.1002/mas.21492. PubMed DOI PMC
Köfeler H.C., Ahrends R., Baker E.S., Ekroos K., Han X., Hoffmann N., Holčapek M., Wenk M.R., Liebisch G. Recommendations for good practice in MS-based lipidomics. J. Lipid Res. 2021;62 doi: 10.1016/j.jlr.2021.100138. PubMed DOI PMC
The R. Project for statistical computing. https://www.R-project.org/ n.d.
AlzbetaG, AlzbetaG/Metabol. First version, Zenodo; 2019. DOI
Shannon P., Markiel A., Ozier O., Baliga N.S., Wang J.T., Ramage D., Amin N., Schwikowski B., Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–2504. doi: 10.1101/gr.1239303. PubMed DOI PMC
Benjamini Y., Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. 1995;57:289–300. doi: 10.1111/j.2517-6161.1995.tb02031.x. DOI
Mundra P.A., Barlow C.K., Nestel P.J., Barnes E.H., Kirby A., Thompson P., Sullivan D.R., Alshehry Z.H., Mellett N.A., Huynh K., Jayawardana K.S., Giles C., McConville M.J., Zoungas S., Hillis G.S., Chalmers J., Woodward M., Wong G., Kingwell B.A., Simes J., Tonkin A.M., Meikle P.J. LIPID Study Investigators, Large-scale plasma lipidomic profiling identifies lipids that predict cardiovascular events in secondary prevention. JCI Insight. 2018;3 doi: 10.1172/jci.insight.121326. PubMed DOI PMC
Laaksonen D.E., Nyyssönen K., Niskanen L., Rissanen T.H., Salonen J.T. Prediction of cardiovascular mortality in middle-aged men by dietary and serum linoleic and polyunsaturated fatty acids. Arch. Intern. Med. 2005;165:193–199. doi: 10.1001/archinte.165.2.193. PubMed DOI
Reibel D.K., O'Rourke B., Foster K.A., Hutchinson H., Uboh C.E., Kent R.L. Altered phospholipid metabolism in pressure-overload hypertrophied hearts. Am. J. Physiol. 1986;250:H1–H6. doi: 10.1152/ajpheart.1986.250.1.h1. PubMed DOI
Le C.H., Mulligan C.M., Routh M.A., Bouma G.J., Frye M.A., Jeckel K.M., Sparagna G.C., Lynch J.M., Moore R.L., McCune S.A., Bristow M., Zarini S., Murphy R.C., Chicco A.J. Delta-6-desaturase links polyunsaturated fatty acid metabolism with phospholipid remodeling and disease progression in heart failure. Circ. Heart Fail. 2014;7:172–183. doi: 10.1161/circheartfailure.113.000744. PubMed DOI
Liu W., Xie X., Liu M., Zhang J., Liang W., Chen X. Serum ω-3 polyunsaturated fatty acids and potential influence factors in elderly patients with multiple cardiovascular risk factors. Sci. Rep. 2018;8:1102. doi: 10.1038/s41598-018-19193-5. PubMed DOI PMC
Tarasov K., Ekroos K., Suoniemi M., Kauhanen D., Sylvänne T., Hurme R., Gouni-Berthold I., Berthold H.K., Kleber M.E., Laaksonen R., März W. Molecular lipids identify cardiovascular risk and are efficiently lowered by simvastatin and PCSK9 deficiency. J. Clin. Endocrinol. Metab. 2014;99:E45–E52. doi: 10.1210/jc.2013-2559. PubMed DOI PMC
Toko H., Morita H., Katakura M., Hashimoto M., Ko T., Bujo S., Adachi Y., Ueda K., Murakami H., Ishizuka M., Guo J., Zhao C., Fujiwara T., Hara H., Takeda N., Takimoto E., Shido O., Harada M., Komuro I. Omega-3 fatty acid prevents the development of heart failure by changing fatty acid composition in the heart. Sci. Rep. 2020;10 doi: 10.1038/s41598-020-72686-0. PubMed DOI PMC
Oikonomou E., Vogiatzi G., Karlis D., Siasos G., Chrysohoou C., Zografos T., Lazaros G., Tsalamandris S., Mourouzis K., Georgiopoulos G., Toutouza M., Tousoulis D. Effects of omega-3 polyunsaturated fatty acids on fibrosis, endothelial function and myocardial performance, in ischemic heart failure patients. Clin. Nutr. 2019;38:1188–1197. doi: 10.1016/j.clnu.2018.04.017. PubMed DOI
Theken K.N., Schuck R.N., Edin M.L., Tran B., Ellis K., Bass A., Lih F.B., Tomer K.B., Poloyac S.M., Wu M.C., Hinderliter A.L., Zeldin D.C., Stouffer G.A., Lee C.R. Evaluation of cytochrome P450-derived eicosanoids in humans with stable atherosclerotic cardiovascular disease. Atherosclerosis. 2012;222:530–536. doi: 10.1016/j.atherosclerosis.2012.03.022. PubMed DOI PMC
Tacconelli S., Patrignani P. Inside epoxyeicosatrienoic acids and cardiovascular disease. Front. Pharmacol. 2014;5:239. doi: 10.3389/fphar.2014.00239. PubMed DOI PMC
Ma K., Yang J., Shao Y., Li P., Guo H., Wu J., Zhu Y., Zhang H., Zhang X., Du J., Li Y. Therapeutic and prognostic significance of arachidonic acid in heart failure. Circ. Res. 2022;130:1056–1071. doi: 10.1161/CIRCRESAHA.121.320548. PubMed DOI
Imig J.D. Epoxides and soluble epoxide hydrolase in cardiovascular physiology. Physiol. Rev. 2012;92:101–130. doi: 10.1152/physrev.00021.2011. PubMed DOI PMC
Lai J., Chen C. The role of epoxyeicosatrienoic acids in cardiac remodeling. Front. Physiol. 2021;12 doi: 10.3389/fphys.2021.642470. PubMed DOI PMC
Guan X.-X., Rao D.-N., Liu Y.-Z., Zhou Y., Yang H.-H. Epoxyeicosatrienoic acids and fibrosis: recent insights for the novel therapeutic strategies. Int. J. Mol. Sci. 2021;22 doi: 10.3390/ijms221910714. PubMed DOI PMC