Epoxyeicosatrienoic Acid-Based Therapy Attenuates the Progression of Postischemic Heart Failure in Normotensive Sprague-Dawley but Not in Hypertensive Ren-2 Transgenic Rats

. 2019 ; 10 () : 159. [epub] 20190301

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30881303

Grantová podpora
P42 ES004699 NIEHS NIH HHS - United States
R01 ES002710 NIEHS NIH HHS - United States

Epoxyeicosatrienoic acids (EETs) and their analogs have been identified as potent antihypertensive compounds with cardio- and renoprotective actions. Here, we examined the effect of EET-A, an orally active EET analog, and c-AUCB, an inhibitor of the EETs degrading enzyme soluble epoxide hydrolase, on the progression of post-myocardial infarction (MI) heart failure (HF) in normotensive Hannover Sprague-Dawley (HanSD) and in heterozygous Ren-2 transgenic rats (TGR) with angiotensin II-dependent hypertension. Adult male rats (12 weeks old) were subjected to 60-min left anterior descending (LAD) coronary artery occlusion or sham (non-MI) operation. Animals were treated with EET-A and c-AUCB (10 and 1 mg/kg/day, respectively) in drinking water, given alone or combined for 5 weeks starting 24 h after MI induction. Left ventricle (LV) function and geometry were assessed by echocardiography before MI and during the progression of HF. At the end of the study, LV function was determined by catheterization and tissue samples were collected. Ischemic mortality due to the incidence of sustained ventricular fibrillation was significantly higher in TGR than in HanSD rats (35.4 and 17.7%, respectively). MI-induced HF markedly increased LV end-diastolic pressure (Ped) and reduced fractional shortening (FS) and the peak rate of pressure development [+(dP/dt)max] in untreated HanSD compared to sham (non-MI) group [Ped: 30.5 ± 3.3 vs. 9.7 ± 1.3 mmHg; FS: 11.1 ± 1.0 vs. 40.8 ± 0.5%; +(dP/dt)max: 3890 ± 291 vs. 5947 ± 309 mmHg/s]. EET-A and c-AUCB, given alone, tended to improve LV function parameters in HanSD rats. Their combination amplified the cardioprotective effect of single therapy and reached significant differences compared to untreated HanSD controls [Ped: 19.4 ± 2.2 mmHg; FS: 14.9 ± 1.0%; +(dP/dt)max: 5278 ± 255 mmHg/s]. In TGR, MI resulted in the impairment of LV function like HanSD rats. All treatments reduced the increased level of albuminuria in TGR compared to untreated MI group, but neither single nor combined EET-based therapy improved LV function. Our results indicate that EET-based therapy attenuates the progression of post-MI HF in HanSD, but not in TGR, even though they exhibited renoprotective action in TGR hypertensive rats.

Zobrazit více v PubMed

Alánová P., Husková Z., Kopkan L., Sporková A., Jíchová Š, Neckář J., et al. (2015). Orally active epoxyeicosatrienoic acid analog does not exhibit antihypertensive and reno- or cardioprotective actions in two-kidney, one-clip Goldblatt hypertensive rats. Vascul. Pharmacol. 73 45–56. 10.1016/j.vph.2015.08.013 PubMed DOI

Bachmann S., Peters J., Engler E., Ganten D., Mullins J. (1992). Transgenic rats carrying the mouse renin gene-morphological characterization of a low-renin hypertension model. Kidney Int. 41 24–36. 10.1038/ki.1992.4 PubMed DOI

Braunwald E. (2013). Heart failure. JACC Heart Fail. 1 1–20. 10.1016/j.jchf.2012.10.002 PubMed DOI

Campbell W. B., Imig J. D., Schmitz J. M., Falck J. R. (2017). Orally active epoxyeicosatrienoic acid analogs. J. Cardiovasc. Pharmacol. 70 211–224. 10.1097/fjc.0000000000000523 PubMed DOI PMC

Cao J., Singh S. P., McClung J. A., Joseph G., Vanella L., Barbagallo I., et al. (2017). EET intervention on Wnt1, NOV, and HO-1 signaling prevents obesity-induced cardiomyopathy in obese mice. Am. J. Physiol. Heart Circ. Physiol. 313 H368–H380. 10.1152/ajpheart.00093.2017 PubMed DOI PMC

Cao J., Tsenovoy P. L., Thompson E. A., Falck J. R., Touchon R., Sodhi K., et al. (2015). Agonists of epoxyeicosatrienoic acids reduce infarct size and ameliorate cardiac dysfunction via activation of HO-1 and Wnt1 canonical pathway. Prostaglandins Other Lipid Mediat. 11 76–86. 10.1016/j.prostaglandins.2015.01.002 PubMed DOI PMC

Červenka L., Husková Z., Kopkan L., Kikerlová S., Sedláková L., Vaňourková Z., et al. (2018). Two pharmacological epoxyeicosatrienoic acid-enhancing therapies are effectively antihypertensive and reduce the severity of ischemic arrhythmias in rats with angiotensin II-dependent hypertension. J. Hypertens. 36 1326–1341. 10.1097/hjh.0000000000001708 PubMed DOI PMC

Červenka L., Melenovský V., Husková Z., Škaroupková P., Nishiyama A., Sadowski J. (2015a). Inhibition of soluble epoxide hydrolase counteracts the development of renal dysfunction and progression of congestive heart failure in Ren-2 transgenic hypertensive rats with aorto-caval fistula. Clin. Exp. Pharmacol. Physiol. 42 795–807. 10.1111/1440-1681.12419 PubMed DOI

Červenka L., Melenovský V., Husková Z., Sporková A., Bürgelová M., Škaroupková P., et al. (2015b). Inhibition of soluble epoxide hydrolase does not improve the course of congestive heart failure and the development of renal dysfunction in rats with volume overload induced by aorto-caval fistula. Physiol. Res. 64 857–873. PubMed PMC

Chen W., Yang S., Ping W., Fu X., Xu Q., Wang J. (2015). CYP2J2 and EETs protect against lung ischemia/reperfusion injury via anti-inflammatory effects in vivo and in vitro. Cell. Physiol. Biochem. 35 2043–2054. 10.1159/000374011 PubMed DOI

Connelly K. A., Advani A., Advani S., Zhang Y., Thai K., Thomas S., et al. (2013). Combination angiotensin converting enzyme and direct renin inhibition in heart failure following experimental myocardial infarction. Cardiovasc. Ther. 31 84–91. 10.1111/j.1755-5922.2011.00292.x PubMed DOI

De Mello W., Rivera M., Rabell A., Gerena Y. (2013). Aliskiren, at low doses, reduces the electrical remodeling in the heart of the TGR(mRen2)27 rat independently of blood pressure. J. Renin Angiotensin Aldosterone Syst. 14 23–33. 10.1177/1470320312463832 PubMed DOI

Dong X. W., Jia Y. L., Ge L. T., Jiang B., Jiang J. X., Shen J., et al. (2017). Soluble epoxide hydrolase inhibitor AUDA decreases bleomycin-induced pulmonary toxicity in mice by inhibiting the p38/Smad3 pathways. Toxicology 389 31–41. 10.1016/j.tox.2017.07.002 PubMed DOI

Falck J. R., Koduru S. R., Mohapatra S., Manne R., Atcha K. R., Atcha R., et al. (2014). 14,15-Epoxyeicosa-5,8,11-trienoic Acid (14,15-EET) surrogates: carboxylate modifications. J. Med. Chem. 57 6965–6972. 10.1021/jm500262m PubMed DOI PMC

Fan F., Roman R. J. (2017). Effect of cytochrome P450 metabolites of arachidonic acid in nephrology. J. Am. Soc. Nephrol. 28 2845–2855. 10.1681/ASN.2017030252 PubMed DOI PMC

Habibi J., DeMarco V. G., Ma L., Pulakat L., Rainey W. E., Whaley-Connell A. T., et al. (2011). Mineralocorticoid receptor blockade improves diastolic function independent of blood pressure reduction in a transgenic model of RAAS overexpression. Am. J. Physiol. Heart. Circ. Physiol. 300 H1484–H1491. 10.1152/ajpheart.01000.2010 PubMed DOI PMC

Hrdlička J., Neckář J., Papoušek F., Vašinová J., Alánová P., Kolář F., et al. (2016). Beneficial effect of continuous normobaric hypoxia on ventricular dilatation in rats with post-infarction heart failure. Physiol. Res. 65 867–870. PubMed

Hye Khan M. A., Fish B., Wahl G., Sharma A., Falck J. R., Paudyal M. P., et al. (2016). Epoxyeicosatrienoic acid analogue mitigates kidney injury in a rat model of radiation nephropathy. Clin. Sci. 130 587–599. 10.1042/cs20150778 PubMed DOI PMC

Hye Khan M. A., Neckář J., Manthati V., Errabelli R., Pavlov T. S., Staruschenko A., et al. (2013). Orally active epoxyeicosatrienoic acid analog attenuates kidney injury in hypertensive Dahl salt-sensitive rat. Hypertension 62 905–913. 10.1161/hypertensionaha.113.01949 PubMed DOI PMC

Hye Khan M. A., Pavlov T. S., Christain S. V., Neckář J., Staruschenko A., Gauthier K. M., et al. (2014). Epoxyeicosatrienoic acid analogue lowers blood pressure through vasodilation and sodium channel inhibition. Clin. Sci. 127 463–474. 10.1042/CS20130479 PubMed DOI PMC

Imig J. D. (2012). Epoxides and soluble epoxide hydrolase in cardiovascular physiology. Physiol. Rev. 92 101–130. 10.1152/physrev.00021.2011 PubMed DOI PMC

Imig J. D. (2015). Epoxyeicosatrienoic acids, hypertension, and kidney injury. Hypertension 65 476–482. 10.1161/HYPERTENSIONAHA PubMed DOI PMC

Imig J. D. (2018). Prospective for cytochrome P450 epoxygenase cardiovascular and renal therapeutics. Pharmacol. Ther. 192 1–19. 10.1016/j.pharmthera.2018.06.015 PubMed DOI PMC

Jamieson K. L., Endo T., Darwesh A. M., Samokhvalov V., Seubert J. M. (2017). Cytochrome P450-derived eicosanoids and heart function. Pharmacol. Ther. 179 47–83. 10.1016/j.pharmthera.2017.05.005 PubMed DOI

Jíchová Š, Kopkan L., Husková Z., Doleželová Š, Neckář J., Kujal P., et al. (2016). Epoxyeicosatrienoic acid analog attenuates the development of malignant hypertension, but does not reverse it once established: a study in Cyp1a1-Ren-2 transgenic rats. J. Hypertens. 34 2008–2025. 10.1097/hjh.0000000000001029 PubMed DOI PMC

Kala P., Sedláková L., Škaroupková P., Kopkan L., Vaňourková Z., Táborský M., et al. (2018). Effect of angiotensin-converting enzyme blockade, alone or combined with blockade of soluble epoxide hydrolase, on the course of congestive heart failure and occurrence of renal dysfunction in Ren-2 transgenic hypertensive rats with aorto-caval fistula. Physiol. Res. 67 401–415. PubMed PMC

Khan A. H., Falck J. R., Manthati V. L., Campbell W. B., Imig J. D. (2014). Epoxyeicosatrienoic acid analog attenuates angiotensin II hypertension and kidney injury. Front. Pharmacol. 23:216 10.3389/fphar.2014.00216 PubMed DOI PMC

Khan M. A., Liu J., Kumar G., Skapek S. X., Falck J. R., Imig J. D. (2013). Novel orally active epoxyeicosatrienoic acid (EET) analogs attenuate cisplatin nephrotoxicity. FASEB J. 27 2946–2956. 10.1096/fj.12-218040 PubMed DOI PMC

Kompa A. R., Wang B. H., Xu G., Zhang Y., Ho P. Y., Eisennagel S., et al. (2013). Soluble epoxide hydrolase inhibition exerts beneficial anti-remodeling actions post-myocardial infarction. Int. J. Cardiol. 167 210–219. 10.1016/j.ijcard.2011.12.062 PubMed DOI

Kovács Á, Fülöp G. Á, Kovács A., Csípõ T., Bódi B., Priksz D., et al. (2016). Renin overexpression leads to increased titin-based stiffness contributing to diastolic dysfunction in hypertensive mRen2 rats. Am. J. Physiol. Heart Circ. Physiol. 310 H1671–H1682. 10.1152/ajpheart.00842.2015 PubMed DOI

Lee M. A., Böhm M., Paul M., Bader M., Ganten U., Ganten D. (1996). Physiological characterization of the hypertensive transgenic rat TGR(mREN2)27. Am. J. Physiol. 270 E919–E929. 10.1152/ajpendo.1996.270.6.e919 PubMed DOI

Lee T. M., Lin M. S., Chang N. C. (2008). Effect of ATP-sensitive potassium channel agonists on ventricular remodeling in healed rat infarcts. J. Am. Coll. Cardiol. 51 1309–1318. 10.1016/j.jacc.2007.11.067 PubMed DOI

Li N., Liu J. Y., Timofeyev V., Qiu H., Hwang S. H., Tuteja D., et al. (2009). Beneficial effects of soluble epoxide hydrolase inhibitors in myocardial infarction model: insight gained using metabolomic approaches. J. Mol. Cell Cardiol. 47 835–845. 10.1016/j.yjmcc.2009.08.017 PubMed DOI PMC

Ma L., Gul R., Habibi J., Yang M., Pulakat L., Whaley-Connell A., et al. (2012). Nebivolol improves diastolic dysfunction and myocardial remodeling through reductions in oxidative stress in the transgenic (mRen2) rat. Am. J. Physiol. Heart. Circ. Physiol. 302 H2341–H2351. 10.1152/ajpheart.01126.2011 PubMed DOI PMC

Merabet N., Bellien J., Glevarec E., Nicol L., Lucas D., Remy-Jouet I., et al. (2012). Soluble epoxide hydrolase inhibition improves myocardial perfusion and function in experimental heart failure. J. Mol. Cell Cardiol. 52 660–666. 10.1016/j.yjmcc.2011.11.015 PubMed DOI

Morgan L. A., Olzinski A. R., Upson J. J., Zhao S., Wang T., Eisennagel S. H., et al. (2013). Soluble epoxide hydrolase inhibition does not prevent cardiac remodeling and dysfunction after aortic constriction in rats and mice. J. Cardiovasc. Pharmacol. 61 291–301. 10.1097/FJC.0b013e31827fe59c PubMed DOI

Mori T., Nishimura H., Okabe M., Ueyama M., Kubota J., Kawamura K. (1998). Cardioprotective effects of quinapril after myocardial infarction in hypertensive rats. Eur. J. Pharmacol. 348 229–234. 10.1016/S0014-2999(98)00155-1 PubMed DOI

Mullins J. J., Peters J., Ganten D. (1990). Fulminant hypertension in transgenic rats harbouring the mouse Ren-2 gene. Nature 344 541–544. 10.1038/344541a0 PubMed DOI

Neckář J., Hsu A., Hye Khan M. A., Gross G. J., Nithipatikom K., Cyprová M., et al. (2018). Infarct size-limiting effect of epoxyeicosatrienoic acid analog EET-B is mediated by hypoxia-inducible factor-1α via downregulation of prolyl hydroxylase 3. Am. J. Physiol. Heart Circ. Physiol. 315 H1148–H1158. 10.1152/ajpheart.00726.2017 PubMed DOI PMC

Neckář J., Kopkan L., Husková Z., Kolář F., Papoušek F., Kramer H. J., et al. (2012). Inhibition of soluble epoxide hydrolase by cis-4-[4-(3-adamantan-1-ylureido)cyclohexyl-oxy]benzoic acid exhibits antihypertensive and cardioprotective actions in transgenic rats with angiotensin II-dependent hypertension. Clin. Sci. 122 513–525. 10.1042/CS20110622 PubMed DOI PMC

Nishikimi T., Yamagishi H., Takeuchi K., Takeda T. (1995). An angiotensin II receptor antagonist attenuates left ventricular dilatation after myocardial infarction in the hypertensive rat. Cardiovasc. Res. 29 856–861. 10.1016/S0008-6363(96)88623-8 PubMed DOI

Oni-Orisan A., Alsaleh N., Lee C. R., Seubert J. M. (2014). Epoxyeicosatrienoic acids and cardioprotection: the road to translation. J. Mol. Cell Cardiol. 74 199–208. 10.1016/j.yjmcc.2014.05.016 PubMed DOI PMC

Qiu H., Li N., Liu J. Y., Harris T. R., Hammock B. D., Chiamvimonvat N. (2011). Soluble epoxide hydrolase inhibitors and heart failure. Cardiovasc. Ther. 29 99–111. 10.1111/j.1755-5922.2010.00150.x PubMed DOI PMC

Roger V. L. (2013). Epidemiology of heart failure. Circ. Res. 113 646–659. 10.1161/circresaha.113.300268 PubMed DOI PMC

Shen H., Hammock B. D. (2012). Discovery of inhibitors of soluble epoxide hydrolase: a target with multiple potential therapeutic indications. J. Med. Chem. 55 1789–1808. 10.1021/jm201468j PubMed DOI PMC

Singh S. P., Schragenheim J., Cao J., Falck J. R., Abraham N. G., Bellner L. (2016). PGC-1 alpha regulates HO-1 expression, mitochondrial dynamics and biogenesis: role of epoxyeicosatrienoic acid. Prostaglandins Other Lipid Mediat. 125 8–18. 10.1016/j.prostaglandins.2016.07.004 PubMed DOI PMC

Sirish P., Li N., Liu J. Y., Lee K. S., Hwang S. H., Qiu H., et al. (2013). Unique mechanistic insights into the beneficial effects of soluble epoxide hydrolase inhibitors in the prevention of cardiac fibrosis. Proc. Natl. Acad. Sci. U.S.A. 110 5618–5623. 10.1073/pnas.1221972110 PubMed DOI PMC

Skibba M., Hye Khan M. A., Kolb L. L., Yeboah M. M., Falck J. R., Amaradhi R., et al. (2017). Epoxyeicosatrienoic acid analog decreases renal fibrosis by reducing epithelial-to-mesenchymal transition. Front. Pharmacol. 8:406. 10.3389/fphar.2017.00406 PubMed DOI PMC

Spector A. A., Norris A. W. (2007). Action of epoxyeicosatrienoic acids on cellular function. Am. J. Physiol. Cell Physiol. 292 C996–C1012. 10.1152/ajpcell.00402.2006 PubMed DOI

Tao W., Li P. S., Yang L. Q., Ma Y. B. (2016). Effects of a soluble epoxide hydrolase inhibitor on lipopolysaccharide-induced acute lung injury in mice. PLoS One 11:e0160359. 10.1371/journal.pone.0160359 PubMed DOI PMC

Townsley M. I., Morisseau C., Hammock B., King J. A. (2010). Impact of epoxyeicosatrienoic acids in lung ischemia-reperfusion injury. Microcirculation 17 137–146. 10.1111/j.1549-8719.2009.00013.x PubMed DOI PMC

Vacková Š, Kopkan L., Kikerlová S., Husková Z., Sadowski J., Kompanowska-Jezierska E., et al. (2019). Pharmacological blockade of soluble epoxide hydrolase attenuates the progression of congestive heart failure combined with chronic kidney disease: insights from studies with Fawn-hooded hypertensive rats. Front. Pharmacol. 10:18. 10.3389/fphar.2019.00018 PubMed DOI PMC

Whaley-Connell A., Govindarajan G., Habibi J., Hayden M. R., Cooper S. A., Wei Y., et al. (2007). Angiotensin II-mediated oxidative stress promotes myocardial tissue remodeling in the transgenic (mRen2) 27 Ren2 rat. Am. J. Physiol. Endocrinol. Metab. 293 E355–E363. 10.1152/ajpendo.00632.2006 PubMed DOI

Wiemer G., Itter G., Malinski T., Linz W. (2001). Decreased nitric oxide availability in normotensive and hypertensive rats with failing hearts after myocardial infarction. Hypertension 38 1367–1371. 10.1161/hy1101.096115 PubMed DOI

Xu D., Li N., He Y., Timofeyev V., Lu L., Tsai H. J., et al. (2006). Prevention and reversal of cardiac hypertrophy by soluble epoxide hydrolase inhibitors. Proc. Natl. Acad. Sci. U.S.A. 103 18733–18738. 10.1073/pnas.0609158103 PubMed DOI PMC

Yang J., Bratt J., Franzi L., Liu J. Y., Zhang G., Zeki A. A., et al. (2015). Soluble epoxide hydrolase inhibitor attenuates inflammation and airway hyperresponsiveness in mice. Am. J. Respir. Cell Mol. Biol. 52 46–55. 10.1165/rcmb.2013-0440OC PubMed DOI PMC

Yang L., Cheriyan J., Gutterman D. D., Mayer R. J., Ament Z., Griffin J. L., et al. (2017). Mechanisms of vascular dysfunction in COPD and effects of a novel soluble epoxide hydrolase inhibitor in smokers. Chest 151 555–563. 10.1016/j.chest.2016.10.058 PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Sixty Years of Heart Research in the Institute of Physiology of the Czech Academy of Sciences

. 2024 Apr 18 ; 73 (Suppl 1) : S35-S48. [epub] 20240418

Epitranscriptomic regulation in fasting hearts: implications for cardiac health

. 2024 Jan ; 21 (1) : 1-14. [epub] 20240207

Inappropriate activation of the renin-angiotensin system improves cardiac tolerance to ischemia/reperfusion injury in rats with late angiotensin II-dependent hypertension

. 2023 ; 14 () : 1151308. [epub] 20230614

Beneficial Effects of Empagliflozin Are Mediated by Reduced Renal Inflammation and Oxidative Stress in Spontaneously Hypertensive Rats Expressing Human C-Reactive Protein

. 2022 Aug 24 ; 10 (9) : . [epub] 20220824

Epoxylipids and soluble epoxide hydrolase in heart diseases

. 2022 Jan ; 195 () : 114866. [epub] 20211202

Effects of Epoxyeicosatrienoic Acid-Enhancing Therapy on the Course of Congestive Heart Failure in Angiotensin II-Dependent Rat Hypertension: From mRNA Analysis towards Functional In Vivo Evaluation

. 2021 Aug 20 ; 9 (8) : . [epub] 20210820

Increased Endogenous Activity of the Renin-Angiotensin System Reduces Infarct Size in the Rats with Early Angiotensin II-dependent Hypertension which Survive the Acute Ischemia/Reperfusion Injury

. 2021 ; 12 () : 679060. [epub] 20210528

Epoxyeicosatrienoic acid analog EET-B attenuates post-myocardial infarction remodeling in spontaneously hypertensive rats

. 2019 Apr 30 ; 133 (8) : 939-951. [epub] 20190429

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...