Beneficial Effects of Empagliflozin Are Mediated by Reduced Renal Inflammation and Oxidative Stress in Spontaneously Hypertensive Rats Expressing Human C-Reactive Protein
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
19-06199S
Czech Science Foundation
LX22NPO5104
Ministry of Education, Youth and Sports of the Czech Republic
IN 00023001
Institute for Clinical and Experimental Medicine - IKEM
RVO 67985823
Institute of Physiology of the Czech Academy of Sciences
PubMed
36140169
PubMed Central
PMC9495591
DOI
10.3390/biomedicines10092066
PII: biomedicines10092066
Knihovny.cz E-zdroje
- Klíčová slova
- SGLT-2 inhibitor, SHR-CRP, age, gene expression, lipid metabolism,
- Publikační typ
- časopisecké články MeSH
Gliflozins (inhibitors of sodium-glucose cotransporter 2) show many beneficial actions beyond their antidiabetic effects. The underlying mechanisms of these additional protective effects are still not well understood, especially under non-diabetic conditions. Therefore, we analyzed the effects of empagliflozin in young (3-month-old) and adult (12-month-old) male spontaneously hypertensive rats (SHR) expressing human C-reactive protein (CRP) in the liver. SHR-CRP rats are a non-diabetic model of metabolic syndrome, inflammation, and organ damage. Empagliflozin was given in a daily dose of 10 mg/kg body weight for 8 weeks. Both age groups of SHR-CRP rats treated with empagliflozin had lower body weight, decreased weight of fat depots, reduced ectopic fat accumulation in the liver and kidneys, and decreased levels of plasma insulin and β-hydroxybutyrate. Empagliflozin effectively reduced ectopic renal fat accumulation, and was associated with decreased inflammation. Exclusively in young rats, decreased microalbuminuria after empagliflozin treatment was accompanied by attenuated oxidative stress. In adult animals, empagliflozin also improved left ventricle function. In conclusion, in young animals, the beneficial renoprotective effects of empagliflozin could be ascribed to reduced lipid deposition in the kidney and the attenuation of oxidative stress and inflammation. In contrast, hepatic lipid metabolism was ameliorated in adult rats.
Institute for Clinical and Experimental Medicine 14220 Prague Czech Republic
Institute of Physiology Czech Academy of Sciences 14220 Prague Czech Republic
Zobrazit více v PubMed
Aldossari K.K. Cardiovascular outcomes and safety with antidiabetic drugs. Int. J. Health Sci. 2018;12:70–83. PubMed PMC
Hediger M.A., Rhoads D.B. Molecular physiology of sodium glucose cotransporters. Physiol. Rev. 1994;74:993–1026. doi: 10.1152/physrev.1994.74.4.993. PubMed DOI
Prattichizzo F., De Nigris V., Spiga R., Mancuso E., La Sala L., Antonicelli R., Testa R., Procopio A.D., Olivieri F. Inflammageing and metaflammation: The yin and yang of type 2 diabetes. Ageing Res. Rev. 2018;41:1–17. doi: 10.1016/j.arr.2017.10.003. PubMed DOI
Zinman B., Wanner C., Lachin J.M., Fitchett D., Bluhmki E., Hantel S., Mattheus M., Devins T., Johansen O.E., Woerle H.J., et al. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N. Engl. J. Med. 2015;373:2117–2128. doi: 10.1056/NEJMoa1504720. PubMed DOI
Wanner C., Inzucchi S.E., Lachin J.M., Fitchett D., von Eynatten M., Mattheus M., Johansen O.E., Woerle H.J., Broedl U.C., Zinman B., et al. Empagliflozin and Progression of Kidney Disease in Type 2 Diabetes. N. Engl. J. Med. 2016;375:323–334. doi: 10.1056/NEJMoa1515920. PubMed DOI
Perkovic V., Jardine M.J., Neal B., Bompoint S., Heerspink H.J.L., Charytan D.M., Edwards R., Agarwal R., Bakris G., Bull S., et al. Canagliflozin and Renal Outcomes in Type 2 Diabetes and Nephropathy. N. Engl. J. Med. 2019;380:2295–2306. doi: 10.1056/NEJMoa1811744. PubMed DOI
Cannon C.P., Perkovic V., Agarwal R., Baldassarre J., Bakris G., Charytan D.M., de Zeeuw D., Edwards R., Greene T., Heerspink H.J.L., et al. Evaluating the Effects of Canagliflozin on Cardiovascular and Renal Events in Patients with Type 2 Diabetes Mellitus and Chronic Kidney Disease According to Baseline HbA1c, Including Those with HbA1c <7%: Results from the CREDENCE Trial. Circulation. 2020;141:407–410. doi: 10.1161/CIRCULATIONAHA.119.044359. PubMed DOI
Heerspink H.J.L., Jongs N., Chertow G.M., Langkilde A.M., McMurray J.J.V., Correa-Rotter R., Rossing P., Sjöstrom C.D., Stefansson B.V., Toto R.D., et al. Effect of dapagliflozin on the rate of decline in kidney function in patients with chronic kidney disease with and without type 2 diabetes: A prespecified analysis from the DAPA-CKD trial. Lancet Diabetes Endocrinol. 2021;9:743–754. doi: 10.1016/S2213-8587(21)00242-4. PubMed DOI
Mima A. Sodium-Glucose Cotransporter 2 Inhibitors in Patients with Non-Diabetic Chronic Kidney Disease. Adv. Ther. 2021;38:2201–2212. doi: 10.1007/s12325-021-01735-5. PubMed DOI
Benetti E., Mastrocola R., Vitarelli G., Cutrin J.C., Nigro D., Chiazza F., Mayoux E., Collino M., Fantozzi R. Empagliflozin protects against diet-induced NLRP-3 inflammasome activation and lipid accumulation. J. Pharmacol. Exp. Ther. 2016;359:45–53. doi: 10.1124/jpet.116.235069. PubMed DOI
Gembrandt F., Bartaun C., Jarzebska N., Mayoux E., Todorov V.T., Hohenstein B., Hugo C. The SGLT2 inhibitor empagliflozin ameliorates early features of diabetic nephropathy in BTBR ob/ob type 2 diabetic mice with and without hypertension. Am. J. Physiol. Renal. Physiol. 2014;307:F317–F325. doi: 10.1152/ajprenal.00145.2014. PubMed DOI
Wang X.X., Levi J., Luo Y., Kopp J.B., Rosenberg A.Z., Levi M. SGLT2 Protein expression is increased in human diabetic nephropathy: SGTL2 protein inhibition decreases renal lipid accumulation, inflammation, and the development of nephropathy in diabetic mice. J. Biol. Chem. 2017;292:5335–5348. doi: 10.1074/jbc.M117.779520. PubMed DOI PMC
Yurista S.R., Silljé H.H.W., Oberdorf-Maass S.U., Schouten E.M., Pavez Giani M.G., Hillebrands J.L., van Goor H., van Veldhuisen D.J., de Boer R.A., Westenbrink B.D. Sodium-glucose co-transporter 2 inhibition with empagliflozin improves cardiac function in non-diabetic rats with left ventricular dysfunction after myocardial infarction. Eur. J. Heart Fail. 2019;21:862–873. doi: 10.1002/ejhf.1473. PubMed DOI
Connelly K.A., Zhang Y., Desjardins J.F., Nghiem L., Visram A., Batchu S.N., Yerra V.G., Kabir G., Thai K., Advani A., et al. Load-independent effects of empagliflozin contribute to improved cardiac function in experimental heart failure with reduced ejection fraction. Cardiovasc. Diabetol. 2020;19:13. doi: 10.1186/s12933-020-0994-y. PubMed DOI PMC
Lee H.C., Shiou Y.L., Jhuo S.J., Chang C.Y., Liu P.L., Jhuang W.J., Dai Z.K., Chen W.Y., Chen Y.F., Lee A.S. The sodium-glucose co-transporter 2 inhibitor empagliflozin attenuates cardiac fibrosis and improves ventricular hemodynamics in hypertensive heart failure rats. Cardiovasc. Diabetol. 2019;18:45. doi: 10.1186/s12933-019-0849-6. PubMed DOI PMC
Yang C.C., Chen Y.T., Wallace C.G., Chen K.H., Cheng B.C., Sung P.H., Li Y.-C., Ko S.-F., Chang H.-W., Yip H.-K. Early administration of empagliflozin preserved heart function in cardiorenal syndrome in rat. Biomed. Pharmacother. 2019;109:658–670. doi: 10.1016/j.biopha.2018.10.095. PubMed DOI
Hojná S., Rauchová H., Malínská H., Marková I., Hüttl M., Papoušek F., Behuliak M., Miklánková D., Vaňourková Z., Neckář J., et al. Antihypertensive and metabolic effects of empagliflozin in Ren-2 transgenic rats, an experimental non-diabetic model of hypertension. Biomed. Pharmacother. 2021;144:112246. doi: 10.1016/j.biopha.2021.112246. PubMed DOI
Hüttl M., Markova I., Miklankova D., Zapletalova I., Poruba M., Haluzik M., Vaněčkova I., Malinska H. In a Prediabetic Model, Empagliflozin Improves Hepatic Lipid Metabolism Independently of Obesity and before Onset of Hyperglycemia. Int. J. Mol. Sci. 2021;22:11513. doi: 10.3390/ijms222111513. PubMed DOI PMC
Pravenec M., Kajiya T., Zídek V., Landa V., Mlejnek P., Simáková M., Silhavý J., Malínská H., Oliyarnyk O., Kazdová L., et al. Effects of human C-reactive protein on pathogenesis of features of the metabolic syndrome. Hypertension. 2011;57:731–737. doi: 10.1161/HYPERTENSIONAHA.110.164350. PubMed DOI PMC
Malinska H., Hüttl M., Oliyarnyk O., Bratova M., Kazdova L. Conjugated linoleic acid reduces visceral and ectopic lipid accumulation and insulin resistance in chronic severe hypertriacylglycerolemia. Nutrition. 2015;31:1045–1051. doi: 10.1016/j.nut.2015.03.011. PubMed DOI
Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951;193:265–275. doi: 10.1016/S0021-9258(19)52451-6. PubMed DOI
Hrdlička J., Neckář J., Papoušek F., Husková Z., Kikerlová S., Vaňourková Z., Vernerová Z., Akat F., Vašinová J., Hammock B.D., et al. Epoxyeicosatrienoic Acid-Based Therapy Attenuates the Progression of Postischemic Heart Failure in Normotensive Sprague-Dawley but Not in Hypertensive Ren-2 Transgenic Rats. Front. Pharmacol. 2019;10:159. doi: 10.3389/fphar.2019.00159. PubMed DOI PMC
Ye J., Coulouris G., Zaretskaya I., Cutcutache I., Rozen S., Madden T.L. Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinform. 2012;13:134. doi: 10.1186/1471-2105-13-134. PubMed DOI PMC
Nakano Y., Hirano T., Uehara K., Nishibayashi S., Hattori K., Aihara M., Yamada Y. New rat model induced by anti-glomerular basement membrane antibody shows severe glomerular adhesion in early stage and quickly progresses to end-stage renal failure. Pathol. Int. 2008;58:361–370. doi: 10.1111/j.1440-1827.2008.02237.x. PubMed DOI
Saito T., Sumithran E., Glasgow E.F., Atkins R.C. The enhancement of aminonucleoside nephrosis by the co-administration of protamine. Kidney Int. 1987;32:691–699. doi: 10.1038/ki.1987.262. PubMed DOI
Zicha J., Kunes J. Ontogenetic Aspects of Hypertension Development: Analysis in the Rat. Physiol. Rev. 1999;79:1227–1282. doi: 10.1152/physrev.1999.79.4.1227. PubMed DOI
Jiang T., Wang X.X., Scherzer P., Wilson P., Tallman J., Takahashi H., Li J., Iwahashi M., Sutherland E., Arend L., et al. Farnesoid X receptor modulates renal lipid metabolism, fibrosis, and diabetic nephropathy. Diabetes. 2007;56:2485–2493. doi: 10.2337/db06-1642. PubMed DOI
Sun L., Halaihel N., Zhang W., Rogers T., Levi M. Role of sterol regulatory element-binding protein 1 in regulation of renal lipid metabolism and glomerulosclerosis in diabetes mellitus. J. Biol. Chem. 2002;277:18919–18927. doi: 10.1074/jbc.M110650200. PubMed DOI
Proctor G., Jiang T., Iwahashi M., Wang Z., Li J., Levi M. Regulation of renal fatty acid and cholesterol metabolism, inflammation, and fibrosis in Akita and OVE26 mice with type 1 diabetes. Diabetes. 2006;55:2502–2509. doi: 10.2337/db05-0603. PubMed DOI
Wang Z., Jiang T., Li J., Proctor G., McManaman J.L., Lucia S., Chua S., Levi M. Regulation of renal lipid metabolism, lipid accumulation, and glomerulosclerosis in FVBdb/db mice with type 2 diabetes. Diabetes. 2005;54:2328–2335. doi: 10.2337/diabetes.54.8.2328. PubMed DOI
Wang X.X., Edelstein M.H., Gafter U., Qiu L., Luo Y., Dobrinskikh E., Lucia S., Adorini L., D’Agati V.D., Levi J., et al. G protein-coupled bile acid receptor TGR5 activation inhibits kidney disease in obesity and diabetes. J. Am. Soc. Nephrol. 2016;27:1362–1378. doi: 10.1681/ASN.2014121271. PubMed DOI PMC
Herman-Edelstein M., Scherzer P., Tobar A., Levi M., Gafter U. Altered renal lipid metabolism and renal lipid accumulation in human diabetic nephropathy. J. Lipid. Res. 2014;55:561–572. doi: 10.1194/jlr.P040501. PubMed DOI PMC
Hosokawa K., Takata T., Sugihara T., Matono T., Koda M., Kanda T., Taniguchi S., Ida A., Mae Y., Yamamoto M., et al. Ipragliflozin Ameliorates Endoplasmic Reticulum Stress and Apoptosis through Preventing Ectopic Lipid Deposition in Renal Tubules. Int. J. Mol. Sci. 2019;21:190. doi: 10.3390/ijms21010190. PubMed DOI PMC
Tanaka S., Sugiura Y., Saito H., Sugahara M., Higashijima Y., Yamaguchi J., Inagi R., Suematsu M., Nangaku M., Tanaka T. Sodium-glucose cotransporter 2 inhibition normalizes glucose metabolism and suppresses oxidative stress in the kidneys of diabetic mice. Kidney Int. 2018;94:912–925. doi: 10.1016/j.kint.2018.04.025. PubMed DOI
Charlton A., Garzarella J., Jandeleit-Dahm K.A.M., Jha J.C. Oxidative stress and inflammation in renal and cardiovascular complications of diabetes. Biology. 2020;10:18. doi: 10.3390/biology10010018. PubMed DOI PMC
Pirklbauer M. Anti-inflammatory potencial of empagliflozin. Inflammopharmacology. 2021;29:573–576. doi: 10.1007/s10787-021-00797-9. PubMed DOI PMC
Ishibashi Y., Matsui T., Yamagishi S. Tofogliflozin, a highly selective inhibitor of SGLT2 blocks proinflammatory and proapoptotic effects of glucose overload on proximal tubular cells partly by suppressing oxidative stress generation. Horm. Metab. Res. 2016;48:191–195. doi: 10.1055/s-0035-1555791. PubMed DOI
Nishimura R., Tanaka Y., Koiwai K., Ishida K., Salsali A. Effect of empagliflozin on free fatty acids and ketone bodies in Japanese patients with type 2 diabetes mellitus: A randomized controlled trial. Adv. Ther. 2019;36:2769–2782. doi: 10.1007/s12325-019-01045-x. PubMed DOI
Abdurrachim D., Teo X.Q., Woo C.C. Empagliflozin reduces myocardial ketone utilization while preserving glucose utilization in diabetic hypertensive heart disease: A hyperpolarized 13-C magnetic resonance spectroscopy study. Diabetes Obes. Metab. 2019;21:357–365. doi: 10.1111/dom.13536. PubMed DOI PMC
Packer M. Do sodium-glucose co-transporter-2 inhibitors prevent heart failure with a preserved ejection fraction by counterbalancing the effects of leptin? A novel hypothesis. Diabetes Obes. Metab. 2018;20:1361–1366. doi: 10.1111/dom.13229. PubMed DOI
Lieb W., Sullivan L.M., Harris T.B. Plasma leptin levels and incidence of heart failure, cardiovascular disease, and total mortality in elderly individuals. Diabetes Care. 2009;32:612–616. doi: 10.2337/dc08-1596. PubMed DOI PMC
Pedone C., Roshanravan B., Scarlata S., Patel K.V., Ferrucci L., Incalzi R.A. Longitudial association between serum leptin concetration and glomerular filtration rate in humans. PLoS ONE. 2015;10:e0117828. doi: 10.1371/journal.pone.0117828. PubMed DOI PMC
Tentolouris A., Vlachakis P., Tzeravini E., Eleftheriadou I., Tentolouris N. SGLT2 inhibitor: A review of their antidiabetic and cardioprotective effects. Int. J. Environ. Res. Public Health. 2019;16:2965. doi: 10.3390/ijerph16162965. PubMed DOI PMC
Vickers S.P., Cheetham S.C., Headland K.R. Combination of the sodium-glucose cotransporter-2 inhibitor empagliflozin with orlistat or sibutramine further improves the body-weight reduction and glucose homeostasis of obese rats fed a cafeteria diet. Diabetes Metab. Syndr. Obes. 2014;7:265–275. doi: 10.2147/DMSO.S58786. PubMed DOI PMC
Nasiri-Ansari N., Nikolopoulou C., Papoutsi K., Kyrou I., Mantzoros C.S., Kyriakopoulos G., Chatzigeorgiou A., Kalotychou V., Randeva M.S., Chatha K., et al. Empagliflozin Attenuates Non-Alcoholic Fatty Liver Disease (NAFLD) in High Fat Diet Fed ApoE(−/−) Mice by Activating Autophagy and Reducing ER Stress and Apoptosis. Int. J. Mol. Sci. 2021;22:818. doi: 10.3390/ijms22020818. PubMed DOI PMC
Lebeaupin C., Vallée D., Hazari Y., Hetz C., Chevet E., Bailly-Maitre B. Endoplasmic reticulum stress signalling and the pathogenesis of non-alcoholic fatty liver disease. J. Hepatol. 2018;69:927–947. doi: 10.1016/j.jhep.2018.06.008. PubMed DOI
Gliflozins in the Treatment of Non-diabetic Experimental Cardiovascular Diseases
Empagliflozin Is Not Renoprotective in Non-Diabetic Rat Models of Chronic Kidney Disease