In a Prediabetic Model, Empagliflozin Improves Hepatic Lipid Metabolism Independently of Obesity and before Onset of Hyperglycemia
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
19-06199S
Czech Science Foundation
IGA_LF_2021_013
Ministry of Health of the Czech Republic
PubMed
34768942
PubMed Central
PMC8584090
DOI
10.3390/ijms222111513
PII: ijms222111513
Knihovny.cz E-zdroje
- Klíčová slova
- SGLT-2 inhibitors, cytochrome P450, empagliflozin, fatty liver, fetuin-A, lipid metabolism, oxidative stress,
- MeSH
- benzhydrylové sloučeniny farmakologie MeSH
- glifloziny farmakologie MeSH
- glukosidy farmakologie MeSH
- hyperglykemie farmakoterapie etiologie metabolismus MeSH
- hyperlipoproteinemie typ IV komplikace farmakoterapie metabolismus MeSH
- inzulinová rezistence MeSH
- játra účinky léků metabolismus MeSH
- krysa rodu Rattus MeSH
- mediátory zánětu metabolismus MeSH
- metabolismus lipidů účinky léků MeSH
- modely nemocí na zvířatech MeSH
- mutantní kmeny potkanů MeSH
- nealkoholová steatóza jater etiologie metabolismus prevence a kontrola MeSH
- obezita komplikace metabolismus MeSH
- oxidační stres účinky léků MeSH
- potkani Wistar MeSH
- prediabetes komplikace farmakoterapie metabolismus MeSH
- progrese nemoci MeSH
- systém (enzymů) cytochromů P-450 metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- benzhydrylové sloučeniny MeSH
- empagliflozin MeSH Prohlížeč
- glifloziny MeSH
- glukosidy MeSH
- mediátory zánětu MeSH
- systém (enzymů) cytochromů P-450 MeSH
Recent studies suggest that treatment with SGLT-2 inhibitors can reduce hepatic lipid storage and ameliorate non-alcoholic fatty liver disease (NAFLD) development beyond their glycemic benefits. However, the exact mechanism involved is still unclear. We investigated the hepatic metabolic effect of empagliflozin (10 mg/kg/day for eight weeks) on the development of NAFLD and its complications using HHTg rats as a non-obese prediabetic rat model. Empagliflozin treatment reduced neutral triacylglycerols and lipotoxic diacylglycerols in the liver and was accompanied by significant changes in relative mRNA expression of lipogenic enzymes (Scd-1, Fas) and transcription factors (Srebp1, Pparγ). In addition, alterations in the gene expression of cytochrome P450 proteins, particularly Cyp2e1 and Cyp4a, together with increased Nrf2, contributed to the improvement of hepatic lipid metabolism after empagliflozin administration. Decreased circulating levels of fetuin-A improved lipid metabolism and attenuated insulin resistance in the liver and in peripheral tissues. Our results highlight the beneficial effect of empagliflozin on hepatic lipid metabolism and lipid accumulation independent of obesity, with the mechanisms understood to involve decreased lipogenesis, alterations in cytochrome P450 proteins, and decreased fetuin-A. These changes help to alleviate NAFLD symptoms in the early phase of the disease and before the onset of diabetes.
Zobrazit více v PubMed
Targher G., Day C.P., Bonora E. Risk of Cardiovascular Disease in Patients with Nonalcoholic Fatty Liver Disease. N. Engl. J. Med. 2010;363:1341–1350. doi: 10.1056/NEJMra0912063. PubMed DOI
Kim K.-S., Lee B.-W. Beneficial effect of anti-diabetic drugs for nonalcoholic fatty liver disease. Clin. Mol. Hepatol. 2020;26:430–443. doi: 10.3350/cmh.2020.0137. PubMed DOI PMC
Hazlehurst J.M., Tomlinson J. Mechanisms in endocrinology: Non-alcoholic fatty liver disease in common endocrine disorders. Eur. J. Endocrinol. 2013;169:R27–R37. doi: 10.1530/EJE-13-0296. PubMed DOI
Kim D., Kim W.R. Nonobese Fatty Liver Disease. Clin. Gastroenterol. Hepatol. 2017;15:474–485. doi: 10.1016/j.cgh.2016.08.028. PubMed DOI
Patel D.K., Strong J. The Pleiotropic Effects of Sodium–Glucose Cotransporter-2 Inhibitors: Beyond the Glycemic Benefit. Diabetes Ther. 2019;10:1771–1792. doi: 10.1007/s13300-019-00686-z. PubMed DOI PMC
Kuchay M.S., Farooqui K.J., Mishra S.K., Mithal A. Glucose Lowering Efficacy and Pleiotropic Effects of Sodium-Glucose Cotransporter 2 Inhibitors. Adv. Exp. Med. Biol. 2020;1307:213–230. doi: 10.1007/5584_2020_479. PubMed DOI
Kahl S., Gancheva S., Straßburger K., Herder C., Machann J., Katsuyama H., Kabisch S., Henkel E., Kopf S., Lagerpusch M., et al. Empagliflozin Effectively Lowers Liver Fat Content in Well-Controlled Type 2 Diabetes: A Randomized, Double-Blind, Phase 4, Placebo-Controlled Trial. Diabetes Care. 2019;43:298–305. doi: 10.2337/dc19-0641. PubMed DOI
Chehrehgosha H., Sohrabi M.R., Ismail-Beigi F., Malek M., Babaei M.R., Zamani F., Ajdarkosh H., Khoonsari M., Fallah A.E., Khamseh M.E. Empagliflozin Improves Liver Steatosis and Fibrosis in Patients with Non-Alcoholic Fatty Liver Disease and Type 2 Diabetes: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Diabetes Ther. 2021;12:843–861. doi: 10.1007/s13300-021-01011-3. PubMed DOI PMC
Taheri H., Malek M., Ismail-Beigi F., Zamani F., Sohrabi M., Babaei M.R., Khamseh M.E. Effect of Empagliflozin on Liver Steatosis and Fibrosis in Patients With Non-Alcoholic Fatty Liver Disease Without Diabetes: A Randomized, Double-Blind, Placebo-Controlled Trial. Adv. Ther. 2020;37:4697–4708. doi: 10.1007/s12325-020-01498-5. PubMed DOI PMC
Mantovani A., Petracca G., Csermely A., Beatrice G., Targher G. Sodium-Glucose Cotransporter-2 Inhibitors for Treatment of Nonalcoholic Fatty Liver Disease: A Meta-Analysis of Randomized Controlled Trials. Metabolites. 2020;11:22. doi: 10.3390/metabo11010022. PubMed DOI PMC
Nasiri-Ansari N., Nikolopoulou C., Papoutsi K., Kyrou I., Mantzoros C.S., Kyriakopoulos G., Chatzigeorgiou A., Kalotychou V., Randeva M.S., Chatha K., et al. Empagliflozin Attenuates Non-Alcoholic Fatty Liver Disease (NAFLD) in High Fat Diet Fed ApoE((−/−)) Mice by Activating Autophagy and Reducing ER Stress and Apoptosis. Int. J. Mol. Sci. 2021;22:818. doi: 10.3390/ijms22020818. PubMed DOI PMC
Petito-Da-Silva T.I., Souza-Mello V., Barbosa-Da-Silva S. Empaglifozin mitigates NAFLD in high-fat-fed mice by alleviating insulin resistance, lipogenesis and ER stress. Mol. Cell. Endocrinol. 2019;498:110539. doi: 10.1016/j.mce.2019.110539. PubMed DOI
Perakakis N., Chrysafi P., Feigh M., Veidal S., Mantzoros C. Empagliflozin Improves Metabolic and Hepatic Outcomes in a Non-Diabetic Obese Biopsy-Proven Mouse Model of Advanced NASH. Int. J. Mol. Sci. 2021;22:6332. doi: 10.3390/ijms22126332. PubMed DOI PMC
Zicha J., Pechánová O., Cacányiová S., Cebová M., Kristek F., Török J., Simko F., Dobesová Z., Kunes J. Hereditary hypertriglyceridemic rat: A suitable model of cardiovascular disease and metabolic syndrome? Physiol. Res. 2006;55((Suppl. 1)):49–63. PubMed
Vrána A., Kazdová L. The hereditary hypertriglyceridemic nonobese rat: An experimental model of human hypertriglyceridemia. Transplant. Proc. 1990;22:2579. PubMed
Buzzetti E., Pinzani M., Tsochatzis E.A. The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD) Metab. Clin. Exp. 2016;65:1038–1048. doi: 10.1016/j.metabol.2015.12.012. PubMed DOI
Schork A., Saynisch J., Vosseler A., Jaghutriz B.A., Heyne N., Peter A., Häring H.-U., Stefan N., Fritsche A., Artunc F. Effect of SGLT2 inhibitors on body composition, fluid status and renin–angiotensin–aldosterone system in type 2 diabetes: A prospective study using bioimpedance spectroscopy. Cardiovasc. Diabetol. 2019;18:1–12. doi: 10.1186/s12933-019-0852-y. PubMed DOI PMC
Ferrannini G., Hach T., Crowe S., Sanghvi A., Hall K.D., Ferrannini E. Energy Balance After Sodium–Glucose Cotransporter 2 Inhibition. Diabetes Care. 2015;38:1730–1735. doi: 10.2337/dc15-0355. PubMed DOI PMC
Kim J., Lee Y.-J., You Y., Moon M.K., Yoon K., Ahn Y., Ko S. Effect of sodium-glucose cotransporter 2 inhibitor, empagliflozin, and α-glucosidase inhibitor, voglibose, on hepatic steatosis in an animal model of type 2 diabetes. J. Cell. Biochem. 2019;120:8534–8546. doi: 10.1002/jcb.28141. PubMed DOI
Hojná S., Rauchová H., Malínská H., Marková I., Hüttl M., Papoušek F., Behuliak M., Miklánková D., Vaňourková Z., Neckář J., et al. Antihypertensive and metabolic effects of empagliflozin in Ren-2 transgenic rats, an experimental non-diabetic model of hypertension. Biomed. Pharmacother. 2021;144:112246. doi: 10.1016/j.biopha.2021.112246. PubMed DOI
Iwata K., Kinoshita M., Yamada S., Imamura T., Uenoyama Y., Tsukamura H., Maeda K.-I. Involvement of brain ketone bodies and the noradrenergic pathway in diabetic hyperphagia in rats. J. Physiol. Sci. 2011;61:103–113. doi: 10.1007/s12576-010-0127-6. PubMed DOI PMC
Xu L., Nagata N., Nagashimada M., Zhuge F., Ni Y., Chen G., Mayoux E., Kaneko S., Ota T. SGLT2 Inhibition by Empagliflozin Promotes Fat Utilization and Browning and Attenuates Inflammation and Insulin Resistance by Polarizing M2 Macrophages in Diet-induced Obese Mice. EBioMedicine. 2017;20:137–149. doi: 10.1016/j.ebiom.2017.05.028. PubMed DOI PMC
Guerra S., Gastaldelli A. The role of the liver in the modulation of glucose and insulin in non alcoholic fatty liver disease and type 2 diabetes. Curr. Opin. Pharmacol. 2020;55:165–174. doi: 10.1016/j.coph.2020.10.016. PubMed DOI
Petersen M., Shulman G.I. Roles of Diacylglycerols and Ceramides in Hepatic Insulin Resistance. Trends Pharmacol. Sci. 2017;38:649–665. doi: 10.1016/j.tips.2017.04.004. PubMed DOI PMC
Pokharel A., Kc S., Thapa P., Karki N., Shrestha R., Jaishi B., Paudel M.S. The Effect of Empagliflozin on Liver Fat in Type 2 Diabetes Mellitus Patients With Non-Alcoholic Fatty Liver Disease. Cureus. 2021;13:16687. doi: 10.7759/cureus.16687. PubMed DOI PMC
Lebeaupin C., Vallée D., Hazari Y., Hetz C., Chevet E., Bailly-Maitre B. Endoplasmic reticulum stress signalling and the pathogenesis of non-alcoholic fatty liver disease. J. Hepatol. 2018;69:927–947. doi: 10.1016/j.jhep.2018.06.008. PubMed DOI
Kern M., Klöting N., Mark M., Mayoux E., Klein T., Blüher M. The SGLT2 inhibitor empagliflozin improves insulin sensitivity in db/db mice both as monotherapy and in combination with linagliptin. Metabolism. 2016;65:114–123. doi: 10.1016/j.metabol.2015.10.010. PubMed DOI
Endo T., Samokhvalov V., Darwesh A.M., Khey K.M.W., El-Sherbeni A., El-Kadi A.O.S., Machida T., Hirafuji M., Seubert J.M. DHA and 19,20-EDP induce lysosomal-proteolytic-dependent cytotoxicity through de novo ceramide production in H9c2 cells with a glycolytic profile. Cell Death Discov. 2018;4:1–11. doi: 10.1038/s41420-018-0090-1. PubMed DOI PMC
Uno T., Nakano R., Kitagawa R., Okada M., Kanamaru K., Takenaka S., Uno Y., Imaishi H., Kitagawa R. Metabolism of steroids by cytochrome P450 2C9 variants. Biopharm. Drug Dispos. 2018;39:371–377. doi: 10.1002/bdd.2153. PubMed DOI
Eberlé D., Hegarty B., Bossard P., Ferre P., Foufelle F. SREBP transcription factors: Master regulators of lipid homeostasis. Biochimie. 2004;86:839–848. doi: 10.1016/j.biochi.2004.09.018. PubMed DOI
Chambel S.S., Santos-Gonçalves A., Duarte T.L. The Dual Role of Nrf2 in Nonalcoholic Fatty Liver Disease: Regulation of Antioxidant Defenses and Hepatic Lipid Metabolism. BioMed Res. Int. 2015;2015:1–10. doi: 10.1155/2015/597134. PubMed DOI PMC
Michel M.C., Mayoux E., Vallon V. A comprehensive review of the pharmacodynamics of the SGLT2 inhibitor empagliflozin in animals and humans. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2015;388:801–816. doi: 10.1007/s00210-015-1134-1. PubMed DOI PMC
Wang K., Tan W., Liu X., Deng L., Huang L., Wang X., Gao X. New insight and potential therapy for NAFLD: CYP2E1 and flavonoids. Biomed. Pharmacother. 2021;137:111326. doi: 10.1016/j.biopha.2021.111326. PubMed DOI
Harjumäki R., Pridgeon C., Ingelman-Sundberg M. CYP2E1 in Alcoholic and Non-Alcoholic Liver Injury. Roles of ROS, Reactive Intermediates and Lipid Overload. Int. J. Mol. Sci. 2021;22:8221. doi: 10.3390/ijms22158221. PubMed DOI PMC
Leung T.-M., Nieto N. CYP2E1 and oxidant stress in alcoholic and non-alcoholic fatty liver disease. J. Hepatol. 2013;58:395–398. doi: 10.1016/j.jhep.2012.08.018. PubMed DOI
Ryu J.-S., Lee M., Mun S.J., Hong S.-H., Lee H.-J., Ahn H.-S., Chung K.-S., Kim G.-H., Son M.J. Targeting CYP4A attenuates hepatic steatosis in a novel multicellular organotypic liver model. J. Biol. Eng. 2019;13:1–14. doi: 10.1186/s13036-019-0198-8. PubMed DOI PMC
Zhang X., Li S., Zhou Y., Su W., Ruan X., Wang B., Zheng F., Warner M., Gustafsson J.-Å., Guan Y. Ablation of cytochrome P450 omega-hydroxylase 4A14 gene attenuates hepatic steatosis and fibrosis. Proc. Natl. Acad. Sci. USA. 2017;114:3181–3185. doi: 10.1073/pnas.1700172114. PubMed DOI PMC
Huang B., Bao J., Cao Y.-R., Gao H.-F., Jin Y. Cytochrome P450 1A1 (CYP1A1) Catalyzes Lipid Peroxidation of Oleic Acid-Induced HepG2 Cells. Biochemistry. 2018;83:595–602. doi: 10.1134/S0006297918050127. PubMed DOI
Meex R.C.R., Watt M.J. Hepatokines: Linking nonalcoholic fatty liver disease and insulin resistance. Nat. Rev. Endocrinol. 2017;13:509–520. doi: 10.1038/nrendo.2017.56. PubMed DOI
Dogru T., Kirik A., Gurel H., Rizvi A., Rizzo M., Sonmez A. The Evolving Role of Fetuin-A in Nonalcoholic Fatty Liver Disease: An Overview from Liver to the Heart. Int. J. Mol. Sci. 2021;22:6627. doi: 10.3390/ijms22126627. PubMed DOI PMC
Mori K., Emoto M., Inaba M. Fetuin-A: A multifunctional protein. Recent Pat. Endocr. Metab. Immune Drug Discov. 2011;5:124–146. doi: 10.2174/187221411799015372. PubMed DOI
Lee K.-Y., Lee W., Jung S.-H., Park J., Sim H., Choi Y.-J., Park Y.-J., Chung Y., Lee B.-H. Hepatic upregulation of fetuin-A mediates acetaminophen-induced liver injury through activation of TLR4 in mice. Biochem. Pharmacol. 2019;166:46–55. doi: 10.1016/j.bcp.2019.05.011. PubMed DOI
Ke Y., Xu C., Lin J., Li Y. Role of hepatokines in non-alcoholic fatty liver disease. J. Transl. Intern. Med. 2019;7:143–148. doi: 10.2478/jtim-2019-0029. PubMed DOI PMC
Su X., Kong Y., Peng D. Fibroblast growth factor 21 in lipid metabolism and non-alcoholic fatty liver disease. Clin. Chim. Acta. 2019;498:30–37. doi: 10.1016/j.cca.2019.08.005. PubMed DOI
Yilmaz Y., Eren F., Yonal O., Kurt R., Aktas B., Celikel C.A., Ozdogan O., Imeryuz N., Kalayci C., Avsar E. Increased serum FGF21 levels in patients with nonalcoholic fatty liver disease. Eur. J. Clin. Investig. 2010;40:887–892. doi: 10.1111/j.1365-2362.2010.02338.x. PubMed DOI
Ashino T., Ohkubo-Morita H., Yamamoto M., Yoshida T., Numazawa S. Possible involvement of nuclear factor erythroid 2-related factor 2 in the gene expression of Cyp2b10 and Cyp2a5. Redox Biol. 2014;2:284–288. doi: 10.1016/j.redox.2013.12.025. PubMed DOI PMC
Abdelhamid A.M., Elsheakh A.R., Abdelaziz R.R., Suddek G.M. Empagliflozin ameliorates ethanol-induced liver injury by modulating NF-κB/Nrf-2/PPAR-γ interplay in mice. Life Sci. 2020;256:117908. doi: 10.1016/j.lfs.2020.117908. PubMed DOI
Malinska H., Hüttl M., Oliyarnyk O., Bratova M., Kazdova L. Conjugated linoleic acid reduces visceral and ectopic lipid accumulation and insulin resistance in chronic severe hypertriacylglycerolemia. Nutrition. 2015;31:1045–1051. doi: 10.1016/j.nut.2015.03.011. PubMed DOI
Gliflozins in the Treatment of Non-diabetic Experimental Cardiovascular Diseases