Hypolipidemic Effects of Beetroot Juice in SHR-CRP and HHTg Rat Models of Metabolic Syndrome: Analysis of Hepatic Proteome
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
LX22NPO5104
National Institute for Research of Metabolic and Cardiovascular Diseases (Program EXCELES, ID Project No. LX22NPO5104) funded by the European Union - Next Generation EU
21-18993S
Czech Science Foundation project
67985823
Ministry of Education Youth and Sports, RVO
68378050
Ministry of Education Youth and Sports, RVO
PubMed
36837811
PubMed Central
PMC9965406
DOI
10.3390/metabo13020192
PII: metabo13020192
Knihovny.cz E-zdroje
- Klíčová slova
- beetroot, glycerophospholipid metabolism, hereditary hypertriglyceridemic rat, lipids, mTOR signalling, proteomics, spontaneously hypertensive rat,
- Publikační typ
- časopisecké články MeSH
Recently, red beetroot has attracted attention as a health-promoting functional food. Studies have shown that beetroot administration can reduce blood pressure and ameliorate parameters of glucose and lipid metabolism; however, mechanisms underlying these beneficial effects of beetroot are not yet fully understood. In the current study, we analysed the effects of beetroot on parameters of glucose and lipid metabolism in two models of metabolic syndrome: (i) transgenic spontaneously hypertensive rats expressing human C-reactive protein (SHR-CRP rats), and (ii) hereditary hypertriglyceridemic (HHTg) rats. Treatment with beetroot juice for 4 weeks was, in both models, associated with amelioration of oxidative stress, reduced circulating lipids, smaller visceral fat depots, and lower ectopic fat accumulation in the liver compared to the respective untreated controls. On the other hand, beetroot treatment had no significant effects on the sensitivity of the muscle and adipose tissue to insulin action in either model. Analyses of hepatic proteome revealed significantly deregulated proteins involved in glycerophospholipid metabolism, mTOR signalling, inflammation, and cytoskeleton rearrangement.
Zobrazit více v PubMed
Förstermann U., Sessa W.C. Nitric oxide synthases: Regulation and function. Eur. Heart J. 2012;33:829–837. doi: 10.1093/eurheartj/ehr304. PubMed DOI PMC
Versari D., Daghini E., Virdis A., Ghiadoni L., Taddei S. Endothelial dysfunction as a target for prevention of cardiovascular disease. Diabetes Care. 2009;32((Suppl. S2)):S314–S321. doi: 10.2337/dc09-S330. PubMed DOI PMC
Hadipour E., Taleghani A., Tayarani-Najaran N., Tayarani-Najaran Z. Biological effects of red beetroot and betalains: A review. Phytother. Res. 2020;34:1847–1867. doi: 10.1002/ptr.6653. PubMed DOI
Milton-Laskibar I., Martínez J.A., Portillo M.P. Current knowledge on beetroot bioactive compounds: Role of nitrate and betalains in health and disease. Foods. 2021;10:1314. doi: 10.3390/foods10061314. PubMed DOI PMC
El Gamal A.A., AlSaid M.S., Raish M., Al-Sohaibani M., Al-Massarani S.M., Ahmad A., Hefnawy M., Al-Yahya M., Omer A., Basoudan O.A., et al. Beetroot (Beta vulgaris L.) extract ameliorates gentamicin-induced nephrotoxicity associated oxidative stress, inflammation, and apoptosis in rodent model. Mediat. Inflamm. 2014;2014:983952. doi: 10.1155/2014/983952. PubMed DOI PMC
Vulic J.J., Cebovic T.N., Čanadanovic-Brunet J.M., Cetkovic G.S., Čanadanovic V.M., Djilas S.M., Šaponjac V.T. In vivo and in vitro antioxidant effects of beetroot pomace extracts. J. Function. Foods. 2014;6:168–175. doi: 10.1016/j.jff.2013.10.003. DOI
Albasher G., Almeer R., Al-Otibi F.O., Al-Kubaisi N., Mahmoud A.M. Ameliorative effect of Beta vulgaris root extract on chlorpyrifos-induced oxidative stress, inflammation and liver injury in rats. Biomolecules. 2019;9:261. doi: 10.3390/biom9070261. PubMed DOI PMC
Raish M., Ahmad A., Ansari M.A., Alkharfy K.M., Ahad A., Khan A., Ali N., Ganaie M.A., Hamidaddin M.A.A. Beetroot juice alleviates isoproterenol-induced myocardial damage by reducing oxidative stress, inflammation, and apoptosis in rats. 3 Biotech. 2019;9:147. doi: 10.1007/s13205-019-1677-9. PubMed DOI PMC
Morris R.C., Jr., Pravenec M., Šilhavý J., DiCarlo S.E., Kurtz T.W. Small amounts of inorganic nitrate or beetroot provide substantial protection from salt-induced increases in blood pressure. Hypertension. 2019;73:1042–1048. doi: 10.1161/HYPERTENSIONAHA.118.12234. PubMed DOI PMC
Webb A.J., Patel N., Loukogeorgakis S., Okorie M., Aboud Z., Misra S., Rashid R., Miall P., Deanfield J., Benjamin N., et al. Acute blood pressure lowering, vasoprotective, and antiplatelet properties of dietary nitrate via bioconversion to nitrite. Hypertension. 2008;51:784–790. doi: 10.1161/HYPERTENSIONAHA.107.103523. PubMed DOI PMC
Coles L.T., Clifton P.M. Effect of beetroot juice on lowering blood pressure in free-living, disease-free adults: A randomized, placebo-controlled trial. Nutr. J. 2012;11:106. doi: 10.1186/1475-2891-11-106. PubMed DOI PMC
Wroblewska M., Juskiewicz J., Wiczkowski W. Physiological properties of beetroot crisps applied in standard and dyslipidaemic diets of rats. Lipid. Health Dis. 2011;10:178. doi: 10.1186/1476-511X-10-178. PubMed DOI PMC
Rabeh M.N., Ibrahim E.M. Antihypercholesterolemic effects of beet (Beta vulgaris L.) root waste extract on hypercholesterolemic rats and its antioxidant potential properties. Pak. J. Nutr. 2014;13:500. doi: 10.3923/pjn.2014.500.505. DOI
Al-Dosari M., Alqasoumi S.A., Ahmed M., Al-Yahya M., Ansari M.N., Rafatullah S. Effect of Beta vulgaris L. on cholesterol rich diet induced hypercholesterolemia in rats. Farmacia. 2011;59:669–678.
Singh A., Verma S.K., Singh V.K., Nanjappa C., Roopa N., Raju P.S., Singh S.N. Beetroot juice supplementation increases high density lipoprotein-cholesterol and reduces oxidative stress in physically active individuals. J. Pharm. Nutr. Sci. 2015;5:179–185. doi: 10.6000/1927-5951.2015.05.03.2. DOI
Kerley C.P., Dolan E., Cormican L. Nitrate-rich beetroot juice selectively lowers ambulatory pressures and LDL cholesterol in uncontrolled but not controlled hypertension: A pilot study. Ir. J. Med. Sci. 2017;186:895–902. doi: 10.1007/s11845-016-1551-2. PubMed DOI
Yamashita T., Sato K. Effects of beet red inhibiting experimental diabetes in vivo-studies using ALS strain mice. Foods Food Ingred. J. Jpn. 2008;213:122.
Shetty A.K., Rashmi R., Rajan M.G., Sambaiah K., Salimath P.V. Antidiabetic influence of quercetin in streptozotocin-induced diabetic rats. Nutr. Res. 2004;24:373–381. doi: 10.1016/j.nutres.2003.11.010. DOI
Lugo-Radillo A., Delgado-Enciso I., Peña-Beltrán E. Betanidin significantly reduces blood glucose levels in BALB/c mice fed with an atherogenic diet. Nat. Prod. Bioprospect. 2012;2:154–155. doi: 10.1007/s13659-012-0034-z. DOI
Pravenec M., Kajiya T., Zídek V., Landa V., Mlejnek P., Šimáková M., Šilhavý J., Malínská H., Oliyarnyk O., Kazdová L., et al. Effects of human C-reactive protein on pathogenesis of features of the metabolic syndrome. Hypertension. 2011;57:731–737. doi: 10.1161/HYPERTENSIONAHA.110.164350. PubMed DOI PMC
Zicha J., Pechánová O., Cacányiová S., Cebová M., Kristek F., Török J., Simko F., Dobešová Z., Kuneš J. Hereditary hypertriglyceridemic rat: A suitable model of cardiovascular disease and metabolic syndrome? Physiol. Res. 2006;55((Suppl. S1)):S49–S63. doi: 10.33549/physiolres.930000.55.S1.49. PubMed DOI
Vrána A., Kazdová L. The hereditary hypertriglyceridemic nonobese rat: An experimental model of human hypertriglyceridemia. Transplant. Proc. 1990;22:2579. PubMed
Hüttl M., Marková I., Miklanková D., Zapletalová I., Poruba M., Haluzik M., Vaněčková I., Malinská H. In a prediabetic model, empagliflozin improves hepatic lipid metabolism independently of obesity and before onset of hyperglycemia. Int. J. Mol. Sci. 2021;22:11513. doi: 10.3390/ijms222111513. PubMed DOI PMC
Malinská H., Hüttl M., Oliyarnyk O., Marková I., Poruba M., Racová Z., Kazdová L., Večeřa R. Beneficial effects of troxerutin on metabolic disorders in non-obese model of metabolic syndrome. PLoS ONE. 2019;14:e0220377. doi: 10.1371/journal.pone.0220377. PubMed DOI PMC
Johnston H.E., Yadav K., Kirkpatrick J.M., Biggs G.S., Oxley D., Kramer H.B., Samant R.S. Solvent precipitation SP3 (SP4) enhances recovery for proteomics sample preparation without magnetic beads. Anal. Chem. 2022;94:10320–10328. doi: 10.1021/acs.analchem.1c04200. PubMed DOI PMC
Cox J., Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 2008;26:1367–1372. doi: 10.1038/nbt.1511. PubMed DOI
Cox J., Hein M.Y., Luber C.A., Paron I., Nagaraj N., Mann M. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol. Cell. Proteom. 2014;13:2513–2526. doi: 10.1074/mcp.M113.031591. PubMed DOI PMC
Tyanova S., Temu T., Sinitcyn P., Carlson A., Hein M.Y., Geiger T., Mann M., Cox J. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Method. 2016;13:731–740. doi: 10.1038/nmeth.3901. PubMed DOI
Huang D.W., Sherman B.T., Lempicki R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 2009;4:44–57. doi: 10.1038/nprot.2008.211. PubMed DOI
Lutkewitte A.J., Finck B.N. Regulation of signaling and metabolism by lipin-mediated phosphatidic acid phosphohydrolase activity. Biomolecules. 2020;10:1386. doi: 10.3390/biom10101386. PubMed DOI PMC
Cortés V.A., Curtis D.E., Sukumaran S., Shao X., Parameswara V., Rashid S., Smith A.R., Ren J., Esser V., Hammer R.E., et al. Molecular mechanisms of hepatic steatosis and insulin resistance in the AGPAT2-deficient mouse model of congenital generalized lipodystrophy. Cell Metab. 2009;9:165–176. doi: 10.1016/j.cmet.2009.01.002. PubMed DOI PMC
Péterfy M., Phan J., Xu P., Reue K. Lipodystrophy in the fld mouse results from mutation of a new gene encoding a nuclear protein, lipin. Nat. Genet. 2001;27:121–124. doi: 10.1038/83685. PubMed DOI
Chen Y., Rui B.B., Tang L.Y., Hu C.M. Lipin family proteins--key regulators in lipid metabolism. Ann. Nutr. Metab. 2015;66:10–18. doi: 10.1159/000368661. PubMed DOI
van der Veen J.N., Kennelly J.P., Wan S., Vance J.E., Vance D.E., Jacobs R.L. The critical role of phosphatidylcholine and phosphatidylethanolamine metabolism in health and disease. Biochim. Biophys. Acta Biomembr. 2017;1859:1558–1572. doi: 10.1016/j.bbamem.2017.04.006. PubMed DOI
Kim G.-T., Kim S.-J., Park S.-H., Lee D., Park T.-S. Hepatic expression of the serine palmitoyltransferase subunit Sptlc2 reduces lipid droplets in the liver by activating VLDL secretion. J. Lipid Atheroscler. 2020;9:291–303. doi: 10.12997/jla.2020.9.2.291. PubMed DOI PMC
Watkins S.M., Zhu X., Zeisel S.H. Phosphatidylethanolamine-N-methyltransferase activity and dietary choline regulate liver-plasma lipid flux and essential fatty acid metabolism in mice. J. Nutr. 2003;133:3386–3391. doi: 10.1093/jn/133.11.3386. PubMed DOI
Tian Y., Jackson P., Gunter C., Wang J., Rock C.O., Jackowski S. Placental thrombosis and spontaneous fetal death in mice deficient in ethanolamine kinase 2. J. Biol. Chem. 2006;281:28438–28449. doi: 10.1074/jbc.M605861200. PubMed DOI
Wang X., Guo M., Wang Q., Wang Q., Zuo S., Zhang X., Tong H., Chen J., Wang H., Chen X., et al. The patatin-like phospholipase domain containing protein 7 facilitates VLDL secretion by modulating ApoE stability. Hepatology. 2020;72:1569–1585. doi: 10.1002/hep.31161. PubMed DOI
Mato J.M., Martínez-Chantar M.L., Lu S.C. S-adenosylmethionine metabolism and liver disease. Ann. Hepatol. 2013;12:183–189. doi: 10.1016/S1665-2681(19)31355-9. PubMed DOI PMC
Audrito V., Messana V.G., Deaglio S. NAMPT and NAPRT: Two metabolic enzymes with key roles in inflammation. Front. Oncol. 2020;10:358. doi: 10.3389/fonc.2020.00358. PubMed DOI PMC
Komatsu M., Kanda T., Urai H., Kurokochi A., Kitahama R., Shigaki S., Ono T., Yukioka H., Hasegawa K., Tokuyama H., et al. NNMT activation can contribute to the development of fatty liver disease by modulating the NAD+ metabolism. Sci. Rep. 2018;8:8637. doi: 10.1038/s41598-018-26882-8. PubMed DOI PMC
Henderson C.J., Otto D.M.E., Carrie D., Magnuson M.A., McLaren A.W., Rosewell I., Wolf C.R. Inactivation of the hepatic cytochrome P450 system by conditional deletion of hepatic cytochrome P450 reductase. J. Biol. Chem. 2003;278:13480–13486. doi: 10.1074/jbc.M212087200. PubMed DOI
Jin Y., Tan Y., Zhao P., Guo Y., Chen S., Wu J., Ren Z. Glutathione S-transferase Mu 2 inhibits hepatic steatosis via ASK1 suppression. Commun. Biol. 2022;5:326. doi: 10.1038/s42003-022-03251-w. PubMed DOI PMC
Molotkov A., Fan X., Duester G. Excessive vitamin A toxicity in mice genetically deficient in either alcohol dehydrogenase Adh1 or Adh3. Eur. J. Biochem. 2002;269:2607–2612. doi: 10.1046/j.1432-1033.2002.02935.x. PubMed DOI
Garofalo R.S., Orena S.J., Rafidi K., Torchia A.J., Stock J.L., Hildebrandt A.I., Coskran T., Black S.C., Brees D.J., Wicks J.R., et al. Severe diabetes, age-dependent loss of adipose tissue, and mild growth deficiency in mice lacking Akt2/PKB beta. J. Clin. Investig. 2003;112:197–208. doi: 10.1172/JCI16885. PubMed DOI PMC
Liu G.Y., Sabatini D.M. mTOR at the nexus of nutrition, growth, ageing and disease. Nat. Rev. Mol. Cell Biol. 2020;21:183–203. doi: 10.1038/s41580-019-0199-y. PubMed DOI PMC
Ricoult S.J.H., Manning B.D. The multifaceted role of mTORC1 in the control of lipid metabolism. EMBO Rep. 2013;14:242–251. doi: 10.1038/embor.2013.5. PubMed DOI PMC
Caron A., Mouchiroud M., Gautier N., Labbé S.M., Villot R., Turcotte L., Secco B., Lamoureux G., Shum M., Gélinas Y., et al. Loss of hepatic DEPTOR alters the metabolic transition to fasting. Mol. Metab. 2017;6:447–458. doi: 10.1016/j.molmet.2017.02.005. PubMed DOI PMC
Yuan M., Pino E., Wu L., Kacergis M., Soukas A.S. Identification of Akt-independent regulation of hepatic lipogenesis by mammalian target of rapamycin (mTOR) complex 2. J. Biol. Chem. 2012;287:29579–29588. doi: 10.1074/jbc.M112.386854. PubMed DOI PMC
Csaki L.S., Dwyer J.R., Li X., Nguyen M.H., Dewald J., Brindley D.N., Lusis A.J., Yoshinaga Y., de Jong P., Fong L., et al. Lipin-1 and lipin-3 together determine adiposity in vivo. Mol. Metab. 2013;3:145–154. doi: 10.1016/j.molmet.2013.11.008. PubMed DOI PMC
Rai P., Kumar M., Sharma G., Barak P., Das S., Kamat S.S., Mallika R. Kinesin-dependent mechanism for controlling triglyceride secretion from the liver. Proc. Natl. Acad. Sci. USA. 2017;114:12958–12963. doi: 10.1073/pnas.1713292114. PubMed DOI PMC
Singh J., Sanghavi P., Mallik R. Microtubule motor driven interactions of lipid droplets: Specificities and opportunities. Front. Cell Dev. Biol. 2022;10:893375. doi: 10.3389/fcell.2022.893375. PubMed DOI PMC
Inoue M., Akama T., Jiang Y., Chun T.-H. The exocyst complex regulates free fatty acid uptake by adipocytes. PLoS ONE. 2015;10:e0120289. doi: 10.1371/journal.pone.0120289. PubMed DOI PMC
Feitosa M.F., Wojczynski M.K., North K.E., Zhang Q., Province M.A., Carr J.J., Borecki I.B. The ERLIN1-CHUK-CWF19L1 gene cluster influences liver fat deposition and hepatic inflammation in the NHLBI Family Heart Study. Atherosclerosis. 2013;228:175–180. doi: 10.1016/j.atherosclerosis.2013.01.038. PubMed DOI PMC
Al-Harbi L.N., Alshammari G.M., Al-Dossari A.M., Subash-Babu P., Binobead M.A., Alhussain M.H., AlSedairy S.A., Al-Nouri D.M., Shamlan G. Beta vulgaris L. (Beetroot) methanolic extract prevents hepatic steatosis and liver damage in T2DM rats by hypoglycemic, insulin-sensitizing, antioxidant effects, and upregulation of PPARα. Biology. 2021;10:1306. doi: 10.3390/biology10121306. PubMed DOI PMC
Abedimanesh N., Asghari S., Mohammadnejad K., Daneshvar Z., Rahmani S., Shokoohi S., Farzaneh A.H., Hosseini S.H., Jafari Anarkooli I., Noubarani M., et al. The anti-diabetic effects of betanin in streptozotocin-induced diabetic rats through modulating AMPK/SIRT1/NF-κB signaling pathway. Nutr. Metab. 2021;18:92. doi: 10.1186/s12986-021-00621-9. PubMed DOI PMC
Romero S.A., Pavan I.C.B., Morelli A.P., Mancini M.C., da Silva L.G.S., Fagundes I., Silva C.H.R., Ponte L.G.S., Rostagno M.A., Bezerra R.M.N., et al. Anticancer effects of root and beet leaf extracts (Beta vulgaris L.) in cervical cancer cells (HeLa) Phytother. Res. 2021;35:6191–6203. doi: 10.1002/ptr.7255. PubMed DOI