Hypolipidemic Effects of Beetroot Juice in SHR-CRP and HHTg Rat Models of Metabolic Syndrome: Analysis of Hepatic Proteome

. 2023 Jan 28 ; 13 (2) : . [epub] 20230128

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36837811

Grantová podpora
LX22NPO5104 National Institute for Research of Metabolic and Cardiovascular Diseases (Program EXCELES, ID Project No. LX22NPO5104) funded by the European Union - Next Generation EU
21-18993S Czech Science Foundation project
67985823 Ministry of Education Youth and Sports, RVO
68378050 Ministry of Education Youth and Sports, RVO

Recently, red beetroot has attracted attention as a health-promoting functional food. Studies have shown that beetroot administration can reduce blood pressure and ameliorate parameters of glucose and lipid metabolism; however, mechanisms underlying these beneficial effects of beetroot are not yet fully understood. In the current study, we analysed the effects of beetroot on parameters of glucose and lipid metabolism in two models of metabolic syndrome: (i) transgenic spontaneously hypertensive rats expressing human C-reactive protein (SHR-CRP rats), and (ii) hereditary hypertriglyceridemic (HHTg) rats. Treatment with beetroot juice for 4 weeks was, in both models, associated with amelioration of oxidative stress, reduced circulating lipids, smaller visceral fat depots, and lower ectopic fat accumulation in the liver compared to the respective untreated controls. On the other hand, beetroot treatment had no significant effects on the sensitivity of the muscle and adipose tissue to insulin action in either model. Analyses of hepatic proteome revealed significantly deregulated proteins involved in glycerophospholipid metabolism, mTOR signalling, inflammation, and cytoskeleton rearrangement.

Zobrazit více v PubMed

Förstermann U., Sessa W.C. Nitric oxide synthases: Regulation and function. Eur. Heart J. 2012;33:829–837. doi: 10.1093/eurheartj/ehr304. PubMed DOI PMC

Versari D., Daghini E., Virdis A., Ghiadoni L., Taddei S. Endothelial dysfunction as a target for prevention of cardiovascular disease. Diabetes Care. 2009;32((Suppl. S2)):S314–S321. doi: 10.2337/dc09-S330. PubMed DOI PMC

Hadipour E., Taleghani A., Tayarani-Najaran N., Tayarani-Najaran Z. Biological effects of red beetroot and betalains: A review. Phytother. Res. 2020;34:1847–1867. doi: 10.1002/ptr.6653. PubMed DOI

Milton-Laskibar I., Martínez J.A., Portillo M.P. Current knowledge on beetroot bioactive compounds: Role of nitrate and betalains in health and disease. Foods. 2021;10:1314. doi: 10.3390/foods10061314. PubMed DOI PMC

El Gamal A.A., AlSaid M.S., Raish M., Al-Sohaibani M., Al-Massarani S.M., Ahmad A., Hefnawy M., Al-Yahya M., Omer A., Basoudan O.A., et al. Beetroot (Beta vulgaris L.) extract ameliorates gentamicin-induced nephrotoxicity associated oxidative stress, inflammation, and apoptosis in rodent model. Mediat. Inflamm. 2014;2014:983952. doi: 10.1155/2014/983952. PubMed DOI PMC

Vulic J.J., Cebovic T.N., Čanadanovic-Brunet J.M., Cetkovic G.S., Čanadanovic V.M., Djilas S.M., Šaponjac V.T. In vivo and in vitro antioxidant effects of beetroot pomace extracts. J. Function. Foods. 2014;6:168–175. doi: 10.1016/j.jff.2013.10.003. DOI

Albasher G., Almeer R., Al-Otibi F.O., Al-Kubaisi N., Mahmoud A.M. Ameliorative effect of Beta vulgaris root extract on chlorpyrifos-induced oxidative stress, inflammation and liver injury in rats. Biomolecules. 2019;9:261. doi: 10.3390/biom9070261. PubMed DOI PMC

Raish M., Ahmad A., Ansari M.A., Alkharfy K.M., Ahad A., Khan A., Ali N., Ganaie M.A., Hamidaddin M.A.A. Beetroot juice alleviates isoproterenol-induced myocardial damage by reducing oxidative stress, inflammation, and apoptosis in rats. 3 Biotech. 2019;9:147. doi: 10.1007/s13205-019-1677-9. PubMed DOI PMC

Morris R.C., Jr., Pravenec M., Šilhavý J., DiCarlo S.E., Kurtz T.W. Small amounts of inorganic nitrate or beetroot provide substantial protection from salt-induced increases in blood pressure. Hypertension. 2019;73:1042–1048. doi: 10.1161/HYPERTENSIONAHA.118.12234. PubMed DOI PMC

Webb A.J., Patel N., Loukogeorgakis S., Okorie M., Aboud Z., Misra S., Rashid R., Miall P., Deanfield J., Benjamin N., et al. Acute blood pressure lowering, vasoprotective, and antiplatelet properties of dietary nitrate via bioconversion to nitrite. Hypertension. 2008;51:784–790. doi: 10.1161/HYPERTENSIONAHA.107.103523. PubMed DOI PMC

Coles L.T., Clifton P.M. Effect of beetroot juice on lowering blood pressure in free-living, disease-free adults: A randomized, placebo-controlled trial. Nutr. J. 2012;11:106. doi: 10.1186/1475-2891-11-106. PubMed DOI PMC

Wroblewska M., Juskiewicz J., Wiczkowski W. Physiological properties of beetroot crisps applied in standard and dyslipidaemic diets of rats. Lipid. Health Dis. 2011;10:178. doi: 10.1186/1476-511X-10-178. PubMed DOI PMC

Rabeh M.N., Ibrahim E.M. Antihypercholesterolemic effects of beet (Beta vulgaris L.) root waste extract on hypercholesterolemic rats and its antioxidant potential properties. Pak. J. Nutr. 2014;13:500. doi: 10.3923/pjn.2014.500.505. DOI

Al-Dosari M., Alqasoumi S.A., Ahmed M., Al-Yahya M., Ansari M.N., Rafatullah S. Effect of Beta vulgaris L. on cholesterol rich diet induced hypercholesterolemia in rats. Farmacia. 2011;59:669–678.

Singh A., Verma S.K., Singh V.K., Nanjappa C., Roopa N., Raju P.S., Singh S.N. Beetroot juice supplementation increases high density lipoprotein-cholesterol and reduces oxidative stress in physically active individuals. J. Pharm. Nutr. Sci. 2015;5:179–185. doi: 10.6000/1927-5951.2015.05.03.2. DOI

Kerley C.P., Dolan E., Cormican L. Nitrate-rich beetroot juice selectively lowers ambulatory pressures and LDL cholesterol in uncontrolled but not controlled hypertension: A pilot study. Ir. J. Med. Sci. 2017;186:895–902. doi: 10.1007/s11845-016-1551-2. PubMed DOI

Yamashita T., Sato K. Effects of beet red inhibiting experimental diabetes in vivo-studies using ALS strain mice. Foods Food Ingred. J. Jpn. 2008;213:122.

Shetty A.K., Rashmi R., Rajan M.G., Sambaiah K., Salimath P.V. Antidiabetic influence of quercetin in streptozotocin-induced diabetic rats. Nutr. Res. 2004;24:373–381. doi: 10.1016/j.nutres.2003.11.010. DOI

Lugo-Radillo A., Delgado-Enciso I., Peña-Beltrán E. Betanidin significantly reduces blood glucose levels in BALB/c mice fed with an atherogenic diet. Nat. Prod. Bioprospect. 2012;2:154–155. doi: 10.1007/s13659-012-0034-z. DOI

Pravenec M., Kajiya T., Zídek V., Landa V., Mlejnek P., Šimáková M., Šilhavý J., Malínská H., Oliyarnyk O., Kazdová L., et al. Effects of human C-reactive protein on pathogenesis of features of the metabolic syndrome. Hypertension. 2011;57:731–737. doi: 10.1161/HYPERTENSIONAHA.110.164350. PubMed DOI PMC

Zicha J., Pechánová O., Cacányiová S., Cebová M., Kristek F., Török J., Simko F., Dobešová Z., Kuneš J. Hereditary hypertriglyceridemic rat: A suitable model of cardiovascular disease and metabolic syndrome? Physiol. Res. 2006;55((Suppl. S1)):S49–S63. doi: 10.33549/physiolres.930000.55.S1.49. PubMed DOI

Vrána A., Kazdová L. The hereditary hypertriglyceridemic nonobese rat: An experimental model of human hypertriglyceridemia. Transplant. Proc. 1990;22:2579. PubMed

Hüttl M., Marková I., Miklanková D., Zapletalová I., Poruba M., Haluzik M., Vaněčková I., Malinská H. In a prediabetic model, empagliflozin improves hepatic lipid metabolism independently of obesity and before onset of hyperglycemia. Int. J. Mol. Sci. 2021;22:11513. doi: 10.3390/ijms222111513. PubMed DOI PMC

Malinská H., Hüttl M., Oliyarnyk O., Marková I., Poruba M., Racová Z., Kazdová L., Večeřa R. Beneficial effects of troxerutin on metabolic disorders in non-obese model of metabolic syndrome. PLoS ONE. 2019;14:e0220377. doi: 10.1371/journal.pone.0220377. PubMed DOI PMC

Johnston H.E., Yadav K., Kirkpatrick J.M., Biggs G.S., Oxley D., Kramer H.B., Samant R.S. Solvent precipitation SP3 (SP4) enhances recovery for proteomics sample preparation without magnetic beads. Anal. Chem. 2022;94:10320–10328. doi: 10.1021/acs.analchem.1c04200. PubMed DOI PMC

Cox J., Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 2008;26:1367–1372. doi: 10.1038/nbt.1511. PubMed DOI

Cox J., Hein M.Y., Luber C.A., Paron I., Nagaraj N., Mann M. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol. Cell. Proteom. 2014;13:2513–2526. doi: 10.1074/mcp.M113.031591. PubMed DOI PMC

Tyanova S., Temu T., Sinitcyn P., Carlson A., Hein M.Y., Geiger T., Mann M., Cox J. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Method. 2016;13:731–740. doi: 10.1038/nmeth.3901. PubMed DOI

Huang D.W., Sherman B.T., Lempicki R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 2009;4:44–57. doi: 10.1038/nprot.2008.211. PubMed DOI

Lutkewitte A.J., Finck B.N. Regulation of signaling and metabolism by lipin-mediated phosphatidic acid phosphohydrolase activity. Biomolecules. 2020;10:1386. doi: 10.3390/biom10101386. PubMed DOI PMC

Cortés V.A., Curtis D.E., Sukumaran S., Shao X., Parameswara V., Rashid S., Smith A.R., Ren J., Esser V., Hammer R.E., et al. Molecular mechanisms of hepatic steatosis and insulin resistance in the AGPAT2-deficient mouse model of congenital generalized lipodystrophy. Cell Metab. 2009;9:165–176. doi: 10.1016/j.cmet.2009.01.002. PubMed DOI PMC

Péterfy M., Phan J., Xu P., Reue K. Lipodystrophy in the fld mouse results from mutation of a new gene encoding a nuclear protein, lipin. Nat. Genet. 2001;27:121–124. doi: 10.1038/83685. PubMed DOI

Chen Y., Rui B.B., Tang L.Y., Hu C.M. Lipin family proteins--key regulators in lipid metabolism. Ann. Nutr. Metab. 2015;66:10–18. doi: 10.1159/000368661. PubMed DOI

van der Veen J.N., Kennelly J.P., Wan S., Vance J.E., Vance D.E., Jacobs R.L. The critical role of phosphatidylcholine and phosphatidylethanolamine metabolism in health and disease. Biochim. Biophys. Acta Biomembr. 2017;1859:1558–1572. doi: 10.1016/j.bbamem.2017.04.006. PubMed DOI

Kim G.-T., Kim S.-J., Park S.-H., Lee D., Park T.-S. Hepatic expression of the serine palmitoyltransferase subunit Sptlc2 reduces lipid droplets in the liver by activating VLDL secretion. J. Lipid Atheroscler. 2020;9:291–303. doi: 10.12997/jla.2020.9.2.291. PubMed DOI PMC

Watkins S.M., Zhu X., Zeisel S.H. Phosphatidylethanolamine-N-methyltransferase activity and dietary choline regulate liver-plasma lipid flux and essential fatty acid metabolism in mice. J. Nutr. 2003;133:3386–3391. doi: 10.1093/jn/133.11.3386. PubMed DOI

Tian Y., Jackson P., Gunter C., Wang J., Rock C.O., Jackowski S. Placental thrombosis and spontaneous fetal death in mice deficient in ethanolamine kinase 2. J. Biol. Chem. 2006;281:28438–28449. doi: 10.1074/jbc.M605861200. PubMed DOI

Wang X., Guo M., Wang Q., Wang Q., Zuo S., Zhang X., Tong H., Chen J., Wang H., Chen X., et al. The patatin-like phospholipase domain containing protein 7 facilitates VLDL secretion by modulating ApoE stability. Hepatology. 2020;72:1569–1585. doi: 10.1002/hep.31161. PubMed DOI

Mato J.M., Martínez-Chantar M.L., Lu S.C. S-adenosylmethionine metabolism and liver disease. Ann. Hepatol. 2013;12:183–189. doi: 10.1016/S1665-2681(19)31355-9. PubMed DOI PMC

Audrito V., Messana V.G., Deaglio S. NAMPT and NAPRT: Two metabolic enzymes with key roles in inflammation. Front. Oncol. 2020;10:358. doi: 10.3389/fonc.2020.00358. PubMed DOI PMC

Komatsu M., Kanda T., Urai H., Kurokochi A., Kitahama R., Shigaki S., Ono T., Yukioka H., Hasegawa K., Tokuyama H., et al. NNMT activation can contribute to the development of fatty liver disease by modulating the NAD+ metabolism. Sci. Rep. 2018;8:8637. doi: 10.1038/s41598-018-26882-8. PubMed DOI PMC

Henderson C.J., Otto D.M.E., Carrie D., Magnuson M.A., McLaren A.W., Rosewell I., Wolf C.R. Inactivation of the hepatic cytochrome P450 system by conditional deletion of hepatic cytochrome P450 reductase. J. Biol. Chem. 2003;278:13480–13486. doi: 10.1074/jbc.M212087200. PubMed DOI

Jin Y., Tan Y., Zhao P., Guo Y., Chen S., Wu J., Ren Z. Glutathione S-transferase Mu 2 inhibits hepatic steatosis via ASK1 suppression. Commun. Biol. 2022;5:326. doi: 10.1038/s42003-022-03251-w. PubMed DOI PMC

Molotkov A., Fan X., Duester G. Excessive vitamin A toxicity in mice genetically deficient in either alcohol dehydrogenase Adh1 or Adh3. Eur. J. Biochem. 2002;269:2607–2612. doi: 10.1046/j.1432-1033.2002.02935.x. PubMed DOI

Garofalo R.S., Orena S.J., Rafidi K., Torchia A.J., Stock J.L., Hildebrandt A.I., Coskran T., Black S.C., Brees D.J., Wicks J.R., et al. Severe diabetes, age-dependent loss of adipose tissue, and mild growth deficiency in mice lacking Akt2/PKB beta. J. Clin. Investig. 2003;112:197–208. doi: 10.1172/JCI16885. PubMed DOI PMC

Liu G.Y., Sabatini D.M. mTOR at the nexus of nutrition, growth, ageing and disease. Nat. Rev. Mol. Cell Biol. 2020;21:183–203. doi: 10.1038/s41580-019-0199-y. PubMed DOI PMC

Ricoult S.J.H., Manning B.D. The multifaceted role of mTORC1 in the control of lipid metabolism. EMBO Rep. 2013;14:242–251. doi: 10.1038/embor.2013.5. PubMed DOI PMC

Caron A., Mouchiroud M., Gautier N., Labbé S.M., Villot R., Turcotte L., Secco B., Lamoureux G., Shum M., Gélinas Y., et al. Loss of hepatic DEPTOR alters the metabolic transition to fasting. Mol. Metab. 2017;6:447–458. doi: 10.1016/j.molmet.2017.02.005. PubMed DOI PMC

Yuan M., Pino E., Wu L., Kacergis M., Soukas A.S. Identification of Akt-independent regulation of hepatic lipogenesis by mammalian target of rapamycin (mTOR) complex 2. J. Biol. Chem. 2012;287:29579–29588. doi: 10.1074/jbc.M112.386854. PubMed DOI PMC

Csaki L.S., Dwyer J.R., Li X., Nguyen M.H., Dewald J., Brindley D.N., Lusis A.J., Yoshinaga Y., de Jong P., Fong L., et al. Lipin-1 and lipin-3 together determine adiposity in vivo. Mol. Metab. 2013;3:145–154. doi: 10.1016/j.molmet.2013.11.008. PubMed DOI PMC

Rai P., Kumar M., Sharma G., Barak P., Das S., Kamat S.S., Mallika R. Kinesin-dependent mechanism for controlling triglyceride secretion from the liver. Proc. Natl. Acad. Sci. USA. 2017;114:12958–12963. doi: 10.1073/pnas.1713292114. PubMed DOI PMC

Singh J., Sanghavi P., Mallik R. Microtubule motor driven interactions of lipid droplets: Specificities and opportunities. Front. Cell Dev. Biol. 2022;10:893375. doi: 10.3389/fcell.2022.893375. PubMed DOI PMC

Inoue M., Akama T., Jiang Y., Chun T.-H. The exocyst complex regulates free fatty acid uptake by adipocytes. PLoS ONE. 2015;10:e0120289. doi: 10.1371/journal.pone.0120289. PubMed DOI PMC

Feitosa M.F., Wojczynski M.K., North K.E., Zhang Q., Province M.A., Carr J.J., Borecki I.B. The ERLIN1-CHUK-CWF19L1 gene cluster influences liver fat deposition and hepatic inflammation in the NHLBI Family Heart Study. Atherosclerosis. 2013;228:175–180. doi: 10.1016/j.atherosclerosis.2013.01.038. PubMed DOI PMC

Al-Harbi L.N., Alshammari G.M., Al-Dossari A.M., Subash-Babu P., Binobead M.A., Alhussain M.H., AlSedairy S.A., Al-Nouri D.M., Shamlan G. Beta vulgaris L. (Beetroot) methanolic extract prevents hepatic steatosis and liver damage in T2DM rats by hypoglycemic, insulin-sensitizing, antioxidant effects, and upregulation of PPARα. Biology. 2021;10:1306. doi: 10.3390/biology10121306. PubMed DOI PMC

Abedimanesh N., Asghari S., Mohammadnejad K., Daneshvar Z., Rahmani S., Shokoohi S., Farzaneh A.H., Hosseini S.H., Jafari Anarkooli I., Noubarani M., et al. The anti-diabetic effects of betanin in streptozotocin-induced diabetic rats through modulating AMPK/SIRT1/NF-κB signaling pathway. Nutr. Metab. 2021;18:92. doi: 10.1186/s12986-021-00621-9. PubMed DOI PMC

Romero S.A., Pavan I.C.B., Morelli A.P., Mancini M.C., da Silva L.G.S., Fagundes I., Silva C.H.R., Ponte L.G.S., Rostagno M.A., Bezerra R.M.N., et al. Anticancer effects of root and beet leaf extracts (Beta vulgaris L.) in cervical cancer cells (HeLa) Phytother. Res. 2021;35:6191–6203. doi: 10.1002/ptr.7255. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...