Effects of human C-reactive protein on pathogenesis of features of the metabolic syndrome

. 2011 Apr ; 57 (4) : 731-7. [epub] 20110228

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid21357282

Grantová podpora
Howard Hughes Medical Institute - United States
R01 HL063709 NHLBI NIH HHS - United States
R01 HL056028-03 NHLBI NIH HHS - United States
R01 HL063709-03 NHLBI NIH HHS - United States
R01 HL056028 NHLBI NIH HHS - United States

Odkazy

PubMed 21357282
PubMed Central PMC3060762
DOI 10.1161/hypertensionaha.110.164350
PII: HYPERTENSIONAHA.110.164350
Knihovny.cz E-zdroje

Major controversy exists as to whether increased C-reactive protein (CRP) contributes to individual components of the metabolic syndrome or is just a secondary response to inflammatory disease processes. We measured blood pressure and metabolic phenotypes in spontaneously hypertensive rats (SHRs) in which we transgenically expressed human CRP in the liver under control of the apolipoprotein E promoter. In transgenic SHRs, serum levels of human CRP approximated the endogenous levels of CRP normally found in the rat. Systolic and diastolic blood pressures measured by telemetry were 10 to 15 mm Hg greater in transgenic SHRs expressing human CRP than in SHR controls (P<0.01). During oral glucose tolerance testing, transgenic SHRs exhibited hyperinsulinemia compared with controls (insulin area under the curve: 36±7 versus 8±2 nmol/L per 2 hours, respectively; P<0.05). Transgenic SHRs also exhibited resistance to insulin stimulated glycogenesis in skeletal muscle (174±18 versus 278±32 nmol of glucose per gram per 2 hours; P<0.05), hypertriglyceridemia (0.84±0.05 versus 0.64±0.03 mmol/L; P<0.05), reduced serum adiponectin (2.4±0.3 versus 4.3±0.6 mmol/L; P<0.05), and microalbuminuria (200±35 versus 26±5 mg of albumin per gram of creatinine, respectively; P<0.001). Transgenic SHRs had evidence of inflammation and oxidative tissue damage with increased serum levels of interleukin 6 (36.4±5.2 versus 18±1.7 pg/mL; P<0.005) and increased hepatic and renal thiobarbituric acid reactive substances (1.2±0.09 versus 0.8±0.07 and 1.5±0.1 versus 1.1±0.05 nmol/L per milligram of protein, respectively; P<0.01), suggesting that oxidative stress may be mediating adverse effects of increased human CRP. These findings are consistent with the hypothesis that increased CRP is more than just a marker of inflammation and can directly promote multiple features of the metabolic syndrome.

Komentář v

PubMed

Zobrazit více v PubMed

Ridker PM, Danielson E, Fonseca FA, Genest J, Gotto AM, Jr, Kastelein JJ, Koenig W, Libby P, Lorenzatti AJ, Macfadyen JG, Nordestgaard BG, Shepherd J, Willerson JT, Glynn RJ JUPITER Trial Study Group. Reduction in C-reactive protein and LDL cholesterol and cardiovascular event rates after initiation of rosuvastatin: a prospective study of the JUPITER trial. Lancet. 2009;373:1175–1182. PubMed

Lavie CJ, Milani RV, Verma A, O’Keefe JH. C-reactive protein and cardiovascular diseases is it ready for primetime? Am J Med Sci. 2009;338:486–492. PubMed

Scirica BM, Morrow DA. Is C-reactive protein an innocent bystander or proatherogenic culprit? The verdict is still out. Circulation. 2006;113:2128–2134. PubMed

Ndumele CE, Pradhan AD, Ridker PM. Interrelationships between inflammation, C-reactive protein, and insulin resistance. J Cardiometab Syndr. 2006;1:190–196. PubMed

Haffner SM. The metabolic syndrome: inflammation, diabetes mellitus, and cardiovascular disease. Am J Cardiol. 2006;97:3A–11A. PubMed

Elliott P, Chambers JC, Zhang W, Clarke R, Hopewell JC, Peden JF, Erdmann J, Braund P, Engert JC, Bennett D, Coin L, Ashby D, Tzoulaki I, Brown IJ, Mt-Isa S, McCarthy MI, Peltonen L, Freimer NB, Farrall M, Ruokonen A, Hamsten A, Lim N, Froguel P, Waterworth DM, Vollenweider P, Waeber G, Jarvelin MR, Mooser V, Scott J, Hall AS, Schunkert H, Anand SS, Collins R, Samani NJ, Watkins H, Kooner JS. Genetic Loci associated with C-reactive protein levels and risk of coronary heart disease. JAMA. 2009;302:37–48. PubMed PMC

Nordestgaard BG, Zacho J. Lipids, atherosclerosis and CVD risk: is CRP an innocent bystander? Nutr Metab Cardiovasc Dis. 2009;19:521–524. PubMed

Koike T, Kitajima S, Yu Y, Nishijima K, Zhang J, Ozaki Y, Morimoto M, Watanabe T, Bhakdi S, Asada Y, Chen YE, Fan J. Human C-reactive protein does not promote atherosclerosis in transgenic rabbits. Circulation. 2009;120:2088–2094. PubMed PMC

Contois JH, Hartigan C, Rao LV, Snyder LM, Thompson MJ. Analytical validation of an HPLC assay for urinary albumin. Clin Chim Acta. 2006;367:150–155. PubMed

Malínská H, Oliyarnyk O, Hubová M, Zídek V, Landa V, Simáková M, Mlejnek P, Kazdová L, Kurtz TW, Pravenec M. Increased liver oxidative stress and altered PUFA metabolism precede development of non-alcoholic steatohepatitis in SREBP-1a transgenic spontaneously hypertensive rats with genetic predisposition to hepatic steatosis. Mol Cell Biochem. 2010;335:119–125. PubMed

de Beer FC, Baltz ML, Munn EA, Feinstein A, Taylor J, Bruton C, Clamp JR, Pepys MB. Isolation and characterization of C-reactive protein and serum amyloid P component in the rat. Immunology. 1982;45:55–70. PubMed PMC

Devaraj S, Dasu MR, Singh U, Rao LV, Jialal I. C-reactive protein stimulates superoxide anion release and tissue factor activity in vivo. Atherosclerosis. 2009;203:67–74. PubMed PMC

Zeller JM, Sullivan BL. C-reactive protein selectively enhances the intracellular generation of reactive oxygen products by IgG-stimulated monocytes and neutrophils. J Leukoc Biol. 1992;52:449–455. PubMed

Zhang R, Zhang YY, Huang XR, Wu Y, Chung AC, Wu EX, Szalai AJ, Wong BC, Lau CP, Lan HY. C-reactive protein promotes cardiac fibrosis and inflammation in angiotensin II-induced hypertensive cardiac disease. Hypertension. 2010;55:953–960. PubMed

Xing D, Hage FG, Chen YF, McCrory MA, Feng W, Skibinski GA, Majid-Hassan E, Oparil S, Szalai AJ. Exaggerated neointima formation in human C-reactive protein transgenic mice is IgG Fc receptor type I (Fc gamma RI)-dependent. Am J Pathol. 2008;172:22–30. PubMed PMC

Hirschfield GM, Gallimore JR, Kahan MC, Hutchinson WL, Sabin CA, Benson GM, Dhillon AP, Tennent GA, Pepys MB. Transgenic human C-reactive protein is not proatherogenic in apolipoprotein E-deficient mice. Proc Natl Acad Sci U S A. 2005;102:8309–8314. PubMed PMC

Kovacs A, Tornvall P, Nilsson R, Tegnér J, Hamsten A, Björkegren J. Human C-reactive protein slows atherosclerosis development in a mouse model with human-like hypercholesterolemia. Proc Natl Acad Sci U S A. 2007;104:13768–13773. PubMed PMC

Teoh H, Quan A, Lovren F, Wang G, Tirgari S, Szmitko PE, Szalai AJ, Ward ME, Verma S. Impaired endothelial function in C-reactive protein overexpressing mice. Atherosclerosis. 2008;201:318–325. PubMed

Danenberg HD, Grad E, Swaminathan RV, Chen Z, Seifert P, Szalai AJ, Lotan C, Simon DI, Edelman ER. Neointimal formation is reduced after arterial injury in human crp transgenic mice. Atherosclerosis. 2008;201:85–91. PubMed PMC

Tennent GA, Hutchinson WL, Kahan MC, Hirschfield GM, Gallimore JR, Lewin J, Sabin CA, Dhillon AP, Pepys MB. Transgenic human CRP is not pro-atherogenic, pro-atherothrombotic or pro-inflammatory in apoE−/− mice. Atherosclerosis. 2008;196:248–255. PubMed

Torzewski J. C-reactive protein and atherogenesis: new insights from established animal models. Am J Pathol. 2005;167:923–925. PubMed PMC

Reifenberg K, Lehr HA, Baskal D, Wiese E, Schaefer SC, Black S, Samols D, Torzewski M, Lackner KJ, Husmann M, Blettner M, Bhakdi S. Role of C-reactive protein in atherogenesis: can the apolipoprotein E knockout mouse provide the answer? Arterioscler Thromb Vasc Biol. 2005;25:1641–1646. PubMed

Verma S, Devaraj S, Jialal I. Is C-reactive protein an innocent bystander or proatherogenic culprit? C-reactive protein promotes atherothrombosis. Circulation. 2006;113:2135–2150. PubMed

Devaraj S, Singh U, Jialal I. The evolving role of C-reactive protein in atherothrombosis. Clin Chem. 2009;55:229–238. PubMed PMC

Pepys MB, Hirschfield GM, Tennent GA, Gallimore JR, Kahan MC, Bellotti V, Hawkins PN, Myers RM, Smith MD, Polara A, Cobb AJ, Ley SV, Aquilina JA, Robinson CV, Sharif I, Gray GA, Sabin CA, Jenvey MC, Kolstoe SE, Thompson D, Wood SP. Targeting C-reactive protein for the treatment of cardiovascular disease. Nature. 2006;440:1217–1221. PubMed

Hein TW, Singh U, Vasquez-Vivar J, Devaraj S, Kuo L, Jialal I. Human C-reactive protein induces endothelial dysfunction and uncoupling of eNOS in vivo. Atherosclerosis. 2009;206:61–68. PubMed PMC

D’Alessandris C, Lauro R, Presta I, Sesti G. C-reactive protein induces phosphorylation of insulin receptor substrate-1 on Ser307 and Ser612 in L6 myocytes, thereby impairing the insulin signalling pathway that promotes glucose transport. Diabetologia. 2007;50:840–849. PubMed

Verma S, Wang CH, Li SH, Dumont AS, Fedak PW, Badiwala MV, Dhillon B, Weisel RD, Li RK, Mickle DA, Stewart DJ. A self-fulfilling prophecy: C-reactive protein attenuates nitric oxide production and inhibits angiogenesis. Circulation. 2002;106:913–919. PubMed

Jialal I, Verma S, Devaraj S. Inhibition of endothelial nitric oxide synthase by C-reactive protein: Clinical relevance. Clin Chem. 2009;55:206–208. PubMed PMC

Guan H, Wang P, Hui R, Edin ML, Darryl C, Zeldin DC, Wang DW. Adeno-associated virus-mediated human C-reactive protein gene delivery causes endothelial dysfunction and hypertension in rats. Clin Chem. 2009;55:274–284. PubMed PMC

Vongpatanasin W, Thomas GD, Schwartz R, Cassis LA, Osborne-Lawrence S, Hahner L, Gibson LL, Black S, Samols D, Shaul PW. C-reactive protein causes downregulation of vascular angiotensin subtype 2 receptors and systolic hypertension in mice. Circulation. 2007;115:1020–1028. PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Gliflozins in the Treatment of Non-diabetic Experimental Cardiovascular Diseases

. 2024 Apr 18 ; 73 (Suppl 1) : S377-S387. [epub] 20240418

Transgenic human C-reactive protein affects oxidative stress but not inflammation biomarkers in the aorta of spontaneously hypertensive rats

. 2024 Apr 16 ; 24 (1) : 211. [epub] 20240416

Hypolipidemic Effects of Beetroot Juice in SHR-CRP and HHTg Rat Models of Metabolic Syndrome: Analysis of Hepatic Proteome

. 2023 Jan 28 ; 13 (2) : . [epub] 20230128

Beneficial Effects of Empagliflozin Are Mediated by Reduced Renal Inflammation and Oxidative Stress in Spontaneously Hypertensive Rats Expressing Human C-Reactive Protein

. 2022 Aug 24 ; 10 (9) : . [epub] 20220824

Genetic Complementation of ATP Synthase Deficiency Due to Dysfunction of TMEM70 Assembly Factor in Rat

. 2022 Jan 26 ; 10 (2) : . [epub] 20220126

High cysteine diet reduces insulin resistance in SHR-CRP rats

. 2021 Nov 29 ; 70 (5) : 687-700. [epub] 20210910

Downregulation of the Glo1 Gene Is Associated with Reduced Adiposity and Ectopic Fat Accumulation in Spontaneously Hypertensive Rats

. 2020 Nov 26 ; 9 (12) : . [epub] 20201126

Salsalate ameliorates metabolic disturbances by reducing inflammation in spontaneously hypertensive rats expressing human C-reactive protein and by activating brown adipose tissue in nontransgenic controls

. 2017 ; 12 (6) : e0179063. [epub] 20170606

Effects of Metformin on Tissue Oxidative and Dicarbonyl Stress in Transgenic Spontaneously Hypertensive Rats Expressing Human C-Reactive Protein

. 2016 ; 11 (3) : e0150924. [epub] 20160310

Positive effects of voluntary running on metabolic syndrome-related disorders in non-obese hereditary hypertriacylglycerolemic rats

. 2015 ; 10 (4) : e0122768. [epub] 20150401

Fumaric acid esters can block pro-inflammatory actions of human CRP and ameliorate metabolic disturbances in transgenic spontaneously hypertensive rats

. 2014 ; 9 (7) : e101906. [epub] 20140710

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...