Downregulation of the Glo1 Gene Is Associated with Reduced Adiposity and Ectopic Fat Accumulation in Spontaneously Hypertensive Rats

. 2020 Nov 26 ; 9 (12) : . [epub] 20201126

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33255888

Grantová podpora
AP1502 Czech Academy of Sciences
IKEM, IN 00023001 Institute for Clinical and Experimental Medicine, Prague

Methylglyoxal (MG), a potent precursor of advanced glycation end-products (AGE), is increased in metabolic disorders such as diabetes and obesity. MG and other dicarbonyl metabolites are detoxified by the glyoxalase system in which glyoxalase 1, coded by the Glo1 gene, serves as the rate-limiting enzyme. In this study, we analyzed the effects of Glo1 downregulation on glucose and lipid metabolism parameters in spontaneously hypertensive rats (SHR) by targeting the Glo1 gene (SHR-Glo1+/- heterozygotes). Compared to SHR wild-type animals, SHR-Glo1+/- rats showed significantly reduced Glo1 expression and lower GLO1 activity in tissues associated with increased MG levels. In contrast to SHR controls, SHR-Glo1+/- rats exhibited lower relative weight of epididymal fat, reduced ectopic fat accumulation in the liver and heart, and decreased serum triglycerides. In addition, compared to controls, SHR-Glo1+/- rats showed reduced serum insulin and increased basal and insulin stimulated incorporation of glucose into white adipose tissue lipids (lipogenesis). Reduced ectopic fat accumulation in the heart was associated with significantly increased pAMPK/AMPK ratio and GLUT4 activity. These results provide evidence that Glo1 downregulation in SHR is associated with reduced adiposity and ectopic fat accumulation, most likely mediated by AMPK activation in the heart.

Zobrazit více v PubMed

Masania J., Malczewska-Malec M., Razny U., Goralska J., Zdzienicka A., Kiec-Wilk B., Gruca A., Stancel-Mozwillo J., Dembinska-Kiec A., Rabbani N., et al. Dicarbonyl stress in clinical obesity. Glycoconj. J. 2016;33:581–589. doi: 10.1007/s10719-016-9692-0. PubMed DOI PMC

Rabbani N., Thornalley P.J. Glyoxalase 1 modulation in obesity and diabetes. Antioxid. Redox. Signal. 2019;30:354–374. doi: 10.1089/ars.2017.7424. PubMed DOI

Nigro C., Leone A., Raciti G.A., Longo M., Mirra P., Formisano P., Beguinot F., Miele C. Methylglyoxal-glyoxalase 1 balance: The root of vascular damage. Int. J. Mol. Sci. 2017;18:188. doi: 10.3390/ijms18010188. PubMed DOI PMC

He Y., Zhou C., Huang M., Tang C., Liu X., Yue Y., Diao Q., Zheng Z., Liu D. Glyoxalase system: A systematic review of its biological activity, related-diseases, screening methods and small molecule regulators. Biomed. Pharmacother. 2020 doi: 10.1016/j.biopha.2020.110663. PubMed DOI

Rabbani N., Xue M., Thornalley P.J. Activity, regulation, copy number and function in the glyoxalase system. Biochem. Soc. Trans. 2014;42:419–424. doi: 10.1042/BST20140008. PubMed DOI

Pravenec M., Zídek V., Šimáková M., Křen V., Křenová D., Horký K., Jáchymová M., Míková B., Kazdová L., Aitman T.J., et al. Genetics of Cd36 and the clustering of multiple cardiovascular risk factors in spontaneous hypertension. J. Clin. Investig. 1999;103:1651–1657. doi: 10.1172/JCI6691. PubMed DOI PMC

Pravenec M., Kožich V., Krijt J., Sokolová J., Zídek V., Landa V., Šimáková M., Mlejnek P., Šilhavý J., Oliyarnyk O., et al. Folate deficiency is associated with oxidative stress, increased blood pressure, and insulin resistance in spontaneously hypertensive rats. Am. J. Hypertens. 2013;26:135–140. doi: 10.1093/ajh/hps015. PubMed DOI PMC

Pravenec M., Kazdová L., Landa V., Zídek V., Mlejnek P., Jansa P., Wang J., Qi N., Kurtz T.W. Transgenic and recombinant resistin impair skeletal muscle glucose metabolism in the spontaneously hypertensive rat. J. Biol. Chem. 2003;278:45209–45515. doi: 10.1074/jbc.M304869200. PubMed DOI

Pravenec M., Kajiya T., Zídek V., Landa V., Mlejnek P., Šimáková M., Šilhavý J., Malínská H., Oliyarnyk O., Kazdová L., et al. Effects of human C-reactive protein on pathogenesis of features of the metabolic syndrome. Hypertension. 2011;57:731–737. doi: 10.1161/HYPERTENSIONAHA.110.164350. PubMed DOI PMC

Arai M., Nihonmatsu-Kikuchi N., Itokawa M., Rabbani N., Thornalley P.J. Measurement of glyoxalase activities. Biochem. Soc. Trans. 2014;42:491–494. doi: 10.1042/BST20140010. PubMed DOI

Bryant N.J., Govers R., James D.E. Regulated transport of the glucose transporter GLUT4. Nat. Rev. Mol. Cell. Biol. 2002;3:267–277. doi: 10.1038/nrm782. PubMed DOI

Fujii N., Jessen N., Goodyear L.J. AMP-activated protein kinase and the regulation of glucose transport. Am. J. Physiol. Endocrinol. Metab. 2006;291:E867–E877. doi: 10.1152/ajpendo.00207.2006. PubMed DOI

Fujimoto T., Sugimoto K., Takahashi T., Yasunobe Y., Xie K., Tanaka M., Ohnishi Y., Yoshida S., Kurinami H., Akasaka H., et al. Overexpression of interleukin-15 exhibits improved glucose tolerance and promotes GLUT4 translocation via AMP-activated protein kinase pathway in skeletal muscle. Biochem. Biophys. Res. Commun. 2019;509:994–1000. doi: 10.1016/j.bbrc.2019.01.024. PubMed DOI

Manna P., Achari A.E., Jain S.K. Vitamin D supplementation inhibits oxidative stress and upregulate SIRT1/AMPK/GLUT4 cascade in high glucose-treated 3T3L1 adipocytes and in adipose tissue of high fat diet-fed diabetic mice. Arch. Biochem. Biophys. 2017;615:22–34. doi: 10.1016/j.abb.2017.01.002. PubMed DOI

Schumacher D., Morgenstern J., Oguchi Y., Volk N., Kopf S., Groener J.B., Nawroth P.P., Fleming T., Freichel M. Compensatory mechanisms for methylglyoxal detoxification in experimental and clinical diabetes. Mol. Metab. 2018;18:143–152. doi: 10.1016/j.molmet.2018.09.005. PubMed DOI PMC

Flachs P., Adamcová K., Zouhar P., Marques C., Janovská P., Viegas I., Jones J.G., Bardová K., Svobodová M., Hansíková J., et al. Induction of lipogenesis in white fat during cold exposure in mice: Link to lean phenotype. Int. J. Obes. 2017;41:372–380. doi: 10.1038/ijo.2016.228. PubMed DOI

De Arriba S.G., Stuchbury G., Yarin J., Burnell J., Loske C., Münch G. Methylglyoxal impairs glucose metabolism and leads to energy depletion in neuronal cells--protection by carbonyl scavengers. Neurobiol. Aging. 2007;28:1044–1050. doi: 10.1016/j.neurobiolaging.2006.05.007. PubMed DOI

Muise E.S., Guan H.-P., Liu J., Nawrocki A.R., Yang X., Wang C., Rodríguez C.G., Zhou D., Gorski J.N., Kurtz M.M., et al. Pharmacological AMPK activation induces transcriptional responses congruent to exercise in skeletal and cardiac muscle, adipose tissues and liver. PLoS ONE. 2019;14:e0211568. doi: 10.1371/journal.pone.0211568. PubMed DOI PMC

Wang H., Liu J., Wu L. Methylglyoxal-induced mitochondrial dysfunction in vascular smooth muscle cells. Biochem. Pharmacol. 2009;77:1709–1716. doi: 10.1016/j.bcp.2009.02.024. PubMed DOI

Bo J., Xie S., Guo Y., Zhang C., Guan Y., Li C., Lu J., Meng Q.H. Methylglyoxal impairs insulin secretion of pancreatic β-cells through increased production of ROS and mitochondrial dysfunction mediated by upregulation of UCP2 and MAPKs. J. Diabetes Res. 2016;2016:2029854. doi: 10.1155/2016/2029854. PubMed DOI PMC

Choi S.L., Kim S.J., Lee K.T., Kim J., Mu J., Birnbaum M.J., Kim S., Ha J. The regulation of AMP-activated protein kinase by H2O2. Biochem. Biophys. Res. Commun. 2001;287:92–97. doi: 10.1006/bbrc.2001.5544. PubMed DOI

Dafre A.L., Schmitz A.E., Maher P. Methylglyoxal-induced AMPK activation leads to autophagic degradation of thioredoxin 1 and glyoxalase 2 in HT22 nerve cells. Free Radic. Biol. Med. 2017;108:270–279. doi: 10.1016/j.freeradbiomed.2017.03.028. PubMed DOI PMC

Blackburn N.J.R., Vulesevic B., McNeill B., Cimenci C.E., Ahmadi A., Gonzalez-Gomez M., Ostojic A., Zhong Z., Brownlee M., Beisswenger P.J., et al. Methylglyoxal-derived advanced glycation end products contribute to negative cardiac remodeling and dysfunction post-myocardial infarction. Basic Res. Cardiol. 2017;112:57. doi: 10.1007/s00395-017-0646-x. PubMed DOI

Vulesevic B., McNeill B., Giacco F., Maeda K., Blackburn N.J., Brownlee M., Milne R.W., Suuronen E.J. Methylglyoxal-induced endothelial cell loss and inflammation contribute to the development of diabetic cardiomyopathy. Diabetes. 2016;65:1699–1713. doi: 10.2337/db15-0568. PubMed DOI PMC

Crisostomo J., Matafome P., Santos-Silva D., Rodrigues L., Sena C.M., Pereira P., Seica R. Methylglyoxal chronic administration promotes diabetes-like cardiac ischaemia disease in Wistar normal rats. Nutr. Metab. Cardiovasc. Dis. 2013;23:1223–1230. doi: 10.1016/j.numecd.2013.01.005. PubMed DOI

Wortmann M., Hakimi M., Fleming T., Peters A.S., Sijmonsma T.P., Herzig S., Nawroth P.P., Böckler D., Dihlmann S. A glyoxalase-1 knockdown does not have major short term effects on energy expenditure and atherosclerosis in mice. J. Diabetes Res. 2016;2016:2981639. doi: 10.1155/2016/2981639. PubMed DOI PMC

Hanssen N.M., Brouwers O., Gijbels M.J., Wouters K., Wijnands E., Cleutjens J.P., De Mey J.G., Miyata T., Biessen E.A., Stehouwer C.D., et al. Glyoxalase 1 overexpression does not affect atherosclerotic lesion size and severity in ApoE−/− mice with or without diabetes. Cardiovasc. Res. 2014;104:160–170. doi: 10.1093/cvr/cvu189. PubMed DOI

Engelbrecht B., Stratmann B., Hess C., Tschoepe D., Gawlowski T. Impact of GLO1 knock down on GLUT4 trafficking and glucose uptake in L6 myoblasts. PLoS ONE. 2013;8:e65195. doi: 10.1371/journal.pone.0065195. PubMed DOI PMC

Riboulet-Chavey A., Pierron A., Durand I., Murdaca J., Giudicelli J., Van Obberghen E. Methylglyoxal impairs the insulin signaling pathways independently of the formation of intracellular reactive oxygen species. Diabetes. 2006;55:1289–1299. doi: 10.2337/db05-0857. PubMed DOI

Dhar A., Dhar I., Jiang B., Desai K.M., Wu L. Chronic methylglyoxal infusion by minipump causes pancreatic β-cell dysfunction and induces type 2 diabetes in Sprague-Dawley rats. Diabetes. 2011;60:899–908. doi: 10.2337/db10-0627. PubMed DOI PMC

Jia X., Wu L. Accumulation of endogenous methylglyoxal impaired insulin signaling in adipose tissue of fructose-fed rats. Mol. Cell. Biochem. 2007;306:133–139. doi: 10.1007/s11010-007-9563-x. PubMed DOI

Fiory F., Lombardi A., Miele C., Giudicelli J., Beguinot F., Van Obberghen E. Methylglyoxal impairs insulin signalling and insulin action on glucose-induced insulin secretion in the pancreatic beta cell line INS-1E. Diabetologia. 2011;54:2941–2952. doi: 10.1007/s00125-011-2280-8. PubMed DOI

Marková I., Hüttl M., Oliyarnyk O., Kačerová T., Haluzík M., Kačer P., Šeda O., Malínská H. The effect of dicarbonyl stress on the development of kidney dysfunction in metabolic syndrome—A transcriptomic and proteomic approach. Nutr. Metab. 2019;16:51. doi: 10.1186/s12986-019-0376-1. PubMed DOI PMC

Guo Q., Mori T., Jiang Y., Hu C., Osaki Y., Yoneki Y., Sun Y., Hosoya T., Kawamata A., Ogawa S., et al. Methylglyoxal contributes to the development of insulin resistance and salt sensitivity in Sprague-Dawley rats. J. Hypertens. 2009;27:1664–1671. doi: 10.1097/HJH.0b013e32832c419a. PubMed DOI

Nigro C., Raciti G., Leone A., Fleming T., Longo M., Prevenzano I., Fiory F., Mirra P., D’Esposito V., Ulianich L., et al. Methylglyoxal impairs endothelial insulin sensitivity both in vitro and in vivo. Diabetologia. 2014;57:1485–1494. doi: 10.1007/s00125-014-3243-7. PubMed DOI

Zunkel K., Simm A., Bartling B. Long-term intake of the reactive metabolite methylglyoxal is not toxic in mice. Food Chem. Toxicol. 2020 doi: 10.1016/j.fct.2020.111333. PubMed DOI

Neeland I.J., Poirier P., Despres J.P. Cardiovascular and metabolic heterogeneity of obesity: Clinical challenges and implications for management. Circulation. 2018;137:1391–1406. doi: 10.1161/CIRCULATIONAHA.117.029617. PubMed DOI PMC

Lee J.J., Pedley A., Hoffmann U., Massaro J.M., Levy D., Long M.T. Visceral and intrahepatic fat are associated with cardiometabolic risk factors above other ectopic fat depots: The Framingham Heart Study. Am. J. Med. 2018;131:684–692. doi: 10.1016/j.amjmed.2018.02.002. PubMed DOI PMC

Marchington J.M., Mattacks C.A., Pond C.M. Adipose tissue in the mammalian heart and pericardium: Structure, foetal develop ment and biochemical properties. Comp. Biochem. Physiol. B. 1989;94:225–232. doi: 10.1016/0305-0491(89)90337-4. PubMed DOI

Gaborit B., Kober F., Jacquier A., Moro P.J., Cuisset T., Boullu S., Dutour A. Assessment of epicardial fat volume and myocardial triglyceride content in severely obese subjects: Relationship to metabolic profile, cardiac function and visceral fat. Int. J. Obes. 2012;36:422–430. doi: 10.1038/ijo.2011.117. PubMed DOI

Nasarre L., Juan-Babot O., Gastelurrutia P., Llucia-Valldeperas A., Badimon L., Bayes-Genis A., Llorente-Cortes V. Low density lipoprotein receptor-related protein 1 is upregulated in epicardial fat from type 2 diabetes mellitus patients and correlates with glucose and triglyceride plasma levels. Acta Diabetol. 2014;51:23–30. doi: 10.1007/s00592-012-0436-8. PubMed DOI

Burgeiro A., Fuhrmann A., Cherian S., Espinoza D., Jarak I., Carvalho R.A., Loureiro M., Patrício M., Antunes M., Carvalho E. Glucose uptake and lipid metabolism are impaired in epicardial adipose tissue from heart failure patients with or without diabetes. Am. J. Physiol. Endocrinol. Metab. 2016;310:E550–E564. doi: 10.1152/ajpendo.00384.2015. PubMed DOI PMC

Moraru A., Wiederstein J., Pfaff D., Fleming T., Miller A.K., Nawroth P., Teleman A.A. Elevated levels of the reactive metabolite methylglyoxal recapitulate progression of type 2 diabetes. Cell. Metab. 2018;27:926–934. doi: 10.1016/j.cmet.2018.02.003. PubMed DOI

Ravichandran M., Priebe S., Grigolon G., Rozanov L., Groth M., Laube B., Guthke R., Platzer M., Zarse K., Ristow M. Impairing L-threonine catabolism promotes healthspan through methylglyoxal-mediated proteohormesis. Cell. Metab. 2018;27:914–925. doi: 10.1016/j.cmet.2018.02.004. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...