Colicin U from Shigella boydii Forms Voltage-Dependent Pores
Jazyk angličtina Země Spojené státy americké Médium electronic-print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31548276
PubMed Central
PMC6872204
DOI
10.1128/jb.00493-19
PII: JB.00493-19
Knihovny.cz E-zdroje
- Klíčová slova
- Shigella boydii, black lipid membrane, colicin U, ion-selectivity, membrane pores,
- MeSH
- buněčná membrána metabolismus MeSH
- chlorid draselný farmakologie MeSH
- gating iontového kanálu MeSH
- koliciny metabolismus MeSH
- koncentrace vodíkových iontů MeSH
- lipidové dvojvrstvy metabolismus MeSH
- permeabilita MeSH
- Shigella boydii metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- chlorid draselný MeSH
- koliciny MeSH
- lipidové dvojvrstvy MeSH
Colicin U is a protein produced by the bacterium Shigella boydii (serovars 1 and 8). It exerts antibacterial activity against strains of the enterobacterial genera Shigella and Escherichia Here, we report that colicin U forms voltage-dependent pores in planar lipid membranes; its single-pore conductance was found to be about 22 pS in 1 M KCl at pH 6 under 80 mV in asolectin bilayers. In agreement with the high degree of homology between their C-terminal domains, colicin U shares some pore characteristics with the related colicins A and B. Colicin U pores are strongly pH dependent, and as we deduced from the activity of colicin U in planar membranes at different protein concentrations, they have a monomeric pore structure. However, in contrast to related colicins, we observed a very low cationic selectivity of colicin U pores (1.5/1 of K+/Cl- at pH 6) along with their atypical voltage gating. Finally, using nonelectrolytes, we determined the inner diameter of the pores to be in the range of 0.7 to 1 nm, which is similar to colicin Ia, but with a considerably different inner profile.IMPORTANCE Currently, a dramatic increase in antibiotic resistance is driving researchers to find new antimicrobial agents. The large group of toxins called bacteriocins appears to be very promising from this point of view, especially because their narrow killing spectrum allows specific targeting against selected bacterial strains. Colicins are a subgroup of bacteriocins that act on Gram-negative bacteria. To date, some colicins are commercially used for the treatment of animals (1) and tested as a component of engineered species-specific antimicrobial peptides, which are studied for the potential treatment of humans (2). Here, we present a thorough single-molecule study of colicin U which leads to a better understanding of its mode of action. It extends the range of characterized colicins available for possible future medical applications.
Department of Biology Faculty of Medicine Masaryk University Kamenice Brno Czech Republic
Department of Genetics and Microbiology Faculty of Science Charles University Prague Czech Republic
Zobrazit více v PubMed
Gillor O, Nigro LM, Riley MA. 2007. Potential application of bacteriocins as antimicrobials, p 73–74. In Riley MA, Gillor O (ed), Research and applications in bacteriocins. Horizon Scientific Press, Norfolk, United Kingdom.
Qiu X-Q, Wang H, Lu X-F, Zhang J, Li S-F, Cheng G, Wan L, Yang L, Zuo J-Y, Zhou Y-Q, Wang H-Y, Cheng X, Zhang S-H, Ou Z-R, Zhong Z-C, Cheng J-Q, Li Y-P, Wu GY. 2003. An engineered multidomain bactericidal peptide as a model for targeted antibiotics against specific bacteria. Nat Biotechnol 21:1480–1485. doi:10.1038/nbt913. PubMed DOI
Cascales E, Buchanan SK, Duché D, Kleanthous C, Lloubès R, Postle K, Riley M, Slatin S, Cavard D. 2007. Colicin biology. Microbiol Mol Biol Rev 71:158–229. doi:10.1128/MMBR.00036-06. PubMed DOI PMC
Schaller K, Nomura M. 1976. Colicin E2 is DNA endonuclease. Proc Natl Acad Sci U S A 73:3989–3993. doi:10.1073/pnas.73.11.3989. PubMed DOI PMC
Hsia K-C, Chak K-F, Liang P-H, Cheng Y-S, Ku W-Y, Yuan HS. 2004. DNA binding and degradation by the HNH protein ColE7. Structure 12:205–214. doi:10.1016/j.str.2004.01.004. PubMed DOI
Pommer AJ, Cal S, Keeble AH, Walker D, Evans SJ, Kühlmann UC, Cooper A, Connolly BA, Hemmings AM, Moore GR, James R, Kleanthous C. 2001. Mechanism and cleavage specificity of the H-N-H endonuclease colicin E9. J Mol Biol 314:735–749. doi:10.1006/jmbi.2001.5189. PubMed DOI
James R, Penfold CN, Moore GR, Kleanthous C. 2002. Killing of E. coli cells by E group nuclease colicins. Biochimie 84:381–389. doi:10.1016/S0300-9084(02)01450-5. PubMed DOI
Bourdineaud JP, Boulanger P, Lazdunski C, Letellier L. 1990. In vivo properties of colicin A: channel activity is voltage dependent but translocation may be voltage independent. Proc Natl Acad Sci U S A 87:1037–1041. doi:10.1073/pnas.87.3.1037. PubMed DOI PMC
Lakey JH, Slatin SL. 2001. Pore-forming colicins and their relatives. Curr Top Microbiol Immunol 257:131. doi:10.1007/978-3-642-56508-3_7. PubMed DOI
Pressler U, Braun V, Wittmann-Liebold B, Benz R. 1986. Structural and functional properties of colicin B. J Biol Chem 261:2654–2659. PubMed
Schein SJ, Kagan BL, Finkelstein A. 1978. Colicin K acts by forming voltage-dependent channels in phospholipid bilayer membranes. Nature 276:159–163. doi:10.1038/276159a0. PubMed DOI
Wilmsen HU, Pugsley AP, Pattus F. 1990. Colicin N forms voltage- and pH-dependent channels in planar lipid bilayer membranes. Eur Biophys J 18:149–158. doi:10.1007/BF02427374. PubMed DOI
Patin D, Barreteau H, Auger G, Magnet S, Crouvoisier M, Bouhss A, Touzé T, Arthur M, Mengin-Lecreulx D, Blanot D. 2012. Colicin M hydrolyses branched lipids II from Gram-positive bacteria. Biochimie 94:985–990. doi:10.1016/j.biochi.2011.12.019. PubMed DOI
Elkins P, Bunker A, Cramer WA, Stauffacher CV. 1997. A mechanism for toxin insertion into membranes is suggested by the crystal structure of the channel-forming domain of colicin E1. Structure 5:443–458. doi:10.1016/s0969-2126(97)00200-1. PubMed DOI
Hilsenbeck JL, Park H, Chen G, Youn B, Postle K, Kang C. 2004. Crystal structure of the cytotoxic bacterial protein colicin B at 2.5 Å resolution. Mol Microbiol 51:711–720. doi:10.1111/j.1365-2958.2003.03884.x. PubMed DOI
Parker MW, Postma JPM, Pattus F, Tucker AD, Tsernoglou D. 1992. Refined structure of the pore-forming domain of colicin A at 2.4 Å resolution. J Mol Biol 224:639–657. doi:10.1016/0022-2836(92)90550-4. PubMed DOI
Vetter IR, Parker MW, Tucker AD, Lakey JH, Pattus F, Tsernoglou D. 1998. Crystal structure of a colicin N fragment suggests a model for toxicity. Structure 6:863–874. doi:10.1016/s0969-2126(98)00088-4. PubMed DOI
Wiener M, Freymann D, Ghosh P, Stroud RM. 1997. Crystal structure of colicin Ia. Nature 385:461–464. doi:10.1038/385461a0. PubMed DOI
Šmajs D, Pilsl H, Braun V. 1997. Colicin U, a novel colicin produced by Shigella boydii. J Bacteriol 179:4919–4928. doi:10.1128/jb.179.15.4919-4928.1997. PubMed DOI PMC
Micenková L, Bosák J, Štaudová B, Kohoutová D, Čejková D, Woznicová V, Vrba M, Ševčíková A, Bureš J, Šmajs D. 2016. Microcin determinants are associated with B2 phylogroup of human fecal Escherichia coli isolates. MicrobiologyOpen 5:490–498. doi:10.1002/mbo3.345. PubMed DOI PMC
Micenková L, Bosák J, Vrba M, Ševčíková A, Šmajs D. 2016. Human extraintestinal pathogenic Escherichia coli strains differ in prevalence of virulence factors, phylogroups, and bacteriocin determinants. BMC Microbiol 16:218. doi:10.1186/s12866-016-0835-z. PubMed DOI PMC
Micenková L, Beňová A, Frankovičová L, Bosák J, Vrba M, Ševčíková A, Kmeťová M, Šmajs D. 2017. Human Escherichia coli isolates from hemocultures: septicemia linked to urogenital tract infections is caused by isolates harboring more virulence genes than bacteraemia linked to other conditions. Int J Med Microbiol 307:182–189. doi:10.1016/j.ijmm.2017.02.003. PubMed DOI
Micenková L, Frankovičová L, Jaborníková I, Bosák J, Dítě P, Šmarda J, Vrba M, Ševčíková A, Kmeťová M, Šmajs D. 2018. Escherichia coli isolates from patients with inflammatory bowel disease: ExPEC virulence- and colicin-determinants are more frequent compared to healthy controls. Int J Med Microbiol 308:498–504. doi:10.1016/j.ijmm.2018.04.008. PubMed DOI
Baty D, Frenette M, Lloubès R, Geli V, Howard SP, Pattus F, Lazdunski C. 1988. Functional domains of colicin A. Mol Microbiol 2:807–811. doi:10.1111/j.1365-2958.1988.tb00092.x. PubMed DOI
Zakharov SD, Cramer WA. 2002. Colicin crystal structures: pathways and mechanisms for colicin insertion into membranes. Biochim Biophys Acta 1565:333–346. doi:10.1016/S0005-2736(02)00579-5. PubMed DOI
Riley MA, Gordon DM. 1996. The ecology and evolution of bacteriocins. J Ind Microbiol Biotechnol 17:151–158. doi:10.1007/BF01574688. DOI
Riley MA. 1993. Molecular mechanisms of colicin evolution. Mol Biol Evol 10:1380–1395. doi:10.1093/oxfordjournals.molbev.a040081. PubMed DOI
Cleveland MV, Slatin S, Finkelstein A, Levinthal C. 1983. Structure-function relationships for a voltage-dependent ion channel: properties of COOH-terminal fragments of colicin E1. Proc Natl Acad Sci U S A 80:3706–3710. doi:10.1073/pnas.80.12.3706. PubMed DOI PMC
Ghosh P, Mel SF, Stroud RM. 1993. A carboxy-terminal fragment of colicin Ia forms ion channels. J Membr Biol 134:85–92. doi:10.1007/bf00232745. PubMed DOI
Martinez MC, Lazdunski C, Pattus F. 1983. Isolation, molecular and functional properties of the C-terminal domain of colicin A. EMBO J 2:1501–1507. doi:10.1002/j.1460-2075.1983.tb01614.x. PubMed DOI PMC
Šmajs D, Doležalová M, Macek P, Žídek L. 2008. Inactivation of colicin Y by intramembrane helix–helix interaction with its immunity protein. FEBS J 275:5325–5331. doi:10.1111/j.1742-4658.2008.06662.x. PubMed DOI
Knapp O, Maier E, Mašín J, Šebo P, Benz R. 2008. Pore formation by the Bordetella adenylate cyclase toxin in lipid bilayer membranes: role of voltage and pH. Biochim Biophys Acta 1778:260–269. doi:10.1016/j.bbamem.2007.09.026. PubMed DOI
Peterson AA, Cramer WA. 1987. Voltage-dependent, monomeric channel activity of colicin E1 in artificial membrane vesicles. J Membr Biol 99:197–204. doi:10.1007/bf01995700. PubMed DOI
Slatin SL. 1988. Colicin E1 in planar lipid bilayers. Int J Biochem 20:737–744. doi:10.1016/0020-711x(88)90058-4. PubMed DOI
Luria SE. 1982. The mistaken identity of colicin A. J Bacteriol 149:386–386. PubMed PMC
Osicková A, Osicka R, Maier E, Benz R, Sebo P. 1999. An amphipathic alpha-helix including glutamates 509 and 516 is crucial for membrane translocation of adenylate cyclase toxin and modulates formation and cation selectivity of its membrane channels. J Biol Chem 274:37644–37650. PubMed
Collarini M, Amblard G, Lazdunski C, Pattus F. 1987. Gating processes of channels induced by colicin A, its C-terminal fragment and colicin E1 in planar lipid bilayers. Eur Biophys J 14:147. doi:10.1007/BF00253839. PubMed DOI
Nestorovich EM, Rostovtseva TK, Bezrukov SM. 2003. Residue ionization and ion transport through OmpF channels. Biophys J 85:3718–3729. doi:10.1016/S0006-3495(03)74788-2. PubMed DOI PMC
Gonzalez-Manas JM, Lakey JH, Pattus F. 1992. Brominated phospholipids as a tool for monitoring the membrane insertion of colicin A. Biochemistry 31:7294–7300. doi:10.1021/bi00147a013. PubMed DOI
Evans LJA, Goble ML, Hales KA, Lakey JH. 1996. Different sensitivities to acid denaturation within a family of proteins: implications for acid unfolding and membrane translocation. Biochemistry 35:13180–13185. doi:10.1021/bi960990u. PubMed DOI
Lakey JH, Parker MW, González‐Mañas JM, Duché D, Vriend G, Baty D, Pattus F. 1994. The role of electrostatic charge in the membrane insertion of colicin A. Eur J Biochem 220:155–163. doi:10.1111/j.1432-1033.1994.tb18610.x. PubMed DOI
Kozlowski LP. 2016. IPC—isoelectric point calculator. Biol Direct 11:55. doi:10.1186/s13062-016-0159-9. PubMed DOI PMC
Masin J, Osickova A, Sukova A, Fiser R, Halada P, Bumba L, Linhartova I, Osicka R, Sebo P. 2016. Negatively charged residues of the segment linking the enzyme and cytolysin moieties restrict the membrane-permeabilizing capacity of adenylate cyclase toxin. Sci Rep 6:29137. doi:10.1038/srep29137. PubMed DOI PMC
Bullock JO, Armstrong SK, Shear JL, Lies DP, McIntosh MA. 1990. Formation of ion channels by Colicin B in planar lipid bilayers. J Membr Biol 114:79–95. doi:10.1007/bf01869387. PubMed DOI
Bullock JO, Cohen FS, Dankert JR, Cramer WA. 1983. Comparison of the macroscopic and single channel conductance properties of colicin E1 and its COOH-terminal tryptic peptide. J Biol Chem 258:9908–9912. PubMed
Qiu XQ, Jakes KS, Kienker PK, Finkelstein A, Slatin SL. 1996. Major transmembrane movement associated with colicin Ia channel gating. J Gen Physiol 107:313–328. doi:10.1085/jgp.107.3.313. PubMed DOI PMC
Hodgkin AL, Katz B. 1949. The effect of sodium ions on the electrical activity of the giant axon of the squid. J Physiol 108:37–77. doi:10.1113/jphysiol.1949.sp004310. PubMed DOI PMC
Aguilella VM, Queralt-Martín M, Aguilella-Arzo M, Alcaraz A. 2011. Insights on the permeability of wide protein channels: measurement and interpretation of ion selectivity. Integr Biol (Camb) 3:159–172. doi:10.1039/c0ib00048e. PubMed DOI
Bullock JO. 1992. Ion selectivity of colicin E1: modulation by pH and membrane composition. J Membr Biol 125:255–271. doi:10.1007/bf00236438. PubMed DOI
Nardi A, Slatin SL, Baty D, Duché D. 2001. The C-terminal half of the colicin A pore-forming domain is active in vivo and in vitro. J Mol Biol 307:1293–1303. doi:10.1006/jmbi.2001.4524. PubMed DOI
Castellan GW. 1983. The ionic current in aqueous solutions, p 769–780. In Physical chemistry, 3rd ed Addison Wesley, Boston, MA.
Maier E, Reinhard N, Benz R, Frey J. 1996. Channel-forming activity and channel size of the RTX toxins ApxI, ApxII, and ApxIII of Actinobacillus pleuropneumoniae. Infect Immun 64:4415–4423. PubMed PMC
Khodakhah K, Melishchuk A, Armstrong CM. 1997. Killing K channels with TEA+. Proc Natl Acad Sci U S A 94:13335–13338. doi:10.1073/pnas.94.24.13335. PubMed DOI PMC
Krasilnikov OV, Da Cruz JB, Yuldasheva LN, Varanda WA, Nogueira RA. 1998. A novel approach to study the geometry of the water lumen of ion channels: colicin Ia channels in planar lipid bilayers. J Membr Biol 161:83–92. doi:10.1007/s002329900316. PubMed DOI
Raymond L, Slatin SL, Finkelstein A. 1985. Channels formed by colicin E1 in planar lipid bilayers are large and exhibit pH-dependent ion selectivity. J Membr Biol 84:173–181. doi:10.1007/bf01872215. PubMed DOI
Bullock JO, Kolen ER, Shear JL. 1992. Ion selectivity of colicin E1: II. Permeability to organic cations. J Membr Biol 128:1–16. doi:10.1007/bf00231866. PubMed DOI
Kayalar C, Düzgüneş N. 1986. Membrane action of colicin E1: detection by the release of carboxyfluorescein and calcein from liposomes. Biochim Biophys Acta 860:51–56. doi:10.1016/0005-2736(86)90497-9. PubMed DOI
Malev VV, Schagina LV, Gurnev PA, Takemoto JY, Nestorovich EM, Bezrukov SM. 2002. Syringomycin E channel: a lipidic pore stabilized by lipopeptide? Biophys J 82:1985–1994. doi:10.1016/S0006-3495(02)75547-1. PubMed DOI PMC
Kienker PK, Jakes KS, Finkelstein A. 2000. Protein translocation across planar bilayers by the colicin Ia channel-forming domain. J Gen Physiol 116:587–598. doi:10.1085/jgp.116.4.587. PubMed DOI PMC
Bosák J, Laiblová P, Smarda J, Dedicová D, Smajs D. 2012. A novel colicin FY of Yersinia frederiksenii inhibits pathogenic Yersinia strains via YiuR-mediated reception, TonB import and cell membrane pore-formation. J Bacteriol 194:1950–1959. doi:10.1128/JB.05885-11. PubMed DOI PMC
Bosák J, Micenková L, Doležalová M, Šmajs D. 2016. Colicins U and Y inhibit growth of Escherichia coli strains via recognition of conserved OmpA extracellular loop 1. Int J Med Microbiol 306:486–494. doi:10.1016/j.ijmm.2016.07.002. PubMed DOI
Seydlová G, Pohl R, Zborníková E, Ehn M, Šimák O, Panova N, Kolář M, Bogdanová K, Večeřová R, Fišer R, Šanderová H, Vítovská D, Sudzinová P, Pospíšil J, Benada O, Křížek T, Sedlák D, Bartůněk P, Krásný L, Rejman D. 2017. Lipophosphonoxins II: design, synthesis, and properties of novel broad spectrum antibacterial agents. J Med Chem 60:6098–6118. doi:10.1021/acs.jmedchem.7b00355. PubMed DOI
Masin J, Roderova J, Osickova A, Novak P, Bumba L, Fiser R, Sebo P, Osicka R. 2017. The conserved tyrosine residue 940 plays a key structural role in membrane interaction of Bordetella adenylate cyclase toxin. Sci Rep 7:9330. doi:10.1038/s41598-017-09575-6. PubMed DOI PMC
Nicolai C, Sachs F. 2013. Solving ion channel kinetics with the OuB Software. Biophys Rev Lett 08:191–211. doi:10.1142/S1793048013300053. DOI
Goldman DE. 1943. Potential, impedance, and rectification in membranes. J Gen Physiol 27:37–60. doi:10.1085/jgp.27.1.37. PubMed DOI PMC
Benz R, Janko K, Läuger P. 1979. Ionic selectivity of pores formed by the matrix protein (porin) of Escherichia coli. Biochim Biophys Acta 551:238–247. doi:10.1016/0005-2736(89)90002-3. PubMed DOI
Holz R, Finkelstein A. 1970. The water and nonelectrolyte permeability induced in thin lipid membranes by the polyene antibiotics nystatin and amphotericin B. J Gen Physiol 56:125–145. doi:10.1085/jgp.56.1.125. PubMed DOI PMC
Krasilnikov OV, Yuldasheva LN, Nogueira RA, Rodrigues CG. 1995. The diameter of water pores formed by colicin Ia in planar lipid bilayers. Braz J Med Biol Res 28:693–698. PubMed
Geli V, Lazdunski C. 1992. An alpha-helical hydrophobic hairpin as a specific determinant in protein-protein interaction occurring in Escherichia coli colicin A and B immunity systems. J Bacteriol 174:6432–6437. doi:10.1128/jb.174.20.6432-6437.1992. PubMed DOI PMC
Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Söding J, Thompson JD, Higgins DG. 2011. Fast, scalable generation of high‐quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7:539. doi:10.1038/msb.2011.75. PubMed DOI PMC