Microcin determinants are associated with B2 phylogroup of human fecal Escherichia coli isolates
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
PubMed
26987297
PubMed Central
PMC4906000
DOI
10.1002/mbo3.345
Knihovny.cz E-zdroje
- Klíčová slova
- Bacteriocin, E. coli, colicin, microcin, phylogroup.,
- MeSH
- bakteriociny metabolismus MeSH
- Escherichia coli klasifikace izolace a purifikace metabolismus patogenita MeSH
- feces mikrobiologie MeSH
- fylogeneze MeSH
- gastrointestinální trakt mikrobiologie MeSH
- koliciny metabolismus MeSH
- lidé MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- bakteriociny MeSH
- koliciny MeSH
- microcin MeSH Prohlížeč
Escherichia coli strains are classified into four main phylogenetic groups (A, B1, B2, and D) and strains of these phylogroups differ in a number of characteristics. This study tested whether human fecal E. coli isolates belonging to different phylogroups differ in prevalence of bacteriocinogenic isolates and prevalence of individual bacteriocinogenic determinants. A set of 1283 fecal E. coli isolates from patients with different diseases was tested for the presence of DNA regions allowing classification into E. coli phylogroups and for the ability to produce bacteriocins (23 colicins and 7 microcins). Of the isolates tested, the most common was phylogroup B2 (38.3%) followed by phylogroups A (28.3%), D (26.3%) and B1 (7.2%). Altogether, 695 bacteriocin producers were identified representing 54.2% of all tested isolates. The highest prevalence of bacteriocin producers was found in group B2 (60.3%) and the lowest in group B1 (44.6%). Determinants encoding colicins E1, Ia, and microcin mV were most common in phylogroup A, determinants encoding microcins mM and mH47 were most common in phylogroup B2, and determinant encoding mB17 was most common in phylogroup D. The highest prevalence of bacteriocinogeny was found in phylogroup B2, suggesting that bacteriocinogeny and especially the synthesis of microcins was associated with virulent and resident E. coli strains.
Department of Clinical Microbiology Faculty Hospital Brno Jihlavská 20 625 00 Brno Czech Republic
Department of Immunology Veterinary Research Institute Hudcova 70 621 00 Brno Czech Republic
Zobrazit více v PubMed
Adlerberth, I. , Svanborg C., Carlsson B., Mellander L., Hanson L. A., Jalil F., et al. 1998. P fimbriae and other adhesins enhance intestinal persistence of Escherichia coli in early infancy. Epidemiol. Infect. 121:599–608. PubMed PMC
Azpiroz, M. F. , Poey M. E., and Laviña M.. 2009. Microcins and urovirulence in Escherichia coli . Microb. Pathog. 47:274–280. PubMed
Bergthorsson, U. , and Ochman H.. 1998. Distribution of chromosome length variation in natural isolates of Escherichia coli . Mol. Biol. Evol. 15:6–16. PubMed
Boyd, E. F. , and Hartl D. L.. 1998. Chromosomal regions specific to pathogenic isolates of Escherichia coli have a phylogenetically clustered distribution. J. Bacteriol. 180:1159–1165. PubMed PMC
Braun, V. , Pilsl H., and Gross P.. 1994. Colicins: structures, modes of action, transfer through membranes, and evolution. Arch. Microbiol. 161:199–206. PubMed
Brumfitt, W. , and Hamilton‐Miller J. M.. 1998. Efficacy and safety profile of long‐term nitrofurantoin in urinary infections: 18 years’ experience. J Antimicrob. Chem 42:363–371. PubMed
Budicˇ, M. , Rijavec M., Petkovšek Z., and Zgur‐Bertok D.. 2011. Escherichia coli bacteriocins: antimicrobial efficacy and prevalence among isolates from patients with bacteraemia. PLoS ONE 6:e28769. PubMed PMC
Carlos, C. , Pires M. M., Stoppe N. C., Hachich E. M., Sato M. I., Gomes T. A., et al. 2010. Escherichia coli phylogenetic group determination and its application in the identification of the major animal source of fecal contamination. BMC Microbiol. 10:161. PubMed PMC
Cascales, E. , Buchanan S. K., Duché D., Kleanthous C., Lloubès R., Postle K., et al. 2007. Colicin biology. Microbiol. Mol. Biol. Rev. 71:158–229. PubMed PMC
Clermont, O. , Bonacorsi S., and Bingen E.. 2000. Rapid and simple determination of the Escherichia coli phylogenetic group. Appl. Environ. Microbiol. 66:4555–4558. PubMed PMC
Clermont, O. , Christenson J. K., Denamur E., and Gordon D. M.. 2013. The Clermont Escherichia coli phylo‐typing method revisited: improvement of specificity and detection of new phylo‐groups. Environ. Microbiol. Rep. 5:58–65. PubMed
Coque, T. M. , Novais A., Carattoli A., Poirel L., Pitout J., Peixe L., et al. 2008. Dissemination of clonally related Escherichia coli strains expressing extended‐spectrum beta‐lactamase CTX‐M‐15. Emerg. Infect. Dis. 14:195–200. PubMed PMC
Dobrindt, U. , Agerer F., Michaelis K., Janka A., Buchrieser C., Samuelson M., et al. 2003. Analysis of genome plasticity in pathogenic and commensal Escherichia coli isolates by use of DNA arrays. J. Bacteriol. 185:1831–1840. PubMed PMC
Duquesne, S. , Destoumieux‐Garzón D., Peduzzi J., and Rebuffat S.. 2007. Microcins, gene‐encoded antibacterial peptides from enterobacteria. Nat. Prod. Rep. 24:708–734. PubMed
Escobar‐Páramo, P. , Le Menac'h A., Le Gall T., Amorin C., Gouriou S., Picard B., et al. 2006. Identification of forces shaping the commensal Escherichia coli genetic structure by comparing animal and human isolates. Environ. Microbiol. 8:1975–1984. PubMed
Gordon, D. M. , and Cowling A.. 2003. The distribution and genetic structure of Escherichia coli in Australian vertebrates: host and geographic effects. Microbiology 149:3575–3586. PubMed
Gordon, D. M. , and O'Brien C. L.. 2006. Bacteriocin diversity and the frequency of multiple bacteriocin production in Escherichia coli . Microbiology 152:3239–3244. PubMed
Gordon, D. M. , Stern S. E., and Collignon P. J.. 2005. Influence of the age and sex of human hosts on the distribution of Escherichia coli ECOR groups and virulence traits. Microbiology 151:15–23. PubMed
Jaureguy, F. , Landraud L., Passet V., Diancourt L., Frapy E., Guigon G., et al. 2008. Phylogenetic and genomic diversity of human bacteremic Escherichia coli strains. BMC Genom. 9:560. PubMed PMC
Johnson, J. R. , and Russo T. A.. 2002. Extraintestinal pathogenic Escherichia coli: “the other bad E coli”. J. Lab. Clin. Med. 139:155–162. PubMed
Johnson, J. R. , and Stell A. L.. 2000. Extended virulence genotypes of Escherichia coli strains from patients with urosepsis in relation to phylogeny and host compromise. J. Infect. Dis. 181:261–272. PubMed
Kohoutová, D. , Šmajs D., Moravková P., Cyrany J., Moravková M., Forstlová M., et al. 2014. Escherichia coli strains of phylogenetic group B2 and D and bacteriocin production are associated with advanced colorectal neoplasia. BMC Infect. Dis. 14:733. PubMed PMC
Laviña, M. , Gaggero C., and Moreno F.. 1990. Microcin H47, a chromosome‐encoded microcin antibiotic of Escherichia coli . J. Bacteriol. 172:6585–6588. PubMed PMC
Le Gall, T. , Clermont O., Gouriou S., Picard B., Nassif X., Denamur E., et al. 2007. Extraintestinal virulence is a coincidental by‐product of commensalism in B2 phylogenetic group Escherichia coli strains. Mol. Biol. Evol. 24:2373–2384. PubMed
Lecointre, G. , Rachdi L., Darlu P., and Denamur E.. 1998. Escherichia coli molecular phylogeny using the incongruence length difference test. Mol. Biol. Evol. 15:1685–1695. PubMed
Levin, B. R. 1996. The evolution and maintenance of virulence in microparasites. Emerg. Infect. Dis. 2:93–102. PubMed PMC
Luo, C. , Walk S. T., Gordon D. M., Feldgarden M., Tiedje J. M., and Konstantinidis K. T.. 2011. Genome sequencing of environmental Escherichia coli expands understanding of the ecology and speciation of the model bacterial species. Proc. Natl Acad. Sci. USA 108:7200–7205. PubMed PMC
Micenková, L. , Štaudová B., Bosák J., Mikalová L., Littnerová S., Vrba M., et al. 2014. Bacteriocin‐encoding genes and ExPEC virulence determinants are associated in human fecal Escherichia coli strains. BMC Microbiol. 14:109. PubMed PMC
Moissenet, D. , Salauze B., Clermont O., Bingen E., Arlet G., Denamur E., et al. 2010. Meningitis caused by Escherichia coli producing TEM‐52 extended‐spectrum beta‐lactamase within an extensive outbreak in a neonatal ward: epidemiological investigation and characterization of the strain. J. Clin. Microbiol. 48:2459–2463. PubMed PMC
Moreno, E. , Andreu A., Pérez T., Sabaté M., Johnson J. R., and Prats G.. 2006. Relationship between Escherichia coli strains causing urinary tract infection in women and the dominant faecal flora of the same hosts. Epidemiol. Infect. 134:1015–1023. PubMed PMC
Nielsen, K. L. , Dynesen P., Larsen P., and Frimodt‐Møller N.. 2014. Faecal Escherichia coli from patients with E. coli urinary tract infection and healthy controls who have never had a urinary tract infection. J. Med. Microbiol. 63:582–589. PubMed
Nowrouzian, F. , Adlerberth I., and Wold A. E.. 2001. P fimbriae, capsule and aerobactin characterize colonic resident Escherichia coli . Epidemiol. Infect. 126:11–18. PubMed PMC
Nowrouzian, F. L. , Wold A. E., and Adlerberth I.. 2005. Escherichia coli strains belonging to phylogenetic group B2 have superior capacity to persist in the intestinal microflora of infants. J. Infect. Dis. 191:1078–1083. PubMed
Patzer, S. I. , Baquero M. R., Bravo D., Moreno F., and Hantke K.. 2003. The colicin G, H and X determinants encode microcins M and H47, which might utilize the catecholate siderophore receptors FepA, Cir, Fiu and IroN. Microbiology 149:2557–2570. PubMed
Petkovšek, Z. , Zgur‐Bertok D., and Starcic Erjavec M.. 2012. Colicin insensitivity correlates with a higher prevalence of extraintestinal virulence factors among Escherichia coli isolates from skin and soft‐tissue infections. J. Med. Microbiol. 61:762–765. PubMed
Picard, B. , Garcia J. S., Gouriou S., Duriez P., Brahimi N., Bingen E., et al. 1999. The link between phylogeny and virulence in Escherichia coli extraintestinal infection. Infect. Immun. 67:546–553. PubMed PMC
Riley, M. A. , and Wertz J. E.. 2002. Bacteriocin diversity: ecological and evolutionary perspectives. Biochimie 84:357–364. PubMed
Sears, H. J. , and Brownlee I.. 1952. Further observations on the persistence of individual strains of Escherichia coli in the intestinal tract of man. J. Bacteriol. 63:47–57. PubMed PMC
Sears, H. J. , Brownlee I., and Uchiyama J. K.. 1950. Persistence of individual strains of Escherichia coli in the intestinal tract of man. J. Bacteriol. 59:293–301. PubMed PMC
Sears, H. J. , Janes H., Saloum R., Brownlee I., and Lamoreaux L. F.. 1956. Persistence of individual strains of Escherichia coli in man and dog under varying conditions. J. Bacteriol. 71:370–372. PubMed PMC
Šmajs, D. , and Weinstock G. M.. 2001a. Genetic organization of plasmid ColJs, encoding colicin Js activity, immunity, and release genes. J. Bacteriol. 183:3949–3957. PubMed PMC
Šmajs, D. , and Weinstock G. M.. 2001b. The iron‐ and temperature‐regulated cjrBC genes of Shigella and enteroinvasive Escherichia coli strains code for colicin Js uptake. J. Bacteriol. 183:3958–3966. PubMed PMC
Šmajs, D. , Micenková L., Šmarda J., Vrba M., Ševcˇíková A., Vališová Z., et al. 2010. Bacteriocin synthesis in uropathogenic and commensal Escherichia coli: colicin E1 is a potential virulence factor. BMC Microbiol. 10:288. PubMed PMC
Šmajs, D. , Cˇejková D., Micenková L., Lima‐Bittencourt C. I., Chartone‐Souza E., Šmarda J., et al. 2012. Human Escherichia coli strains of different geographical and time source: bacteriocin types and their gene sequences are population‐specific. Environ. Microbiol. Rep. 4:459–466. PubMed
Šmarda, J. , and Obdržálek V.. 2001. Incidence of colicinogenic strains among human Escherichia coli . J. Basic Microbiol. 41:367–374. PubMed
Šmarda, J. , and Šmajs D.. 1998. Colicins–exocellular lethal proteins of Escherichia coli . Folia Microbiol. 43:563–582. PubMed
Tenaillon, O. , Skurnik D., Picard B., and Denamur E.. 2010. The population genetics of commensal Escherichia coli . Nat. Rev. Microbiol. 8:207–217. PubMed
Welch, R. A. , Burland V., Plunkett G. 3rd, Redford P., Roesch P., Rasko D., et al. 2002. Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli . Proc. Natl Acad. Sci. USA 99:17020–17024. PubMed PMC
Zhang, L. , Foxman B., and Marrs C.. 2002. Both urinary and rectal Escherichia coli isolates are dominated by strains of phylogenetic group B2. J. Clin. Microbiol. 40:3951–3955. PubMed PMC
Colicin U from Shigella boydii Forms Voltage-Dependent Pores