Characterization of four Escherichia albertii isolates collected from animals living in Antarctica and Patagonia

. 2018 Feb 02 ; 80 (1) : 138-146. [epub] 20171215

Jazyk angličtina Země Japonsko Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid29249728

Escherichia albertii is a recently discovered species with a limited number of well characterized strains. The aim of this study was to characterize four of the E. albertii strains, which were among 41 identified Escherichia strains isolated from the feces of living animals on James Ross Island, Antarctica, and Isla Magdalena, Patagonia. Sequencing of 16S rDNA, automated ribotyping, and rep-PCR were used to identify the four E. albertii isolates. Phylogenetic analyses based on multi-locus sequence typing showed these isolates to be genetically most similar to the members of E. albertii phylogroup G3. These isolates encoded several virulence factors including those, which are characteristic of E. albertii (cytolethal distending toxin and intimin) as well as bacteriocin determinants that typically have a very low prevalence in E. coli strains (D, E7). Moreover, E. albertii protein extracts caused cell cycle arrest in human cell line A375, probably because of cytolethal distending toxin activity.

Zobrazit více v PubMed

Albert M. J., Alam K., Islam M., Montanaro J., Rahaman A. S., Haider K., Hossain M. A., Kibriya A. K., Tzipori S.1991. Hafnia alvei, a probable cause of diarrhea in humans. Infect. Immun. 59: 1507–1513. PubMed PMC

Asoshima N., Matsuda M., Shigemura K., Honda M., Yoshida H., Oda T., Hiwaki H.2015. Isolation of Escherichia albertii from Raw Chicken Liver in Fukuoka City, Japan. Jpn. J. Infect. Dis. 68: 248–250. doi: 10.7883/yoken.JJID.2014.530 PubMed DOI

Asoshima N., Matsuda M., Shigemura K., Honda M., Yoshida H., Hiwaki H., Ogata K., Oda T.2014. Identification of Escherichia albertii as a causative agent of a food-borne outbreak occurred in 2003. Jpn. J. Infect. Dis. 67: 139–140. doi: 10.7883/yoken.67.139 PubMed DOI

Bezine E., Vignard J., Mirey G.2014. The cytolethal distending toxin effects on Mammalian cells: a DNA damage perspective. Cells 3: 592–615. doi: 10.3390/cells3020592 PubMed DOI PMC

Birosová E., Siegfried L., Kmet’ová M., Makara A., Ostró A., Gresová A., Urdzík P., Liptáková A., Molokácová M., Bártl R., Valanský L.2004. Detection of virulence factors in alpha-haemolytic Escherichia coli strains isolated from various clinical materials. Clin. Microbiol. Infect. 10: 569–573. doi: 10.1111/j.1469-0691.2004.00922.x PubMed DOI

Brandal L. T., Tunsjø H. S., Ranheim T. E., Løbersli I., Lange H., Wester A. L.2015. Shiga toxin 2a in Escherichia albertii. J. Clin. Microbiol. 53: 1454–1455. doi: 10.1128/JCM.03378-14 PubMed DOI PMC

Budič M., Rijavec M., Petkovšek Z., Zgur-Bertok D.2011. Escherichia coli bacteriocins: antimicrobial efficacy and prevalence among isolates from patients with bacteraemia. PLoS One 6: e28769. doi: 10.1371/journal.pone.0028769 PubMed DOI PMC

Comayras C., Tasca C., Pérès S. Y., Ducommun B., Oswald E., De Rycke J.1997. Escherichia coli cytolethal distending toxin blocks the HeLa cell cycle at the G2/M transition by preventing cdc2 protein kinase dephosphorylation and activation. Infect. Immun. 65: 5088–5095. PubMed PMC

Felföldi T., Heéger Z., Vargha M., Márialigeti K.2010. Detection of potentially pathogenic bacteria in the drinking water distribution system of a hospital in Hungary. Clin. Microbiol. Infect. 16: 89–92. doi: 10.1111/j.1469-0691.2009.02795.x PubMed DOI

Fiedoruk K., Daniluk T., Swiecicka I., Murawska E., Sciepuk M., Leszczynska K.2014. First Complete Genome Sequence of Escherichia albertii Strain KF1, a New Potential Human Enteric Pathogen. Genome Announc. 2: 2. doi: 10.1128/genomeA.00004-14 PubMed DOI PMC

Gillor O., Giladi I., Riley M. A.2009. Persistence of colicinogenic Escherichia coli in the mouse gastrointestinal tract. BMC Microbiol. 9: 165. doi: 10.1186/1471-2180-9-165 PubMed DOI PMC

Gordon D. M., O’Brien C. L.2006. Bacteriocin diversity and the frequency of multiple bacteriocin production in Escherichia coli. Microbiology 152: 3239–3244. doi: 10.1099/mic.0.28690-0 PubMed DOI

Hinenoya A., Yasuda N., Hibino T., Shima A., Nagita A., Tsukamoto T., Yamasaki S.2017. Isolation and Characterization of an Escherichia albertii Strain Producing Three Different Toxins from a Child with Diarrhea. Jpn. J. Infect. Dis. 70: 252–257. doi: 10.7883/yoken.JJID.2016.186 PubMed DOI

Hinenoya A., Shima K., Asakura M., Nishimura K., Tsukamoto T., Ooka T., Hayashi T., Ramamurthy T., Faruque S. M., Yamasaki S.2014. Molecular characterization of cytolethal distending toxin gene-positive Escherichia coli from healthy cattle and swine in Nara, Japan. BMC Microbiol. 14: 97. doi: 10.1186/1471-2180-14-97 PubMed DOI PMC

Huys G., Cnockaert M., Janda J. M., Swings J.2003. Escherichia albertii sp. nov., a diarrhoeagenic species isolated from stool specimens of Bangladeshi children. Int. J. Syst. Evol. Microbiol. 53: 807–810. doi: 10.1099/ijs.0.02475-0 PubMed DOI

Hyma K. E., Lacher D. W., Nelson A. M., Bumbaugh A. C., Janda J. M., Strockbine N. A., Young V. B., Whittam T. S.2005. Evolutionary genetics of a new pathogenic Escherichia species: Escherichia albertii and related Shigella boydii strains. J. Bacteriol. 187: 619–628. doi: 10.1128/JB.187.2.619-628.2005 PubMed DOI PMC

Inglis T. J. J., Merritt A. J., Bzdyl N., Lansley S., Urosevic M. N.2015. First bacteraemic human infection with Escherichia albertii. New Microbes New Infect. 8: 171–173. doi: 10.1016/j.nmni.2015.07.003 PubMed DOI PMC

Kohoutová D., Šmajs D., Morávková P., Cyrany J., Morávková M., Forstlová M., Cihák M., Rejchrt S., Bureš J.2014. Escherichia coli strains of phylogenetic group B2 and D and bacteriocin production are associated with advanced colorectal neoplasia. BMC Infect. Dis. 14: 733. doi: 10.1186/s12879-014-0733-7 PubMed DOI PMC

Kuhnert P., Hacker J., Mühldorfer I., Burnens A. P., Nicolet J., Frey J.1997. Detection system for Escherichia coli-specific virulence genes: absence of virulence determinants in B and C strains. Appl. Environ. Microbiol. 63: 703–709. PubMed PMC

La Ragione R. M., McLaren I. M., Foster G., Cooley W. A., Woodward M. J.2002. Phenotypic and genotypic characterization of avian Escherichia coli O86:K61 isolates possessing a gamma-like intimin. Appl. Environ. Microbiol. 68: 4932–4942. doi: 10.1128/AEM.68.10.4932-4942.2002 PubMed DOI PMC

Lindsey R. L., Fedorka-Cray P. J., Abley M., Turpin J. B., Meinersmann R. J.2015. Evaluating the occurrence of Escherichia albertii in chicken carcass rinses by PCR, Vitek analysis, and sequencing of the rpoB gene. Appl. Environ. Microbiol. 81: 1727–1734. doi: 10.1128/AEM.03681-14 PubMed DOI PMC

López-Saucedo C., Cerna J. F., Villegas-Sepulveda N., Thompson R., Velazquez F. R., Torres J., Tarr P. I., Estrada-García T.2003. Single multiplex polymerase chain reaction to detect diverse loci associated with diarrheagenic Escherichia coli. Emerg. Infect. Dis. 9: 127–131. doi: 10.3201/eid0901.010507 PubMed DOI PMC

Luo C., Walk S. T., Gordon D. M., Feldgarden M., Tiedje J. M., Konstantinidis K. T.2011. Genome sequencing of environmental Escherichia coli expands understanding of the ecology and speciation of the model bacterial species. Proc. Natl. Acad. Sci. U.S.A. 108: 7200–7205. doi: 10.1073/pnas.1015622108 PubMed DOI PMC

Maeda E., Murakami K., Sera N., Ito K., Fujimoto S.2015. Detection of Escherichia albertii from chicken meat and giblets. J. Vet. Med. Sci. 77: 871–873. doi: 10.1292/jvms.14-0640 PubMed DOI PMC

Maheux A. F., Boudreau D. K., Bergeron M. G., Rodriguez M. J.2014. Characterization of Escherichia fergusonii and Escherichia albertii isolated from water. J. Appl. Microbiol. 117: 597–609. doi: 10.1111/jam.12551 PubMed DOI

Martínez J. L., Herrero M., de Lorenzo V.1994. The organization of intercistronic regions of the aerobactin operon of pColV-K30 may account for the differential expression of the iucABCD iutA genes. J. Mol. Biol. 238: 288–293. doi: 10.1006/jmbi.1994.1290 PubMed DOI

Micenková L., Bosák J., Vrba M., Ševčíková A., Šmajs D.2016. Human extraintestinal pathogenic Escherichia coli strains differ in prevalence of virulence factors, phylogroups, and bacteriocin determinants. BMC Microbiol. 16: 218. doi: 10.1186/s12866-016-0835-z PubMed DOI PMC

Micenková L., Beňová A., Frankovičová L., Bosák J., Vrba M., Ševčíková A., Kmeťová M., Šmajs D.2017. Human Escherichia coli isolates from hemocultures: Septicemia linked to urogenital tract infections is caused by isolates harboring more virulence genes than bacteraemia linked to other conditions. Int. J. Med. Microbiol. 307: 182–189. doi: 10.1016/j.ijmm.2017.02.003 PubMed DOI

Micenková L., Štaudová B., Bosák J., Mikalová L., Littnerová S., Vrba M., Ševčíková A., Woznicová V., Šmajs D.2014. Bacteriocin-encoding genes and ExPEC virulence determinants are associated in human fecal Escherichia coli strains. BMC Microbiol. 14: 109. doi: 10.1186/1471-2180-14-109 PubMed DOI PMC

Micenková L., Bosák J., Štaudová B., Kohoutová D., Čejková D., Woznicová V., Vrba M., Ševčíková A., Bureš J., Šmajs D.2016. Microcin determinants are associated with B2 phylogroup of human fecal Escherichia coli isolates. MicrobiologyOpen 5: 490–498. doi: 10.1002/mbo3.345 PubMed DOI PMC

Morato E. P., Leomil L., Beutin L., Krause G., Moura R. A., Pestana de Castro A. F.2009. Domestic cats constitute a natural reservoir of human enteropathogenic Escherichia coli types. Zoonoses Public Health 56: 229–237. doi: 10.1111/j.1863-2378.2008.01190.x PubMed DOI

Nimri L. F.2013. Escherichia albertii, a newly emerging enteric pathogen with poorly defined properties. Diagn. Microbiol. Infect. Dis. 77: 91–95. doi: 10.1016/j.diagmicrobio.2013.06.028 PubMed DOI

Oaks J. L., Besser T. E., Walk S. T., Gordon D. M., Beckmen K. B., Burek K. A., Haldorson G. J., Bradway D. S., Ouellette L., Rurangirwa F. R., Davis M. A., Dobbin G., Whittam T. S.2010. Escherichia albertii in wild and domestic birds. Emerg. Infect. Dis. 16: 638–646. doi: 10.3201/eid1604.090695 PubMed DOI PMC

Oh J. Y., Kang M. S., Hwang H. T., An B. K., Kwon J. H., Kwon Y. K.2011. Epidemiological investigation of eaeA-positive Escherichia coli and Escherichia albertii strains isolated from healthy wild birds. J. Microbiol. 49: 747–752. doi: 10.1007/s12275-011-1133-y PubMed DOI

Ooka T., Tokuoka E., Furukawa M., Nagamura T., Ogura Y., Arisawa K., Harada S., Hayashi T.2013. Human gastroenteritis outbreak associated with Escherichia albertii, Japan. Emerg. Infect. Dis. 19: 144–146. doi: 10.3201/eid1901.120646 PubMed DOI PMC

Ooka T., Seto K., Kawano K., Kobayashi H., Etoh Y., Ichihara S., Kaneko A., Isobe J., Yamaguchi K., Horikawa K., Gomes T. A. T., Linden A., Bardiau M., Mainil J. G., Beutin L., Ogura Y., Hayashi T.2012. Clinical significance of Escherichia albertii. Emerg. Infect. Dis. 18: 488–492. doi: 10.3201/eid1803.111401 PubMed DOI PMC

Ooka T., Ogura Y., Katsura K., Seto K., Kobayashi H., Kawano K., Tokuoka E., Furukawa M., Harada S., Yoshino S., Seto J., Ikeda T., Yamaguchi K., Murase K., Gotoh Y., Imuta N., Nishi J., Gomes T. A., Beutin L., Hayashi T.2015. Defining the Genome Features of Escherichia albertii, an Emerging Enteropathogen Closely Related to Escherichia coli. Genome Biol. Evol. 7: 3170–3179. PubMed PMC

Paciorek J.2002. Virulence properties of Escherichia coli faecal strains isolated in Poland from healthy children and strains belonging to serogroups O18, O26, O44, O86, O126 and O127 isolated from children with diarrhoea. J. Med. Microbiol. 51: 548–556. doi: 10.1099/0022-1317-51-7-548 PubMed DOI

Paton A. W., Paton J. C.1998. Detection and characterization of Shiga toxigenic Escherichia coli by using multiplex PCR assays for stx1, stx2, eaeA, enterohemorrhagic E. coli hlyA, rfbO111, and rfbO157. J. Clin. Microbiol. 36: 598–602. PubMed PMC

Pickett C. L., Cottle D. L., Pesci E. C., Bikah G.1994. Cloning, sequencing, and expression of the Escherichia coli cytolethal distending toxin genes. Infect. Immun. 62: 1046–1051. PubMed PMC

Pontes D. S., Pinheiro F. A., Lima-Bittencourt C. I., Guedes R. L. M., Cursino L., Barbosa F., Santos F. R., Chartone-Souza E., Nascimento A. M. A.2009. Multiple antimicrobial resistance of gram-negative bacteria from natural oligotrophic lakes under distinct anthropogenic influence in a tropical region. Microb. Ecol. 58: 762–772. doi: 10.1007/s00248-009-9539-3 PubMed DOI

Rahman M. Z., Akter S., Azmuda N., Sultana M., Weill F. X., Khan S. I., Grimont P. A. D., Birkeland N. K.2013. Serological cross-reaction between O-antigens of Shigella dysenteriae type 4 and an environmental Escherichia albertii isolate. Curr. Microbiol. 67: 590–595. doi: 10.1007/s00284-013-0405-7 PubMed DOI

Schmidt H., Knop C., Franke S., Aleksic S., Heesemann J., Karch H.1995. Development of PCR for screening of enteroaggregative Escherichia coli. J. Clin. Microbiol. 33: 701–705. PubMed PMC

Sedláček I., Grillová L., Kroupová E., Černohlávková J., Šmajs D.2013. Escherichia albertii from feces of seals (Leptonychotes weddelli) in James Ross Island, Antarctica. Czech Polar Reports 3: 173–183. doi: 10.5817/CPR2013-2-18 DOI

Sharma M., Kniel K. E., Derevianko A., Ling J., Bhagwat A. A.2007. Sensitivity of Escherichia albertii, a potential food-borne pathogen, to food preservation treatments. Appl. Environ. Microbiol. 73: 4351–4353. doi: 10.1128/AEM.03001-06 PubMed DOI PMC

Shima A., Hinenoya A., Asakura M., Sugimoto N., Tsukamoto T., Ito H., Nagita A., Faruque S. M., Yamasaki S.2012. Molecular characterizations of cytolethal distending toxin produced by Providencia alcalifaciens strains isolated from patients with diarrhea. Infect. Immun. 80: 1323–1332. doi: 10.1128/IAI.05831-11 PubMed DOI PMC

Slaninová I., Brezinová L., Koubíková L., Slanina J.2009. Dibenzocyclooctadiene lignans overcome drug resistance in lung cancer cells--study of structure-activity relationship. Toxicol. In Vitro 23: 1047–1054. doi: 10.1016/j.tiv.2009.06.008 PubMed DOI

Šmajs D., Cejková D., Micenková L., Lima-Bittencourt C. I., Chartone-Souza E., Šmarda J., Nascimento A. M. A.2012. Human Escherichia coli strains of different geographical and time source: bacteriocin types and their gene sequences are population-specific. Environ. Microbiol. Rep. 4: 459–466. doi: 10.1111/j.1758-2229.2012.00365.x PubMed DOI

Šmajs D., Micenková L., Šmarda J., Vrba M., Sevčíková A., Vališová Z., Woznicová V.2010. Bacteriocin synthesis in uropathogenic and commensal Escherichia coli: colicin E1 is a potential virulence factor. BMC Microbiol. 10: 288. doi: 10.1186/1471-2180-10-288 PubMed DOI PMC

Šmajs D., Strouhal M., Matejková P., Cejková D., Cursino L., Chartone-Souza E., Šmarda J., Nascimento A. M. A.2008. Complete sequence of low-copy-number plasmid MccC7-H22 of probiotic Escherichia coli H22 and the prevalence of mcc genes among human E. coli. Plasmid 59: 1–10. doi: 10.1016/j.plasmid.2007.08.002 PubMed DOI

Štaudová B., Micenková L., Bosák J., Hrazdilová K., Slaninková E., Vrba M., Ševčíková A., Kohoutová D., Woznicová V., Bureš J., Šmajs D.2015. Determinants encoding fimbriae type 1 in fecal Escherichia coli are associated with increased frequency of bacteriocinogeny. BMC Microbiol. 15: 201. doi: 10.1186/s12866-015-0530-5 PubMed DOI PMC

Stock I., Rahman M., Sherwood K. J., Wiedemann B.2005. Natural antimicrobial susceptibility patterns and biochemical identification of Escherichia albertii and Hafnia alvei strains. Diagn. Microbiol. Infect. Dis. 51: 151–163. doi: 10.1016/j.diagmicrobio.2004.10.008 PubMed DOI

Švec P., Nováková D., Zácková L., Kukletová M., Sedlácek I.2008. Evaluation of (GTG)5-PCR for rapid identification of Streptococcus mutans. Antonie van Leeuwenhoek 94: 573–579. doi: 10.1007/s10482-008-9275-6 PubMed DOI

Švec P., Černohlávková J., Busse H. J., Vojtková H., Pantůček R., Cnockaert M., Mašlaňová I., Králová S., Vandamme P., Sedláček I.2015. Classification of strain CCM 4446T as Rhodococcus degradans sp. nov. Int. J. Syst. Evol. Microbiol. 65: 4381–4387. doi: 10.1099/ijsem.0.000584 PubMed DOI

Valentiner-Branth P., Steinsland H., Fischer T. K., Perch M., Scheutz F., Dias F., Aaby P., Mølbak K., Sommerfelt H.2003. Cohort study of Guinean children: incidence, pathogenicity, conferred protection, and attributable risk for enteropathogens during the first 2 years of life. J. Clin. Microbiol. 41: 4238–4245. doi: 10.1128/JCM.41.9.4238-4245.2003 PubMed DOI PMC

Walk S. T., Alm E. W., Gordon D. M., Ram J. L., Toranzos G. A., Tiedje J. M., Whittam T. S.2009. Cryptic lineages of the genus Escherichia. Appl. Environ. Microbiol. 75: 6534–6544. doi: 10.1128/AEM.01262-09 PubMed DOI PMC

Wang H., Li Q., Bai X., Xu Y., Zhao A., Sun H., Deng J., Xiao B., Liu X., Sun S., Zhou Y., Wang B., Fan Z., Chen X., Zhang Z., Xu J., Xiong Y.2016. Prevalence of eae-positive, lactose non-fermenting Escherichia albertii from retail raw meat in China. Epidemiol. Infect. 144: 45–52. doi: 10.1017/S0950268815001120 PubMed DOI PMC

Yamamoto D., Hernandes R. T., Liberatore A. M. A., Abe C. M., Souza R. B., Romão F. T., Sperandio V., Koh I. H., Gomes T. A. T.2017. Escherichia albertii, a novel human enteropathogen, colonizes rat enterocytes and translocates to extra-intestinal sites. PLOS ONE 12: e0171385. doi: 10.1371/journal.pone.0171385 PubMed DOI PMC

Yamamoto S., Terai A., Yuri K., Kurazono H., Takeda Y., Yoshida O.1995. Detection of urovirulence factors in Escherichia coli by multiplex polymerase chain reaction. FEMS Immunol. Med. Microbiol. 12: 85–90. doi: 10.1111/j.1574-695X.1995.tb00179.x PubMed DOI

Young V. B., Knox K. A., Schauer D. B.2000. Cytolethal distending toxin sequence and activity in the enterohepatic pathogen Helicobacter hepaticus. Infect. Immun. 68: 184–191. doi: 10.1128/IAI.68.1.184-191.2000 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...