Bacteriocin-encoding genes and ExPEC virulence determinants are associated in human fecal Escherichia coli strains
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
24774171
PubMed Central
PMC4021369
DOI
10.1186/1471-2180-14-109
PII: 1471-2180-14-109
Knihovny.cz E-zdroje
- MeSH
- bakteriální geny * MeSH
- bakteriociny genetika MeSH
- DNA bakterií chemie genetika MeSH
- Escherichia coli genetika izolace a purifikace MeSH
- faktory virulence genetika MeSH
- feces mikrobiologie MeSH
- genotyp MeSH
- lidé MeSH
- molekulární sekvence - údaje MeSH
- sekvenční analýza DNA MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
- Názvy látek
- bakteriociny MeSH
- DNA bakterií MeSH
- faktory virulence MeSH
BACKGROUND: A set of 1181 E. coli strains of human fecal origin isolated in the South Moravia region of the Czech Republic was collected during the years 2007-2010. Altogether, 17 virulence determinants and 31 bacteriocin-encoding genes were tested in each of them. RESULTS: The occurrence of bacteriocin-encoding genes was found to be positively correlated with the occurrence of E. coli virulence factors. Based on the presence of virulence factors and their combinations, E. coli strains were classified as non-pathogenic E. coli (n = 399), diarrhea-associated E. coli (n = 179) and ExPEC strains (n = 603). Non-pathogenic and diarrhea-associated E. coli strains had a low frequency of bacteriocinogeny (32.6% and 36.9%, respectively). ExPEC strains encoding S-fimbriae (sfa), P-fimbriae (pap) and having genes for aerobactin biosynthesis (aer, iucC), α-hemolysis (α-hly) and cytotoxic necrosis factor (cnf1) were often bacteriocinogenic (73.8%), had a high prevalence of bacteriocin multi-producers and showed a higher frequency of genes encoding microcins H47, M, V, B17 and colicins E1, Ia and S4. CONCLUSIONS: The occurrence of bacteriocin-encoding genes and ExPEC virulence determinants correlate positively in E. coli strains of human fecal origin. Bacteriocin synthesis appears to modulate the ability of E. coli strains to reside in the human intestine and/or the virulence of the corresponding strains.
Zobrazit více v PubMed
Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman DA. Diversity of the human intestinal microbial flora. Science. 2005;308:1635–1638. doi: 10.1126/science.1110591. PubMed DOI PMC
Sonnenborn U, Greinwald R. Beziehungen zwischen Wirtororganismus und Darmflora. Stuttgart - New York: Schattauer; 1991.
Guarner F, Malagelada J-R. Role of bacteria in experimental colitis. Best Pract Res Clin Gastroenterol. 2003;17:793–804. doi: 10.1016/S1521-6918(03)00068-4. PubMed DOI
Dobrindt U, Agerer F, Michaelis K, Janka A, Buchrieser C, Samuelson M, Svanborg C, Gottschalk G, Karch H, Hacker J. Analysis of genome plasticity in pathogenic and commensal Escherichia coli isolates by use of DNA arrays. J Bacteriol. 2003;185:1831–1840. doi: 10.1128/JB.185.6.1831-1840.2003. PubMed DOI PMC
Russo TA, Johnson JR. Proposal for a new inclusive designation for extraintestinal pathogenic isolates of Escherichia coli: ExPEC. J Infect Dis. 2000;181:1753–1754. doi: 10.1086/315418. PubMed DOI
Finlay BB, Falkow S. Common themes in microbial pathogenicity revisited. Microbiol Mol Biol Rev. 1997;61:136–169. PubMed PMC
Ochman H, Selander RK. Standard reference strains of Escherichia coli from natural populations. J Bacteriol. 1984;157:690–693. PubMed PMC
Nataro JP, Kaper JB. Diarrheagenic Escherichia coli. Clin Microbiol Rev. 1998;11:142–201. PubMed PMC
Girón JA, Jones T, Millán-Velasco F, Castro-Muñoz E, Zárate L, Fry J, Frankel G, Moseley SL, Baudry B, Kaper JB. Diffuse-adhering Escherichia coli (DAEC) as a putative cause of diarrhea in Mayan children in Mexico. J Infect Dis. 1991;163:507–513. doi: 10.1093/infdis/163.3.507. PubMed DOI
Nataro JP, Kaper JB, Robins-Browne R, Prado V, Vial P, Levine MM. Patterns of adherence of diarrheagenic Escherichia coli to HEp-2 cells. Pediatr Infect Dis J. 1987;6:829–831. doi: 10.1097/00006454-198709000-00008. PubMed DOI
Johnson JR, Murray AC, Gajewski A, Sullivan M, Snippes P, Kuskowski MA, Smith KE. Isolation and molecular characterization of nalidixic acid-resistant extraintestinal pathogenic Escherichia coli from retail chicken products. Antimicrob Agents Chemother. 2003;47:2161–2168. doi: 10.1128/AAC.47.7.2161-2168.2003. PubMed DOI PMC
Braun V, Pilsl H, Gross P. Colicins: structures, modes of action, transfer through membranes, and evolution. Arch Microbiol. 1994;161:199–206. doi: 10.1007/BF00248693. PubMed DOI
Gillor O, Nigro LM, Riley MA. Genetically engineered bacteriocins and their potential as the next generation of antimicrobials. Curr Pharm Des. 2005;11:1067–1075. doi: 10.2174/1381612053381666. PubMed DOI
Moreno F, San Millán JL, Hernández-Chico C, Kolter R. Microcins. Biotechnology. 1995;28:307–321. PubMed
Šmarda J, Šmajs D. Colicins–exocellular lethal proteins of Escherichia coli. Folia Microbiol (Praha) 1998;43:563–582. doi: 10.1007/BF02816372. PubMed DOI
Šmajs D, Weinstock GM. Genetic organization of plasmid ColJs, encoding colicin Js activity, immunity, and release genes. J Bacteriol. 2001;183:3949–3957. doi: 10.1128/JB.183.13.3949-3957.2001. PubMed DOI PMC
Šmajs D, Weinstock GM. The iron- and temperature-regulated cjrBC genes of Shigella and enteroinvasive Escherichia coli strains code for colicin Js uptake. J Bacteriol. 2001;183:3958–3966. doi: 10.1128/JB.183.13.3958-3966.2001. PubMed DOI PMC
Riley MA, Wertz JE. Bacteriocin diversity: ecological and evolutionary perspectives. Biochimie. 2002;84:357–364. doi: 10.1016/S0300-9084(02)01421-9. PubMed DOI
Patzer SI, Baquero MR, Bravo D, Moreno F, Hantke K. The colicin G, H and X determinants encode microcins M and H47, which might utilize the catecholate siderophore receptors FepA, Cir, Fiu and IroN. Microbiology (Reading, Engl) 2003;149(9):2557–2570. doi: 10.1099/mic.0.26396-0. PubMed DOI
Azpiroz MF, Poey ME, Laviña M. Microcins and urovirulence in Escherichia coli. Microb Pathog. 2009;47:274–280. doi: 10.1016/j.micpath.2009.09.003. PubMed DOI
Šmajs D, Micenková L, Šmarda J, Vrba M, Ševčíková A, Vališová Z, Woznicová V. Bacteriocin synthesis in uropathogenic and commensal Escherichia coli: colicin E1 is a potential virulence factor. BMC Microbiol. 2010;10:288. doi: 10.1186/1471-2180-10-288. PubMed DOI PMC
Budič M, Rijavec M, Petkovšek Z, Zgur-Bertok D. Escherichia coli bacteriocins: antimicrobial efficacy and prevalence among isolates from patients with bacteraemia. PLoS ONE. 2011;6:e28769. doi: 10.1371/journal.pone.0028769. PubMed DOI PMC
Petkovšek Z, Zgur-Bertok D, Starcic Erjavec M. Colicin insensitivity correlates with a higher prevalence of extraintestinal virulence factors among Escherichia coli isolates from skin and soft-tissue infections. J Med Microbiol. 2012;61(Pt 6):762–5. PubMed
Šmajs D, Karpathy SE, Šmarda J, Weinstock GM. Colicins produced by the Escherichia fergusonii strains closely resemble colicins encoded by Escherichia coli. FEMS Microbiol Lett. 2002;208:259–262. doi: 10.1111/j.1574-6968.2002.tb11091.x. PubMed DOI
Chumchalová J, Šmarda J. Human tumor cells are selectively inhibited by colicins. Folia Microbiol (Praha) 2003;48:111–115. doi: 10.1007/BF02931286. PubMed DOI
Gordon DM, O’Brien CL. Bacteriocin diversity and the frequency of multiple bacteriocin production in Escherichia coli. Microbiology (Reading, Engl) 2006;152(11):3239–3244. doi: 10.1099/mic.0.28690-0. PubMed DOI
Abraham S, Chapman TA, Zhang R, Chin J, Mabbett AN, Totsika M. Molecular characterization of Escherichia coli strains that cause symptomatic and asymptomatic urinary tract infections. J Clin Microbiol. 2012;50:1027–30. doi: 10.1128/JCM.06671-11. PubMed DOI PMC
Gordon DM, Stern SE, Collignon PJ. The influence of the age and sex of human hosts on the distribution of Escherichia coli ECOR groups and virulence traits. Microbiology. 2005;151:15–23. doi: 10.1099/mic.0.27425-0. PubMed DOI
Riley MA, Gordon DM. A survey of Col plasmids in natural isolates of Escherichia coli and an investigation into the stability of Col-plasmid lineages. J Gen Microbiol. 1992;138:1345–1352. doi: 10.1099/00221287-138-7-1345. PubMed DOI
Achtman M, Mercer A, Kusecek B, Pohl A, Heuzenroeder M, Aaronson W, Sutton A, Silver RP. Six widespread bacterial clones among Escherichia coli K1 isolates. Infect Immun. 1983;39:315–335. PubMed PMC
Šmajs D, Čejková D, Micenková L, Lima-Bittencourt CI, Chartone-Souza E, Šmarda J, Nascimento AMA. Human Escherichia coli strains of different geographical and time source: bacteriocin types and their gene sequences are population-specific. Environ Microbiol Rep. 2012;4:459–466. doi: 10.1111/j.1758-2229.2012.00365.x. PubMed DOI
Šmarda J, Obdržálek V. Incidence of colicinogenic strains among human Escherichia coli. J Basic Microbiol. 2001;41:367–74. doi: 10.1002/1521-4028(200112)41:6<367::AID-JOBM367>3.0.CO;2-X. PubMed DOI
Connell I, Agace W, Klemm P, Schembri M, Marild S, Svanborg C. Type 1 fimbrial expression enhances Escherichia coli virulence for the urinary tract. Proc Natl Acad Sci U S A. 1996;93:9827–9832. doi: 10.1073/pnas.93.18.9827. PubMed DOI PMC
Hagberg L, Jodal U, Korhonen TK, Lidin-Janson G, Lindberg U, Edén CS. Adhesion, hemagglutination, and virulence of Escherichia coli causing urinary tract infections. Infect Immun. 1981;31:564–570. PubMed PMC
Leffler H, Svanborg-Eden C. Glycolipid receptors for uropathogenic Escherichia coli on human erythrocytes and uroepithelial cells. Infect Immun. 1981;34:920–929. PubMed PMC
Edén CS, Freter R, Hagberg L, Hull R, Hull S, Leffler H, Schoolnik G. Inhibition of experimental ascending urinary tract infection by an epithelial cell-surface receptor analogue. Nature. 1982;298:560–562. doi: 10.1038/298560a0. PubMed DOI
Väisänen-Rhen V, Elo J, Väisänen E, Siitonen A, Orskov I, Orskov F, Svenson SB, Mäkelä PH, Korhonen TK. P-fimbriated clones among uropathogenic Escherichia coli strains. Infect Immun. 1984;43:149–155. PubMed PMC
Johnson JR. Virulence factors in Escherichia coli urinary tract infection. Clin Microbiol Rev. 1991;4:80–128. PubMed PMC
Bergsten G, Wullt B, Svanborg C. Escherichia coli, fimbriae, bacterial persistence and host response induction in the human urinary tract. Int J Med Microbiol. 2005;295:487–502. doi: 10.1016/j.ijmm.2005.07.008. PubMed DOI
Pilsl H, Šmajs D, Braun V. Characterization of colicin S4 and its receptor, OmpW, a minor protein of the Escherichia coli outer membrane. J Bacteriol. 1999;181:3578–3581. PubMed PMC
Wold AE, Caugant DA, Lidin-Janson G, de Man P, Svanborg C. Resident colonic Escherichia coli strains frequently display uropathogenic characteristics. J Infect Dis. 1992;165:46–52. doi: 10.1093/infdis/165.1.46. PubMed DOI
Nowrouzian F, Adlerberth I, Wold AE. P fimbriae, capsule and aerobactin characterize colonic resident Escherichia coli. Epidemiol Infect. 2001;126:11–18. PubMed PMC
Nowrouzian F, Wold AE, Adlerberth I. P fimbriae and aerobactin as intestinal colonization factors for Escherichia coli in Pakistani infants. Epidemiol Infect. 2001;126:19–23. PubMed PMC
Nowrouzian F, Hesselmar B, Saalman R, Strannegard I-L, Aberg N, Wold AE, Adlerberth I. Escherichia coli in infants’ intestinal microflora: colonization rate, strain turnover, and virulence gene carriage. Pediatr Res. 2003;54:8–14. doi: 10.1203/01.PDR.0000069843.20655.EE. PubMed DOI
Doye A, Mettouchi A, Bossis G, Clément R, Buisson-Touati C, Flatau G, Gagnoux L, Piechaczyk M, Boquet P, Lemichez E. CNF1 exploits the ubiquitin-proteasome machinery to restrict Rho GTPase activation for bacterial host cell invasion. Cell. 2002;111:553–564. doi: 10.1016/S0092-8674(02)01132-7. PubMed DOI
Wiles TJ, Kulesus RR, Mulvey MA. Origins and virulence mechanisms of uropathogenic Escherichia coli. Exp Mol Pathol. 2008;85:11–9. doi: 10.1016/j.yexmp.2008.03.007. PubMed DOI PMC
Gao Q, Wang X, Xu H, Xu Y, Ling J, Zhang D, Gao S, Liu X. Roles of iron acquisition systems in virulence of extraintestinal pathogenic Escherichia coli: salmochelin and aerobactin contribute more to virulence than heme in a chicken infection model. BMC Microbiol. 2012;12:143. doi: 10.1186/1471-2180-12-143. PubMed DOI PMC
Martínez JL, Herrero M, de Lorenzo V. The organization of intercistronic regions of the aerobactin operon of pColV-K30 may account for the differential expression of the iucABCD iutA genes. J Mol Biol. 1994;238:288–293. doi: 10.1006/jmbi.1994.1290. PubMed DOI
Schmidt H, Knop C, Franke S, Aleksic S, Heesemann J, Karch H. Development of PCR for screening of enteroaggregative Escherichia coli. J Clin Microbiol. 1995;33:701–705. PubMed PMC
Yamamoto S, Terai A, Yuri K, Kurazono H, Takeda Y, Yoshida O. Detection of urovirulence factors in Escherichia coli by multiplex polymerase chain reaction. FEMS Immunol Med Microbiol. 1995;12:85–90. doi: 10.1111/j.1574-695X.1995.tb00179.x. PubMed DOI
Kuhnert P, Hacker J, Mühldorfer I, Burnens AP, Nicolet J, Frey J. Detection system for Escherichia coli-specific virulence genes: absence of virulence determinants in B and C strains. Appl Environ Microbiol. 1997;63:703–709. PubMed PMC
Paton AW, Paton JC. Detection and characterization of Shiga toxigenic Escherichia coli by using multiplex PCR assays for stx1, stx2, eaeA, enterohemorrhagic E. coli hlyA, rfbO111, and rfbO157. J Clin Microbiol. 1998;36:598–602. PubMed PMC
Paciorek J. Virulence properties of Escherichia coli faecal strains isolated in Poland from healthy children and strains belonging to serogroups O18, O26, O44, O86, O126 and O127 isolated from children with diarrhoea. J Med Microbiol. 2002;51:548–556. PubMed
López-Saucedo C, Cerna JF, Villegas-Sepulveda N, Thompson R, Velazquez FR, Torres J, Tarr PI, Estrada-García T. Single multiplex polymerase chain reaction to detect diverse loci associated with diarrheagenic Escherichia coli. Emerging Infect Dis. 2003;9:127–131. doi: 10.3201/eid0901.010507. PubMed DOI PMC
Bírošová E, Siegfried L, Kmeťová M, Makara A, Ostró A, Gresová A, Urdzík P, Liptáková A, Molokácová M, Bártl R, Valanský L. Detection of virulence factors in alpha-haemolytic Escherichia coli strains isolated from various clinical materials. Clin Microbiol Infect. 2004;10:569–573. doi: 10.1111/j.1469-0691.2004.00922.x. PubMed DOI
Bacteriocin production by mucosal bacteria in current and previous colorectal neoplasia
Colicin FY inhibits pathogenic Yersinia enterocolitica in mice
Microcin determinants are associated with B2 phylogroup of human fecal Escherichia coli isolates
GENBANK
AB923519, AB923520, AB923521, AB923522, AB923523, AB923524, AB923525, AB923526, AB923527, AB923528, AB923529, AB923530, AB923531, AB923532, AB923533, AB923534, AB923535, AB923536, AB923537, AB923538, AB923539, AB923540, AB923541, AB923542, AB923543, AB923544, AB923545, AB923546, AB923547, AB923548, AB923549, AB923550, AB923551, AB923552, AB923553, AB923554, AB923555, AB923556, AB923557, AB923558, AB923559, AB923560, AB923561, AB923562, AB923563, AB923564, AB923565, AB923566, AB923567, AB923568, AB923569, AB923570, AB923571, AB923572, AB923573, AB923574, AB923575, AB923576, AB923577, AB923578, AB923579, AB923580, AB923581, AB923582, AB923583, AB923584, AB923585, AB923586, AB923587, AB923588, AB923589, AB923590, AB923591, AB923592, AB923593, AB923594, AB923595, AB923596, AB923597, AB923598, AB923599, AB923600, AB923601, AB923602, AB923603, AB923604, AB923605, AB923606, AB923607, AB923608, AB923609, AB923610, AB923611, AB923612, AB923613, AB923614, AB923615, AB923616, AB923617, AB923618, AB923619, AB923620, AB923621, AB923622, AB923623, AB923624, AB923625, AB923626, AB923627, AB923628, AB923629, AB923630, AB923631, AB923632, AB923633, AB923634, AB923635, AB923636, AB923637, AB923638, AB923639, AB923640, AB923641, AB923642, AB923643, AB923644, AB923645, AB923646, AB923647, AB923648, AB923649, AB923650, AB923651, AB923652, AB923653, AB923654, AB923655, AB923656, AB923657, AB923658, AB923659, AB923660, AB923661, AB923662, AB923663, AB923664, AB923665, AB923666, AB923667, AB923668, AB923669, AB923670, AB923671, AB923672, AB923673, AB923674, AB923675, AB923676, AB923677, AB923678, AB923679, AB923680, AB923681, AB923682, AB923683, AB923684, AB923685, AB923686, AB923687, AB923688, AB923689, AB923690, AB923691, AB923692, AB923693, AB923694, AB923695, AB923696, AB923697, AB923698, AB923699, AB923700, AB923701, AB923702, AB923703, AB923704, AB923705, AB923706, AB923707, AB923708, AB923709, AB923710, AB923711, AB923712, AB923713, AB923714, AB923715, AB923716, AB923717, AB923718, AB923719, AB923720, AB923721, AB923722, AB923723, AB923724, AB923725, AB923726, AB923727, AB923728, AB923729, AB923730, AB923731, AB923732, AB923733, AB923734, AB923735, AB923736, AB923737, AB923738, AB923739, AB923740, AB923741, AB923742, AB923743, AB923744, AB923745, AB923746, AB923747, AB923748, AB923749, AB923750, AB923751, AB923752, AB923753, AB923754, AB923755, AB923756, AB923757, AB923758, AB923759, AB923760, AB923761, AB923762, AB923763, AB923764, AB923765, AB923766, AB923767, AB923768, AB923769, AB923770, AB923771, AB923772, AB923773, AB923774, AB923775, AB923776, AB923777, AB923778, AB923779, AB923780, AB923781, AB923782, AB923783, AB923784, AB923785, AB923786, AB923787, AB923788, AB923789, AB923790, AB923791, AB923792, AB923793, AB923794, AB923795, AB923796, AB923797, AB923798, AB923799, AB923800, AB923801, AB923802, AB923803, AB923804, AB923805, AB923806, AB923807, AB923808, AB923809, AB923810, AB923811, AB923812