Bacteriocin production by mucosal bacteria in current and previous colorectal neoplasia
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
PROGRES Q40-15
Univerzita Karlova v Praze
PubMed
31948419
PubMed Central
PMC6966821
DOI
10.1186/s12885-020-6512-5
PII: 10.1186/s12885-020-6512-5
Knihovny.cz E-zdroje
- Klíčová slova
- Colicin, Colorectal carcinoma, Colorectal neoplasia, Gramnegative bacteria, Microcin,
- MeSH
- Bacteria metabolismus MeSH
- bakteriociny biosyntéza MeSH
- biopsie MeSH
- kolorektální nádory patologie MeSH
- lidé MeSH
- střevní mikroflóra * MeSH
- střevní sliznice metabolismus mikrobiologie MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- bakteriociny MeSH
BACKGROUND: Optimal therapy for colorectal carcinoma (CRC), a frequently diagnosed malignancy, does not exist. Some of colicins and microcins, ribosomally synthesized peptides by gramnegative bacteria, have shown significant biological activity specifically against different cancer cells in vitro and in vivo conditions. The aim of this prospective study was to evaluate natural colicin and microcin production by large intestinal mucosal bacteria in each stage of colorectal neoplasia and in those with a history of colorectal neoplasia. METHODS: A total of 21 patients with non-advanced adenoma (non-a-A; 16/21 with current and 5/21 with history of non-a-A), 20 patients with advanced colorectal adenoma (a-A; 11/20 with current and 9/20 with history of a-A), 22 individuals with CRC (9/22 with current and 13/22 with history of CRC) and 20 controls were enrolled. Mucosal biopsies from the caecum, transverse colon and the rectum were taken during colonoscopy in each individual. Microbiological culture followed. Production of colicins and microcins was evaluated by PCR methods. RESULTS: A total of 239 mucosal biopsies were taken. Production of colicins and microcins was significantly more frequent in individuals with non-a-A, a-A and CRC compared to controls. No significant difference in colicin and microcin production was found between patients with current and previous non-a-A, a-A and CRC. Significantly more frequent production of colicins was observed in men compared to women at the stage of colorectal carcinoma. A later onset of increased production of microcins during the adenoma-carcinoma sequence has been observed in males compared to females. CONCLUSIONS: Strains isolated from large intestinal mucosa in patients with colorectal neoplasia produce colicins and microcins more frequently compared to controls. Bacteriocin production does not differ between patients with current and previous colorectal neoplasia. Fundamental differences in bacteriocin production have been confirmed between males and females.
Zobrazit více v PubMed
Ferlay J., Colombet M., Soerjomataram I., Mathers C., Parkin D.M., Piñeros M., Znaor A., Bray F. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. International Journal of Cancer. 2018;144(8):1941–1953. doi: 10.1002/ijc.31937. PubMed DOI
Kaur S, Kaur S. Bacteriocins as potential anticancer agents. Front Pharmacol. 2015;6:272. doi: 10.3389/fphar.2015.00272. PubMed DOI PMC
Lancaster LE, Wintermeyer W, Rodnina MV. Colicins and their potential in cancer treatment. Blood Cells Mol Dis. 2007;38:15–18. doi: 10.1016/j.bcmd.2006.10.006. PubMed DOI
Vallianou NG, Tzortzatou-Stathopoulou F. Microbiota and cancer: an update. J Chemother. 2019;16:1–5. PubMed
Chen Danfeng, Wu Jingyi, Jin Duochen, Wang Bangmao, Cao Hailong. Fecal microbiota transplantation in cancer management: Current status and perspectives. International Journal of Cancer. 2018;145(8):2021–2031. doi: 10.1002/ijc.32003. PubMed DOI PMC
Heavey PM, Rowland IR. Microbial-gut interactions in health and disease. Gastrointestinal cancer. Best Pract Res Clin Gastroenterol. 2004;18:323–336. doi: 10.1016/j.bpg.2003.10.003. PubMed DOI
Zitvogel L, Ma Y, Raoult D, Kroemer G, Gajewski TF. The microbiome in cancer immunotherapy: diagnostic tools and therapeutic strategies. Science. 2018;359:1366–1370. doi: 10.1126/science.aar6918. PubMed DOI
Roy S, Trinchieri G. Microbiota: a key orchestrator of cancer therapy. Nat Rev Cancer. 2017;17:271–285. doi: 10.1038/nrc.2017.13. PubMed DOI
Baindara P, Korpole S, Grover V. Bacteriocins: perspective for the development of novel anticancer drugs. Appl Microbiol Biotechnol. 2018;102:10393–10408. doi: 10.1007/s00253-018-9420-8. PubMed DOI
Braun V, Pilsl H, Gross P. Colicins: structures, modes of action, transfer through membranes, and evolution. Arch Microbiol. 1994;161(3):199–206. doi: 10.1007/BF00248693. PubMed DOI
Vasilchenko AS, Valyshev AV. Pore-forming bacteriocins: structural-functional relationships. Arch Microbiol. 2019;201:147–154. doi: 10.1007/s00203-018-1610-3. PubMed DOI
Jenssen H, Hamill P, Hancock RE. Peptide antimicrobial agents. Clin Microbiol Rev. 2006;19:491–511. doi: 10.1128/CMR.00056-05. PubMed DOI PMC
Chumchalová J, Smarda J. Human tumor cells are selectively inhibited by colicins. Folia Microbiol (Praha) 2003;48:111–115. doi: 10.1007/BF02931286. PubMed DOI
Tsugu H, Onishi H, Fukushima T, Lee S. Anti-tumor activity of de novo designed small globular protein (SGP) in vivo. Anticancer Res. 2006;26:4043–4046. PubMed
Cornut G, Fortin C, Soulières D. Antineoplastic properties of bacteriocins: revisiting potential active agents. Am J Clin Oncol. 2008;31(4):399–404. doi: 10.1097/COC.0b013e31815e456d. PubMed DOI
Mahajan D, Downs-Kelly E, Liu X, Pai RK, Patil DT, Rybicki L, et al. Reproducibility of the villous component and high-grade dysplasia in colorectal adenomas <1 cm: implications for endoscopic surveillance. Am J Surg Pathol. 2013;37:427–433. doi: 10.1097/PAS.0b013e31826cf50f. PubMed DOI
Kohoutova D, Smajs D, Moravkova P, Cyrany J, Moravkova M, Forstlova M, Cihak M, et al. Escherichia coli strains of phylogenetic group B2 and D and bacteriocin production are associated with advanced colorectal neoplasia. BMC Infect Dis. 2014;14:733. doi: 10.1186/s12879-014-0733-7. PubMed DOI PMC
Bures J, Smajs D, Kvetina J, Forstl M, Smarda J, Kohoutova D, et al. Bacteriocinogeny in experimental pigs treated with indomethacin and Escherichia coli Nissle. World J Gastroenterol. 2011;17:609–617. doi: 10.3748/wjg.v17.i5.609. PubMed DOI PMC
Smajs D, Micenkova L, Smarda J, Vrba M, Sevcíkova A, Valisova Z, et al. Bacteriocin synthesis in uropathogenic and commensal Escherichia coli: colicin E1 is a potential virulence factor. BMC Microbiol. 2010;10:288. doi: 10.1186/1471-2180-10-288. PubMed DOI PMC
Smajs D, Weinstock GM. Genetic organization of plasmid ColJs, encoding colicin Js activity, immunity, and release genes. J Bacteriol. 2001;183:3949–3957. doi: 10.1128/JB.183.13.3949-3957.2001. PubMed DOI PMC
Smarda J, Smajs D. Colicins - - exocellular lethal proteins of Escherichia coli. Folia Microbiol (Praha) 1998;43:563–582. doi: 10.1007/BF02816372. PubMed DOI
Cascales E, Buchanan SK, Duché D, Kleanthous C, Lloubès R, Postle K, et al. Colicin biology. Microbiol Mol Biol Rev. 2007;71:158–229. doi: 10.1128/MMBR.00036-06. PubMed DOI PMC
Arnold T, Zeth K, Linke D. Structure and function of colicin S4, a colicin with a duplicated receptor-binding domain. J Biol Chem. 2009;284:6403–6413. doi: 10.1074/jbc.M808504200. PubMed DOI PMC
James R, Kleanthous C, Moore GR. The biology of E colicins: paradigms and paradoxes. Microbiology. 1996;142(Pt 7):1569–1580. doi: 10.1099/13500872-142-7-1569. PubMed DOI
Ridley H, Johnson CL, Lakey JH. Interfacial interactions of pore-forming colicins. Adv Exp Med Biol. 2010;677:81–90. doi: 10.1007/978-1-4419-6327-7_7. PubMed DOI
Mora L, de Zamaroczy M. In vivo processing of DNase colicins E2 and E7 is required for their import into the cytoplasm of target cells. PLoS One. 2014;9:e96549. doi: 10.1371/journal.pone.0096549. PubMed DOI PMC
Kolade OO, Carr SB, Kühlmann UC, Pommer A, Kleanthous C, Bouchcinsky CA, et al. Structural aspects of the inhibition of DNase and rRNase colicins by their immunity proteins. Biochimie. 2002;84:439–446. doi: 10.1016/S0300-9084(02)01451-7. PubMed DOI
Helbig S, Braun V. Mapping functional domains of colicin M. J Bacteriol. 2011;193:815–821. doi: 10.1128/JB.01206-10. PubMed DOI PMC
Smarda J, Fialova M, Smarda J., Jr Cytotoxic effects of colicins E1 and E3 on v-myb-transformed chicken monoblasts. Folia Biol (Praha) 2001;47:11–13. PubMed
Smarda J, Smarda J, Obdrzálek V, Táborský I, Mach J. The cytotoxic and cytocidal effect of colicin E3 on mammalian tissue cells. Folia Microbiol (Praha) 1978;23:272–277. doi: 10.1007/BF02876680. PubMed DOI
Fuska J, Fusková A, Smarda J, Mach J. Effect of colicin E3 on leukemia cells P388 in vitro. Experientia. 1979;35:406–407. doi: 10.1007/BF01964380. PubMed DOI
Micenková L, Štaudová B, Bosák J, Mikalová L, Littnerová S, Vrba M, et al. Bacteriocin-encoding genes and ExPEC virulence determinants are associated in human fecal Escherichia coli strains. BMC Microbiol. 2014;14:109. doi: 10.1186/1471-2180-14-109. PubMed DOI PMC
Koneczny I, Schulenburg A, Hudec X, Knöfler M, Holzmann K, Piazza G, et al. Autocrine fibroblast growth factor 18 signaling mediates Wnt-dependent stimulation of CD44-positive human colorectal adenoma cells. Mol Carcinog. 2015;54:789–799. doi: 10.1002/mc.22146. PubMed DOI PMC
Duquesne S, Petit V, Peduzzi J, Rebuffat S. Structural and functional diversity of microcins, gene-encoded antibacterial peptides from Enterobacteria. J Mol Microbiol Biotechnol. 2007;13:200–209. doi: 10.1159/000104748. PubMed DOI
Zschüttig A, Zimmermann K, Blom J, Goesmann A, Pöhlmann C, Gunzer F. Identification and characterization of microcin S, a new antibacterial peptide produced by probiotic Escherichia coli G3/10. PLoS One. 2012;7:e33351. doi: 10.1371/journal.pone.0033351. PubMed DOI PMC
Lagos R, Wilkens M, Vergara C, Cecchi X, Monasterio O. Microcin E492 forms ion channels in phospholipid bilayer membrane. FEBS Lett. 1993;321:145–148. doi: 10.1016/0014-5793(93)80096-D. PubMed DOI
Hetz C, Bono MR, Barros LF, Lagos R. Microcin E492, a channel forming bacteriocin from Klebsiella pneumoniae, induces apoptosis in some human cell lines. Proc Natl Acad Sci U S A. 2002;99:2696–2701. doi: 10.1073/pnas.052709699. PubMed DOI PMC
Lagos R, Tello M, Mercado G, García V, Monasterio O. Antibacterial and antitumorigenic properties of microcin E492, a pore-forming bacteriocin. Curr Pharm Biotechnol. 2009;10:74–85. doi: 10.2174/138920109787048643. PubMed DOI
Rembacken BJ, Snelling AM, Hawkey PM, Chalmers DM, Axon AT. Non-pathogenic Escherichia coli versus mesalazine for the treatment of ulcerative colitis: a randomised trial. Lancet. 1999;354(9179):635–639. doi: 10.1016/S0140-6736(98)06343-0. PubMed DOI
Brader P, Stritzker J, Riedl CC, Zanzonico P, Cai S, Burnazi EM, et al. Escherichia coli Nissle 1917 facilitates tumor detection by positron emission tomography and optical imaging. Clin Cancer Res. 2009;14:2295–2302. doi: 10.1158/1078-0432.CCR-07-4254. PubMed DOI
Maslennikova IL, Kuznetsova MV, Toplak N, Nekrasova IV, Žgur Bertok D, Starčič EM. Estimation of the bacteriocin ColE7 conjugation-based "kill" - "anti-kill" antimicrobial system by real-time PCR, fluorescence staining and bioluminescence assays. Lett Appl Microbiol. 2018;67:47–53. doi: 10.1111/lam.12884. PubMed DOI
Bures J, Horák V, Fixa B, Komárková O, Zaydlar K, Lonský V, et al. Colicinogeny in colorectal cancer. Neoplasma. 1986;33:233–237. PubMed
Harrell L, Wang Y, Antonopoulos D, Young V, Lichtenstein L, Huang Y, Hanauer S, Chang E. Standard colonic lavage alters the natural state of mucosal-associated microbiota in the human colon. PLoS One. 2012;7:e32545. doi: 10.1371/journal.pone.0032545. PubMed DOI PMC