Bacteriocin synthesis in uropathogenic and commensal Escherichia coli: colicin E1 is a potential virulence factor

. 2010 Nov 15 ; 10 () : 288. [epub] 20101115

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid21078157

BACKGROUND: Bacteriocin production is an important characteristic of E. coli strains of human origin. To date, 26 colicin and 9 microcin types have been analyzed on a molecular level allowing molecular detection of the corresponding genes. The production incidence of 29 bacteriocin types and E. coli phylogroups were tested in a set of 361 E. coli strains isolated from human urinary tract infections (UTI) and in 411 control strains isolated from feces of patients without bacterial gut infection. RESULTS: Production of 17 and 20 individual bacteriocin types was found in the UTI and control strains, respectively. Microcin H47 encoding determinants were found more often among UTI strains compared to controls (37.9% and 27.0% respectively, p = 0.02) and strains producing microcin H47 belonged predominantly to phylogroup B2 when compared to other bacteriocin producers (67.4% and 36.7%, respectively; p < 0.0001). Producers of 3 or more identified bacteriocin types were more common in the UTI group (20.0% compared to 12.4% in controls, p = 0.03). In the UTI strains, there was a markedly higher number of those producing colicin E1 compared to controls (22.1% to 10.2%, respectively, p = 0.0008). Moreover, colicin E1 production was more common in the UTI bacteriocinogenic strains with multi-producer capabilities. As shown by Southern blotting, pColE1 DNA was not recognized by the ColIa probe and vice versa suggesting that pColE1 was independently associated with pColIa in UTI strains. CONCLUSION: E. coli strains isolated from human urinary tract infections showed increased incidence of microcin H47 and colicin E1 production, respectively. Moreover, colicin E1 itself appears to be a potentially important virulence factor of certain uropathogenic E. coli strains.

Zobrazit více v PubMed

Šmarda J, Obdržálek V. Incidence of colicinogenic strains among human Escherichia coli. J Basic Microbiol. 2001;41:367–374. doi: 10.1002/1521-4028(200112)41:6<367::AID-JOBM367>3.0.CO;2-X. PubMed DOI

Blanco JM, Alonso P, Gonzalez EA, Blanco M, Garabal JI. Virulence factors of bacteraemic Escherichia coli with particular reference to production of cytotoxic necrotising factor (CNF) by P-fimbriate strains. J Med Microbiol. 1990;31:175–183. doi: 10.1099/00222615-31-3-175. PubMed DOI

Hughes C, Hacker J, Roberts A, Goebel W. Hemolysin production as a virulence marker in symptomatic and asymptomatic urinary tract infections caused by Escherichia coli. Infect Immun. 1983;39:546–551. PubMed PMC

Johnson JR, Moseley SL, Roberts PL, Stamm WE. Aerobactin and other virulence factor genes among strains of Escherichia coli causing urosepsis: association with patient characteristics. Infect Immun. 1988;56:405412. PubMed PMC

Kaijser B. Immunology of Escherichia coli: K antigen and its relation to urinary-tract infection. J Infect Dis. 1973;127:670–677. PubMed

Svanborg Edén C, Eriksson B, Hanson LA. Adhesion of Eschericha coli to human uroepithelial cells in vitro. Infect Immun. 1977;18:767–774. PubMed PMC

Williams PH. Novel iron uptake system specified by ColV plasmids: an important component in the virulence of invasive strains of Escherichia coli. Infect Immun. 1979;26:925–932. PubMed PMC

Smith HW, Huggins MB. Further observations on the association of the colicine V plasmid of Escherichia coli with pathogenicity and with survival in the alimentary tract. J Gen Microbiol. 1976;92:335–350. PubMed

Johnson JR, Kuskowski MA, Gajewski A, Soto S, Horcajada JP, Jimenez de Anta MT, Vila J. Extended virulence genotypes and phylogenetic background of Escherichia coli isolates from patients with cystitis, pyelonephritis, or prostatitis. J Infect Dis. 2005;191:46–50. doi: 10.1086/426450. PubMed DOI

Fernandez-Beros ME, Kissel V, Lior H, Cabello FC. Virulence-related genes in ColV plasmids of Escherichia coli isolated from human blood and intestines. J Clin Microbiol. 1990;28:742–746. PubMed PMC

Quackenbush RL, Falkow S. Relationship between colicin V activity and virulence in Escherichia coli. Infect Immun. 1979;24:562–564. PubMed PMC

Wooley RE, Nolan LK, Brown J, Gibbs PS, Bounous DI. Phenotypic expression of recombinant plasmids pKT107 and pHK11 in an avirulent avian Escherichia coli. Avian Dis. 1994;38:127–134. doi: 10.2307/1591845. PubMed DOI

Šmarda J, Šmajs D, Lhotová H. Three recently acknowledged Escherichia species strikingly differ in the incidence of bacteriocinogenic and lysogenic strains. J Basic Microbiol. 2002;42:429–433. doi: 10.1002/1521-4028(200212)42:6<429::AID-JOBM429>3.0.CO;2-X. PubMed DOI

Cursino L, Šmajs D, Šmarda J, Nardi RM, Nicoli JR, Chartone-Souza E, Nascimento AM. Exoproducts of the Escherichia coli strain H22 inhibiting some enteric pathogens both in vitro and in vivo. J Appl Microbiol. 2006;100:821–829. doi: 10.1111/j.1365-2672.2006.02834.x. PubMed DOI

Gillor O, Giladi I, Riley MA. Persistence of colicinogenic Escherichia coli in the mouse gastrointestinal tract. BMC Microbiol. 2009;12:165. doi: 10.1186/1471-2180-9-165. PubMed DOI PMC

Lodinová-Žádníková R, Bartáková Z, Tlaskalová H. The effect of oral colonization by non-pathogenic E. coli on the immune response in neonates and possibilities of its use in the prevention of nosocomial infections in children at risk. Česk Epidemiol Mikrobiol Imunol. 1992;42:126–132. PubMed

Montalto M, Arancio F, Izzi D, Cuoco L, Curigliano V, Manna R, Gasbarrini G. Probiotics: history, definition, requirements and possible therapeutic applications. Ann Ital Med Int. 2002;17:157–165. PubMed

Šmajs D, Strouhal M, Matějková P, Čejková D, Cursino L, Chartone-Souza E, Šmarda J, Nascimento AM. Complete sequence of low-copy-number plasmid MccC7-H22 of probiotic Escherichia coli H22 and the prevalence of mcc genes among human E. coli. Plasmid. 2008;59:1–10. doi: 10.1016/j.plasmid.2007.08.002. PubMed DOI

Šmarda J, Šmajs D. Colicins-exocellular lethal proteins of Escherichia coli. Folia Microbiol (Praha) 1998;43:563–582. doi: 10.1007/BF02816372. PubMed DOI

Pilsl H, Šmajs D, Braun V. Characterization of colicin S4 and its receptor, OmpW, a minor protein of the Escherichia coli outer membrane. J Bacteriol. 1999;181:3578–3581. PubMed PMC

Riley MA, Cadavid L, Collett MS, Neely MN, Adams MD, Phillips CM, Neel JV, Friedman D. The newly characterized colicin Y provides evidence of positive selection in pore-former colicin diversification. Microbiology. 2000;146:1671–1677. PubMed

Šmajs D, Weinstock GM. Genetic organization of plasmid ColJs, encoding colicin Js activity, immunity, and release genes. J Bacteriol. 2001;183:3949–3957. doi: 10.1128/JB.183.13.3949-3957.2001. PubMed DOI PMC

Braun VS, Patzer I, Hantke K. Ton-dependent colicins and microcins: modular design and evolution. Biochimie. 2002;84:365–380. doi: 10.1016/S0300-9084(02)01427-X. PubMed DOI

Destoumieux-Garzón D, Peduzzi J, Rebuffat S. Focus on modified microcins: structural features and mechanisms of action. Biochimie. 2002;84:511–519. doi: 10.1016/S0300-9084(02)01411-6. PubMed DOI

Severinov K, Semenova E, Kazakov A, Kazakov T, Gelfand MS. Low-molecular-weight post-translationally modified microcins. Mol Microbiol. 2007;65:1380–1394. doi: 10.1111/j.1365-2958.2007.05874.x. PubMed DOI

Gordon DM, O'Brien CL. Bacteriocin diversity and the frequency of multiple bacteriocin production in Escherichia coli. Microbiology. 2006;152:3239–3244. doi: 10.1099/mic.0.28690-0. PubMed DOI

Clermont O, Bonacorsi S, Bingen E. Rapid and simple determination of the Escherichia coli phylogenetic group. Appl Environ Microbiol. 2000;66:4555–4558. doi: 10.1128/AEM.66.10.4555-4558.2000. PubMed DOI PMC

Jeziorowski A, Gordon DM. Evolution of microcin V and colicin Ia plasmids in Escherichia coli. J Bacteriol. 2007;189:7045–7052. doi: 10.1128/JB.00243-07. PubMed DOI PMC

Brumfitt W, Gargan RS, Hamilton-Miller JM. Periurethral enterobacterial carriage preceding urinary infection. Lancet. 1987;11:824–826. doi: 10.1016/S0140-6736(87)91606-0. PubMed DOI

O'Brien GJ, Chambers ST, Peddie B, Mahanty HK. The association between colicinogenicity and pathogenesis among uropathogenic isolates of Escherichia coli. Microb Pathog. 1996;20:185–190. doi: 10.1006/mpat.1996.0017. PubMed DOI

Picard B, Garcia JS, Gouriou S, Duriez P, Brahimi N, Bingen E, Elion J, Denamur E. The link between phylogeny and virulence in Escherichia coli extraintestinal infection. Infect Immun. 1999;67:546–553. PubMed PMC

Boyd EF, Hartl DL. Chromosomal regions specific to pathogenic isolates of Escherichia coli have a phylogenetically clustered distribution. J Bacteriol. 1998;180:1159–1165. PubMed PMC

Patzer SI, Baquero MR, Bravo D, Moreno F, Hantke K. The colicin G, H and × determinants encode microcins M and H47, which might utilize the catecholate siderophore receptors FepA, Cir, Fiu and IroN. Microbiology. 2003;149:2557–2570. doi: 10.1099/mic.0.26396-0. PubMed DOI

Šmarda J, Šmajs D, Lhotová H, Dědičová D. Occurrence of strains producing specific antibacterial inhibitory agents in five genera of Enterobacteriaceae. Curr Microbiol. 2007;54:113–118. doi: 10.1007/s00284-006-0196-1. PubMed DOI

Rijavec M, Budic M, Mrak P, Müller-Premru M, Podlesek Z, Zgur-Bertok D. Prevalence of ColE1-like plasmids and colicin K production among uropathogenic Escherichia coli strains and quantification of inhibitory activity of colicin K. Appl Environ Microbiol. 2007;73:1029–1032. doi: 10.1128/AEM.01780-06. PubMed DOI PMC

Šmajs D, Pilsl H, Braun V. Colicin U, a novel colicin produced by Shigella boydii. J Bacteriol. 1997;179:4919–4928. PubMed PMC

Braude AI, Siemienski JS. The influence of bacteriocins on resistance to infection by gram-negative bacteria. II. Colicin action, transfer of colicinogeny, and transfer of antibiotic resistance in urinary infections. J Clin Invest. 1968;47:1763–1773. PubMed PMC

Šmajs D, Karpathy SE, Šmarda J, Weinstock GM. Colicins produced by the Escherichia fergusonii strains closely resemble colicins encoded by Escherichia coli. FEMS Microbiol Lett. 2002;208:259–262. doi: 10.1111/j.1574-6968.2002.tb11091.x. PubMed DOI

Chumchalová J, Šmarda J. Human tumor cells are selectively inhibited by colicins. Folia Microbiol (Praha) 2003;48:111–115. doi: 10.1007/BF02931286. PubMed DOI

Farkas-Himsley H, Cheung R. Bacterial proteinaceous products (bacteriocins) as cytotoxic agent of neoplasia. Cancer Res. 1976;36:3561–3567. PubMed

Šmarda J, Šmajs D, Horynová S. Incidence of lysogenic, colicinogenic and siderophore-producing strains among human non-pathogenic Escherichia coli. Folia Microbiol (Praha) 2006;51:387–391. doi: 10.1007/BF02931581. PubMed DOI

Rozen S, Skaletsky HJ. In: Bioinformatics Methods and Protocols: Methods in Molecular Biology. Krawetz S, Misener S, editor. Totowa, NJ: Humana Press; 2000. Primer3 on the WWW for general users and for biologist programmers; pp. 365–386. PubMed

Preacher KJ. Calculation for the chi-square test: An interactive calculation tool for chi-square tests of goodness of fit and independence [Computer software] 2001. http://www.quantpsy.org PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Bacteriocin production by mucosal bacteria in current and previous colorectal neoplasia

. 2020 Jan 16 ; 20 (1) : 39. [epub] 20200116

Colicin Z, a structurally and functionally novel colicin type that selectively kills enteroinvasive Escherichia coli and Shigella strains

. 2019 Jul 31 ; 9 (1) : 11127. [epub] 20190731

Characterization of four Escherichia albertii isolates collected from animals living in Antarctica and Patagonia

. 2018 Feb 02 ; 80 (1) : 138-146. [epub] 20171215

Free-Living Enterobacterium Pragia fontium 24613: Complete Genome Sequence and Metabolic Profiling

. 2017 ; 13 () : 1176934317700863. [epub] 20170330

Novel Temperate Phages of Salmonella enterica subsp. salamae and subsp. diarizonae and Their Activity against Pathogenic S. enterica subsp. enterica Isolates

. 2017 ; 12 (1) : e0170734. [epub] 20170124

Human extraintestinal pathogenic Escherichia coli strains differ in prevalence of virulence factors, phylogroups, and bacteriocin determinants

. 2016 Sep 20 ; 16 () : 218. [epub] 20160920

Microcin determinants are associated with B2 phylogroup of human fecal Escherichia coli isolates

. 2016 Jun ; 5 (3) : 490-8. [epub] 20160314

Determinants encoding fimbriae type 1 in fecal Escherichia coli are associated with increased frequency of bacteriocinogeny

. 2015 Oct 06 ; 15 () : 201. [epub] 20151006

Escherichia coli strains of phylogenetic group B2 and D and bacteriocin production are associated with advanced colorectal neoplasia

. 2014 Dec 24 ; 14 () : 733. [epub] 20141224

Bacteriocin-encoding genes and ExPEC virulence determinants are associated in human fecal Escherichia coli strains

. 2014 Apr 28 ; 14 () : 109. [epub] 20140428

Novel colicin Fy of Yersinia frederiksenii inhibits pathogenic Yersinia strains via YiuR-mediated reception, TonB import, and cell membrane pore formation

. 2012 Apr ; 194 (8) : 1950-9. [epub] 20120217

Experimental administration of the probiotic Escherichia coli strain Nissle 1917 results in decreased diversity of E. coli strains in pigs

. 2012 Mar ; 64 (3) : 205-10. [epub] 20111125

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...