Bacteriocin synthesis in uropathogenic and commensal Escherichia coli: colicin E1 is a potential virulence factor
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
21078157
PubMed Central
PMC2995468
DOI
10.1186/1471-2180-10-288
PII: 1471-2180-10-288
Knihovny.cz E-zdroje
- MeSH
- bakteriociny biosyntéza genetika MeSH
- Escherichia coli genetika izolace a purifikace metabolismus MeSH
- faktory virulence genetika metabolismus MeSH
- feces mikrobiologie MeSH
- infekce močového ústrojí mikrobiologie MeSH
- infekce vyvolané Escherichia coli mikrobiologie MeSH
- koliciny genetika metabolismus MeSH
- lidé MeSH
- uropatogenní Escherichia coli genetika izolace a purifikace metabolismus MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- bakteriociny MeSH
- faktory virulence MeSH
- koliciny MeSH
BACKGROUND: Bacteriocin production is an important characteristic of E. coli strains of human origin. To date, 26 colicin and 9 microcin types have been analyzed on a molecular level allowing molecular detection of the corresponding genes. The production incidence of 29 bacteriocin types and E. coli phylogroups were tested in a set of 361 E. coli strains isolated from human urinary tract infections (UTI) and in 411 control strains isolated from feces of patients without bacterial gut infection. RESULTS: Production of 17 and 20 individual bacteriocin types was found in the UTI and control strains, respectively. Microcin H47 encoding determinants were found more often among UTI strains compared to controls (37.9% and 27.0% respectively, p = 0.02) and strains producing microcin H47 belonged predominantly to phylogroup B2 when compared to other bacteriocin producers (67.4% and 36.7%, respectively; p < 0.0001). Producers of 3 or more identified bacteriocin types were more common in the UTI group (20.0% compared to 12.4% in controls, p = 0.03). In the UTI strains, there was a markedly higher number of those producing colicin E1 compared to controls (22.1% to 10.2%, respectively, p = 0.0008). Moreover, colicin E1 production was more common in the UTI bacteriocinogenic strains with multi-producer capabilities. As shown by Southern blotting, pColE1 DNA was not recognized by the ColIa probe and vice versa suggesting that pColE1 was independently associated with pColIa in UTI strains. CONCLUSION: E. coli strains isolated from human urinary tract infections showed increased incidence of microcin H47 and colicin E1 production, respectively. Moreover, colicin E1 itself appears to be a potentially important virulence factor of certain uropathogenic E. coli strains.
Zobrazit více v PubMed
Šmarda J, Obdržálek V. Incidence of colicinogenic strains among human Escherichia coli. J Basic Microbiol. 2001;41:367–374. doi: 10.1002/1521-4028(200112)41:6<367::AID-JOBM367>3.0.CO;2-X. PubMed DOI
Blanco JM, Alonso P, Gonzalez EA, Blanco M, Garabal JI. Virulence factors of bacteraemic Escherichia coli with particular reference to production of cytotoxic necrotising factor (CNF) by P-fimbriate strains. J Med Microbiol. 1990;31:175–183. doi: 10.1099/00222615-31-3-175. PubMed DOI
Hughes C, Hacker J, Roberts A, Goebel W. Hemolysin production as a virulence marker in symptomatic and asymptomatic urinary tract infections caused by Escherichia coli. Infect Immun. 1983;39:546–551. PubMed PMC
Johnson JR, Moseley SL, Roberts PL, Stamm WE. Aerobactin and other virulence factor genes among strains of Escherichia coli causing urosepsis: association with patient characteristics. Infect Immun. 1988;56:405412. PubMed PMC
Kaijser B. Immunology of Escherichia coli: K antigen and its relation to urinary-tract infection. J Infect Dis. 1973;127:670–677. PubMed
Svanborg Edén C, Eriksson B, Hanson LA. Adhesion of Eschericha coli to human uroepithelial cells in vitro. Infect Immun. 1977;18:767–774. PubMed PMC
Williams PH. Novel iron uptake system specified by ColV plasmids: an important component in the virulence of invasive strains of Escherichia coli. Infect Immun. 1979;26:925–932. PubMed PMC
Smith HW, Huggins MB. Further observations on the association of the colicine V plasmid of Escherichia coli with pathogenicity and with survival in the alimentary tract. J Gen Microbiol. 1976;92:335–350. PubMed
Johnson JR, Kuskowski MA, Gajewski A, Soto S, Horcajada JP, Jimenez de Anta MT, Vila J. Extended virulence genotypes and phylogenetic background of Escherichia coli isolates from patients with cystitis, pyelonephritis, or prostatitis. J Infect Dis. 2005;191:46–50. doi: 10.1086/426450. PubMed DOI
Fernandez-Beros ME, Kissel V, Lior H, Cabello FC. Virulence-related genes in ColV plasmids of Escherichia coli isolated from human blood and intestines. J Clin Microbiol. 1990;28:742–746. PubMed PMC
Quackenbush RL, Falkow S. Relationship between colicin V activity and virulence in Escherichia coli. Infect Immun. 1979;24:562–564. PubMed PMC
Wooley RE, Nolan LK, Brown J, Gibbs PS, Bounous DI. Phenotypic expression of recombinant plasmids pKT107 and pHK11 in an avirulent avian Escherichia coli. Avian Dis. 1994;38:127–134. doi: 10.2307/1591845. PubMed DOI
Šmarda J, Šmajs D, Lhotová H. Three recently acknowledged Escherichia species strikingly differ in the incidence of bacteriocinogenic and lysogenic strains. J Basic Microbiol. 2002;42:429–433. doi: 10.1002/1521-4028(200212)42:6<429::AID-JOBM429>3.0.CO;2-X. PubMed DOI
Cursino L, Šmajs D, Šmarda J, Nardi RM, Nicoli JR, Chartone-Souza E, Nascimento AM. Exoproducts of the Escherichia coli strain H22 inhibiting some enteric pathogens both in vitro and in vivo. J Appl Microbiol. 2006;100:821–829. doi: 10.1111/j.1365-2672.2006.02834.x. PubMed DOI
Gillor O, Giladi I, Riley MA. Persistence of colicinogenic Escherichia coli in the mouse gastrointestinal tract. BMC Microbiol. 2009;12:165. doi: 10.1186/1471-2180-9-165. PubMed DOI PMC
Lodinová-Žádníková R, Bartáková Z, Tlaskalová H. The effect of oral colonization by non-pathogenic E. coli on the immune response in neonates and possibilities of its use in the prevention of nosocomial infections in children at risk. Česk Epidemiol Mikrobiol Imunol. 1992;42:126–132. PubMed
Montalto M, Arancio F, Izzi D, Cuoco L, Curigliano V, Manna R, Gasbarrini G. Probiotics: history, definition, requirements and possible therapeutic applications. Ann Ital Med Int. 2002;17:157–165. PubMed
Šmajs D, Strouhal M, Matějková P, Čejková D, Cursino L, Chartone-Souza E, Šmarda J, Nascimento AM. Complete sequence of low-copy-number plasmid MccC7-H22 of probiotic Escherichia coli H22 and the prevalence of mcc genes among human E. coli. Plasmid. 2008;59:1–10. doi: 10.1016/j.plasmid.2007.08.002. PubMed DOI
Šmarda J, Šmajs D. Colicins-exocellular lethal proteins of Escherichia coli. Folia Microbiol (Praha) 1998;43:563–582. doi: 10.1007/BF02816372. PubMed DOI
Pilsl H, Šmajs D, Braun V. Characterization of colicin S4 and its receptor, OmpW, a minor protein of the Escherichia coli outer membrane. J Bacteriol. 1999;181:3578–3581. PubMed PMC
Riley MA, Cadavid L, Collett MS, Neely MN, Adams MD, Phillips CM, Neel JV, Friedman D. The newly characterized colicin Y provides evidence of positive selection in pore-former colicin diversification. Microbiology. 2000;146:1671–1677. PubMed
Šmajs D, Weinstock GM. Genetic organization of plasmid ColJs, encoding colicin Js activity, immunity, and release genes. J Bacteriol. 2001;183:3949–3957. doi: 10.1128/JB.183.13.3949-3957.2001. PubMed DOI PMC
Braun VS, Patzer I, Hantke K. Ton-dependent colicins and microcins: modular design and evolution. Biochimie. 2002;84:365–380. doi: 10.1016/S0300-9084(02)01427-X. PubMed DOI
Destoumieux-Garzón D, Peduzzi J, Rebuffat S. Focus on modified microcins: structural features and mechanisms of action. Biochimie. 2002;84:511–519. doi: 10.1016/S0300-9084(02)01411-6. PubMed DOI
Severinov K, Semenova E, Kazakov A, Kazakov T, Gelfand MS. Low-molecular-weight post-translationally modified microcins. Mol Microbiol. 2007;65:1380–1394. doi: 10.1111/j.1365-2958.2007.05874.x. PubMed DOI
Gordon DM, O'Brien CL. Bacteriocin diversity and the frequency of multiple bacteriocin production in Escherichia coli. Microbiology. 2006;152:3239–3244. doi: 10.1099/mic.0.28690-0. PubMed DOI
Clermont O, Bonacorsi S, Bingen E. Rapid and simple determination of the Escherichia coli phylogenetic group. Appl Environ Microbiol. 2000;66:4555–4558. doi: 10.1128/AEM.66.10.4555-4558.2000. PubMed DOI PMC
Jeziorowski A, Gordon DM. Evolution of microcin V and colicin Ia plasmids in Escherichia coli. J Bacteriol. 2007;189:7045–7052. doi: 10.1128/JB.00243-07. PubMed DOI PMC
Brumfitt W, Gargan RS, Hamilton-Miller JM. Periurethral enterobacterial carriage preceding urinary infection. Lancet. 1987;11:824–826. doi: 10.1016/S0140-6736(87)91606-0. PubMed DOI
O'Brien GJ, Chambers ST, Peddie B, Mahanty HK. The association between colicinogenicity and pathogenesis among uropathogenic isolates of Escherichia coli. Microb Pathog. 1996;20:185–190. doi: 10.1006/mpat.1996.0017. PubMed DOI
Picard B, Garcia JS, Gouriou S, Duriez P, Brahimi N, Bingen E, Elion J, Denamur E. The link between phylogeny and virulence in Escherichia coli extraintestinal infection. Infect Immun. 1999;67:546–553. PubMed PMC
Boyd EF, Hartl DL. Chromosomal regions specific to pathogenic isolates of Escherichia coli have a phylogenetically clustered distribution. J Bacteriol. 1998;180:1159–1165. PubMed PMC
Patzer SI, Baquero MR, Bravo D, Moreno F, Hantke K. The colicin G, H and × determinants encode microcins M and H47, which might utilize the catecholate siderophore receptors FepA, Cir, Fiu and IroN. Microbiology. 2003;149:2557–2570. doi: 10.1099/mic.0.26396-0. PubMed DOI
Šmarda J, Šmajs D, Lhotová H, Dědičová D. Occurrence of strains producing specific antibacterial inhibitory agents in five genera of Enterobacteriaceae. Curr Microbiol. 2007;54:113–118. doi: 10.1007/s00284-006-0196-1. PubMed DOI
Rijavec M, Budic M, Mrak P, Müller-Premru M, Podlesek Z, Zgur-Bertok D. Prevalence of ColE1-like plasmids and colicin K production among uropathogenic Escherichia coli strains and quantification of inhibitory activity of colicin K. Appl Environ Microbiol. 2007;73:1029–1032. doi: 10.1128/AEM.01780-06. PubMed DOI PMC
Šmajs D, Pilsl H, Braun V. Colicin U, a novel colicin produced by Shigella boydii. J Bacteriol. 1997;179:4919–4928. PubMed PMC
Braude AI, Siemienski JS. The influence of bacteriocins on resistance to infection by gram-negative bacteria. II. Colicin action, transfer of colicinogeny, and transfer of antibiotic resistance in urinary infections. J Clin Invest. 1968;47:1763–1773. PubMed PMC
Šmajs D, Karpathy SE, Šmarda J, Weinstock GM. Colicins produced by the Escherichia fergusonii strains closely resemble colicins encoded by Escherichia coli. FEMS Microbiol Lett. 2002;208:259–262. doi: 10.1111/j.1574-6968.2002.tb11091.x. PubMed DOI
Chumchalová J, Šmarda J. Human tumor cells are selectively inhibited by colicins. Folia Microbiol (Praha) 2003;48:111–115. doi: 10.1007/BF02931286. PubMed DOI
Farkas-Himsley H, Cheung R. Bacterial proteinaceous products (bacteriocins) as cytotoxic agent of neoplasia. Cancer Res. 1976;36:3561–3567. PubMed
Šmarda J, Šmajs D, Horynová S. Incidence of lysogenic, colicinogenic and siderophore-producing strains among human non-pathogenic Escherichia coli. Folia Microbiol (Praha) 2006;51:387–391. doi: 10.1007/BF02931581. PubMed DOI
Rozen S, Skaletsky HJ. In: Bioinformatics Methods and Protocols: Methods in Molecular Biology. Krawetz S, Misener S, editor. Totowa, NJ: Humana Press; 2000. Primer3 on the WWW for general users and for biologist programmers; pp. 365–386. PubMed
Preacher KJ. Calculation for the chi-square test: An interactive calculation tool for chi-square tests of goodness of fit and independence [Computer software] 2001. http://www.quantpsy.org PubMed
Bacteriocin production by mucosal bacteria in current and previous colorectal neoplasia
Free-Living Enterobacterium Pragia fontium 24613: Complete Genome Sequence and Metabolic Profiling
Microcin determinants are associated with B2 phylogroup of human fecal Escherichia coli isolates