Determinants encoding fimbriae type 1 in fecal Escherichia coli are associated with increased frequency of bacteriocinogeny

. 2015 Oct 06 ; 15 () : 201. [epub] 20151006

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid26445407
Odkazy

PubMed 26445407
PubMed Central PMC4594643
DOI 10.1186/s12866-015-0530-5
PII: 10.1186/s12866-015-0530-5
Knihovny.cz E-zdroje

BACKGROUND: To screen whether E. coli strains encoding type 1 fimbriae, isolated from fecal microflora, produce bacteriocins more often relative to fimA-negative E. coli strains of similar origin. METHODS: PCR assays were used to detect presence of genes encoding 30 bacteriocin determinants (23 colicin- and 7 microcin-encoding genes) and 18 virulence determinants in 579 E. coli strains of human and animal origin isolated from hospitals and animal facilities in the Czech and Slovak Republic. E. coli strains were also classified into phylogroups (A, B1, B2 and D). RESULTS: fimA-negative E. coli strains (defined as those possessing none of the 18 tested virulence determinants) were compared to fimA-positive E. coli strains (possessing fimA as the only detected virulence determinant). Strains with identified bacteriocin genes were more commonly found among fimA-positive E. coli strains (35.6%) compared to fimA-negative E. coli strains (21.9%, p<0.01) and this was true for both colicin and microcin determinants (p=0.02 and p<0.01, respectively). In addition, an increased number of strains encoding colicin E1 were found among fimA-positive E. coli strains (p<0.01). CONCLUSIONS: fimA-positive E. coli strains produced bacteriocins (colicins and microcins) more often compared to fimA-negative strains of similar origin. Since type 1 fimbriae of E. coli have been shown to mediate adhesion to epithelial host cells and help colonize the intestines, bacteriocin synthesis appears to be an additional feature of colonizing E. coli strains.

Zobrazit více v PubMed

Tenaillon O, Skurnik D, Picard B, Denamur E. The population genetics of commensal Escherichia coli. Nat Rev Microbiol. 2010;8:207–217. doi: 10.1038/nrmicro2298. PubMed DOI

Bergthorsson U, Ochman H. Distribution of chromosome length variation in natural isolates of Escherichia coli. Mol Biol Evol. 1998;15:6–16. doi: 10.1093/oxfordjournals.molbev.a025847. PubMed DOI

Dobrindt U, Agerer F, Michaelis K, Janka A, Buchrieser C, Samuelson M, Svanborg C, Gottschalk G, Karch H, Hacker J. Analysis of genome plasticity in pathogenic and commensal Escherichia coli isolates by use of DNA arrays. J Bacteriol. 2003;185:1831–1840. doi: 10.1128/JB.185.6.1831-1840.2003. PubMed DOI PMC

Boyd EF, Hartl DL. Chromosomal regions specific to pathogenic isolates of Escherichia coli have a phylogenetically clustered distribution. J Bacteriol. 1998;180:1159–1165. PubMed PMC

Picard B, Garcia JS, Gouriou S, Duriez P, Brahimi N, Bingen E, Elion J, Denamur E. The link between phylogeny and virulence in Escherichia coli extraintestinal infection. Infect Immun. 1999;67:546–553. PubMed PMC

Johnson JR, Stell AL. Extended virulence genotypes of Escherichia coli strains from patients with urosepsis in relation to phylogeny and host compromise. J Infect Dis. 2000;181:261–272. doi: 10.1086/315217. PubMed DOI

Kaczmarek A, Budzynska A, Gospodarek E. Prevalence of genes encoding virulence factors among Escherichia coli with K1 antigen and non-K1 E. coli strains. J Med Microbiol. 2012;61:1360–1365. doi: 10.1099/jmm.0.044263-0. PubMed DOI

Klemm P, Jørgensen BJ, van Die I, de Ree H, Bergmans H. The fim genes responsible for synthesis of type 1 fimbriae in Escherichia coli, cloning and genetic organization. Mol Gen Genet. 1985;199:410–414. doi: 10.1007/BF00330751. PubMed DOI

Jones CH, Pinkner JS, Roth R, Heuser J, Nicholes AV, Abraham SN, Hultgren SJ. FimH adhesin of type 1 pili is assembled into a fibrillar tip structure in the Enterobacteriaceae. Proc Natl Acad Sci USA. 1995;92:2081–2085. doi: 10.1073/pnas.92.6.2081. PubMed DOI PMC

Khan NA, Kim Y, Shin S, Kim KS. FimH-mediated Escherichia coli K1 invasion of human brain microvascular endothelial cells. Cell Microbiol. 2007;9:169–178. doi: 10.1111/j.1462-5822.2006.00779.x. PubMed DOI

Braun V, Pilsl H, Gross P. Colicins: structures, modes of action, transfer through membranes, and evolution. Arch Microbiol. 1994;161:199–206. doi: 10.1007/BF00248693. PubMed DOI

Šmarda J, Šmajs D. Colicins--exocellular lethal proteins of Escherichia coli. Folia Microbiol (Praha) 1998;43:563–582. doi: 10.1007/BF02816372. PubMed DOI

Cascales E, Buchanan SK, Duché D, Kleanthous C, Lloubès R, Postle K, Riley M, Slatin S, Cavard D. Colicin biology. Microbiol Mol Biol Rev. 2007;71:158–229. doi: 10.1128/MMBR.00036-06. PubMed DOI PMC

Šmajs D, Weinstock GM. Genetic organization of plasmid ColJs, encoding colicin Js activity, immunity, and release genes. J Bacteriol. 2001;183:3949–3957. doi: 10.1128/JB.183.13.3949-3957.2001. PubMed DOI PMC

Šmajs D, Weinstock GM. The iron- and temperature-regulated cjrBC genes of Shigella and enteroinvasive Escherichia coli strains code for colicin Js uptake. J Bacteriol. 2001;183:3958–3966. doi: 10.1128/JB.183.13.3958-3966.2001. PubMed DOI PMC

Azpiroz MF, Poey ME, Laviña M. Microcins and urovirulence in Escherichia coli. Microb Pathog. 2009;47:274–280. doi: 10.1016/j.micpath.2009.09.003. PubMed DOI

Šmajs D, Micenková L, Šmarda J, Vrba M, Ševčíková A, Vališová Z, Woznicová V. Bacteriocin synthesis in uropathogenic and commensal Escherichia coli: colicin E1 is a potential virulence factor. BMC Microbiol. 2010;10:288. doi: 10.1186/1471-2180-10-288. PubMed DOI PMC

Budič M, Rijavec M, Petkovšek Z, Zgur-Bertok D. Escherichia coli bacteriocins: antimicrobial efficacy and prevalence among isolates from patients with bacteraemia. PloS One. 2011;6:e28769. doi: 10.1371/journal.pone.0028769. PubMed DOI PMC

Petkovšek Z, Zgur-Bertok D, Starcic Erjavec M. Colicin insensitivity correlates with a higher prevalence of extraintestinal virulence factors among Escherichia coli isolates from skin and soft-tissue infections. J Med Microbiol. 2012;61:762–765. doi: 10.1099/jmm.0.037234-0. PubMed DOI

Micenková L, Štaudová B, Bosák J, Mikalová L, Littnerová S, Vrba M, Ševčíková A, Woznicová V, Šmajs D. Bacteriocin-encoding genes and ExPEC virulence determinants are associated in human fecal Escherichia coli strains. BMC Microbiol. 2014;14:109. doi: 10.1186/1471-2180-14-109. PubMed DOI PMC

Johnson JR. Virulence factors in Escherichia coli urinary tract infection. Clin Microbiol Rev. 1991;4:80–128. PubMed PMC

Connell I, Agace W, Klemm P, Schembri M, Mărild S, Svanborg C. Type 1 fimbrial expression enhances Escherichia coli virulence for the urinary tract. Proc Natl Acad Sci USA. 1996;93:9827–32. doi: 10.1073/pnas.93.18.9827. PubMed DOI PMC

Gonçalves A, Igrejas G, Radhouani H, Santos T, Monteiro R, Pacheco R, Alcaide E, Zorrilla I, Serra R, Torres C, Poeta P. Detection of antibiotic resistant enterococci and Escherichia coli in free range Iberian Lynx (Lynx pardinus) Sci Total Environ. 2013;456–457:115–119. doi: 10.1016/j.scitotenv.2013.03.073. PubMed DOI

Šmarda J, Obdrzálek V. Incidence of colicinogenic strains among human Escherichia coli. J Basic Microbiol. 2001;41:367–74. doi: 10.1002/1521-4028(200112)41:6<367::AID-JOBM367>3.0.CO;2-X. PubMed DOI

Abraham S, Shin J, Malaviya R. Type 1 fimbriated Escherichia coli-mast cell interactions in cystitis. J Infect Dis. 2001;183(s1):S51–S55. doi: 10.1086/318853. PubMed DOI

Ponniah S, Abraham SN, Dockter ME, Wall CD, Endres RO. Mitogenic stimulation of human B lymphocytes by the mannose-specific adhesin on Escherichia coli type 1 fimbriae. J Immunol. 1989;142:992–998. PubMed

Hedlund M, Frendéus B, Wachtler C, Hang L, Fischer H, Svanborg C. Type 1 fimbriae deliver an LPS- and TLR4-dependent activation signal to CD14-negative cells. Mol Microbiol. 2001;39:542–552. doi: 10.1046/j.1365-2958.2001.02205.x. PubMed DOI

Mulvey MA, Schilling JD, Hultgren SJ. Establishment of a persistent Escherichia coli reservoir during the acute phase of a bladder infection. Infect Immun. 2001;69:4572–4579. doi: 10.1128/IAI.69.7.4572-4579.2001. PubMed DOI PMC

Hagberg L, Jodal U, Korhonen TK, Lidin-Janson G, Lindberg U, Svanborg Edén C. Adhesion, hemagglutination, and virulence of Escherichia coli causing urinary tract infections. Infect Immun. 1981;31:564–570. PubMed PMC

Leffler H, Svanborg-Edén C. Glycolipid receptors for uropathogenic Escherichia coli on human erythrocytes and uroepithelial cells. Infect Immun. 1981;34:920–929. PubMed PMC

Edén CS, Freter R, Hagberg L, Hull R, Hull S, Leffler H, Schoolnik G. Inhibition of experimental ascending urinary tract infection by an epithelial cell-surface receptor analogue. Nature. 1982;298:560–562. doi: 10.1038/298560a0. PubMed DOI

Väisänen-Rhen V, Elo J, Väisänen E, Siitonen A, Orskov I, Orskov F, Svenson SB, Mäkelä PH, Korhonen TK. P-fimbriated clones among uropathogenic Escherichia coli strains. Infect Immun. 1984;43:149–155. PubMed PMC

Bergsten G, Wullt B, Svanborg C. Escherichia coli, fimbriae, bacterial persistence and host response induction in the human urinary tract. Int J Med Microbiol. 2005;295:487–502. doi: 10.1016/j.ijmm.2005.07.008. PubMed DOI

Lodinová R, Jouja V, Vinsová N, Vocel J, Melková J. New attempts and possibilities in prevention and treatment of intestinal coli-infections in infants. Czech Med. 1980;3:47–58. PubMed

Lodinová-Zádníková R, Tlaskalová H, Korych B, Bartáková Z. The antibody response in infants after oral administration of inactivated and living E. coli vaccines and their protective effect against nosocomial infections. Adv Exp Med Biol. 1995;371B:1431–1438. PubMed

Patzer SI, Baquero MR, Bravo D, Moreno F, Hantke K. The colicin G, H and X determinants encode microcins M and H47, which might utilize the catecholate siderophore receptors FepA, Cir, Fiu and IroN. Microbiol Read Engl. 2003;149:2557–2570. doi: 10.1099/mic.0.26396-0. PubMed DOI

Grozdanov L, Raasch C, Schulze J, Sonnenborn U, Gottschalk G, Hacker J, Dobrindt U. Analysis of the genome structure of the nonpathogenic probiotic Escherichia coli strain Nissle 1917. J Bacteriol. 2004;186:5432–5441. doi: 10.1128/JB.186.16.5432-5441.2004. PubMed DOI PMC

Bingen E, Picard B, Brahimi N, Mathy S, Desjardins P, Elion J, Denamur E. Phylogenetic analysis of Escherichia coli strains causing neonatal meningitis suggests horizontal gene transfer from a predominant pool of highly virulent B2 group strains. J Infect Dis. 1998;177:642–650. doi: 10.1086/514217. PubMed DOI

Nowrouzian FL, Wold AE, Adlerberth I. Escherichia coli strains belonging to phylogenetic group B2 have superior capacity to persist in the intestinal microflora of infants. J Infect Dis. 2005;191:1078–1083. doi: 10.1086/427996. PubMed DOI

Gordon DM, O'Brien CL. Bacteriocin diversity and the frequency of multiple bacteriocin production in Escherichia coli. Microbiology. 2006;152:3239–44. doi: 10.1099/mic.0.28690-0. PubMed DOI

Sears HJ, Brownlee I, Uchiyama JK. Persistence of individual strains of Escherichia coli in the intestinal tract of man. J Bacteriol. 1950;59:293–301. PubMed PMC

Sears HJ, Brownlee I. Further observations on the persistence of individual strains of Escherichia coli in the intestinal tract of man. J Bacteriol. 1952;63:47–57. PubMed PMC

Sears HJ, Janes H, Saloum R, Brownlee I, Lamoreaux LF. Persistence of individual strains of Escherichia coli in man and dog under varying conditions. J Bacteriol. 1956;71:370–372. PubMed PMC

Adlerberth I, Svanborg C, Carlsson B, Mellander L, Hanson LA, Jalil F, Khalil K, Wold AE. P fimbriae and other adhesins enhance intestinal persistence of Escherichia coli in early infancy. Epidemiol Infect. 1998;121:599–608. doi: 10.1017/S0950268898001137. PubMed DOI PMC

Nowrouzian F, Adlerberth I, Wold AE. P fimbriae, capsule and aerobactin characterize colonic resident Escherichia coli. Epidemiol Infect. 2001;126:11–8. PubMed PMC

Zhang L, Foxman B, Marrs C. Both urinary and rectal Escherichia coli isolates are dominated by strains of phylogenetic group B2. J Clin Microbiol. 2002;40:3951–3955. doi: 10.1128/JCM.40.11.3951-3955.2002. PubMed DOI PMC

Gordon DM, Stern SE, Collignon PJ. Influence of the age and sex of human hosts on the distribution of Escherichia coli ECOR groups and virulence traits. Microbiol Read Engl. 2005;151:15–23. doi: 10.1099/mic.0.27425-0. PubMed DOI

Tkachenko AG, Akhova AV, Shumkov MS, Nesterova LY. Polyamines reduce oxidative stress in Escherichia coli cells exposed to bactericidal antibiotics. Res Microbiol. 2012;163:83–91. doi: 10.1016/j.resmic.2011.10.009. PubMed DOI

Viala JPM, Méresse S, Pocachard B, Guilhon AA, Aussel L, Barras F. Sensing and adaptation to low pH mediated by inducible amino acid decarboxylases in Salmonella. PloS One. 2011;6:e22397. doi: 10.1371/journal.pone.0022397. PubMed DOI PMC

Wortham BW, Oliveira MA, Fetherston JD, Perry RD. Polyamines are required for the expression of key Hms proteins important for Yersinia pestis biofilm formation. Environ Microbiol. 2010;12:2034–2047. doi: 10.1111/j.1462-2920.2010.02219.x. PubMed DOI PMC

Puttamreddy S, Minion FC. Linkage between cellular adherence and biofilm formation in Escherichia coli O157:H7 EDL933. FEMS Microbiol Lett. 2011;315:46–53. doi: 10.1111/j.1574-6968.2010.02173.x. PubMed DOI

Riley MA, Wertz JE. Bacteriocin diversity: ecological and evolutionary perspectives. Biochimie. 2002;84:357–364. doi: 10.1016/S0300-9084(02)01421-9. PubMed DOI

Šmajs D, Čejková D, Micenková L, Lima-Bittencourt CI, Chartone-Souza E, Šmarda J, Nascimento AM. Human Escherichia coli strains of different geographical and time source: bacteriocin types and their gene sequences are population-specific. Environ Microbiol Rep. 2012;4:459–466. doi: 10.1111/j.1758-2229.2012.00365.x. PubMed DOI

Levin BR. The evolution and maintenance of virulence in microparasites. Emerg Infect Dis. 1996;2:93–102. doi: 10.3201/eid0202.960203. PubMed DOI PMC

Le Gall T, Clermont O, Gouriou S, Picard B, Nassif X, Denamur E, Tenaillon O. Extraintestinal virulence is a coincidental by-product of commensalism in B2 phylogenetic group Escherichia coli strains. Mol Biol Evol. 2007;24:2373–2384. doi: 10.1093/molbev/msm172. PubMed DOI

Gillor O, Giladi I, Riley MA. Persistence of colicinogenic Escherichia coli in the mouse gastrointestinal tract. BMC Microbiol. 2009;9 doi: 10.1186/1471-2180-9-165. PubMed DOI PMC

Bureš J, Šmajs D, Květina J, Förstl M, Šmarda J, Kohoutová D, Kuneš M, Tacheci I, Rejchrt S, Lesná J, Vorisek V, Kopáčová M. Bacteriocinogeny in experimental pigs treated with indomethacin and Escherichia coli Nissle. World J Gastroenterol WJG. 2011;17:609–617. doi: 10.3748/wjg.v17.i5.609. PubMed DOI PMC

Šmajs D, Bureš J, Šmarda J, Chaloupková E, Květina J, Förstl M, Kohoutová D, Kuneš M, Rejchrt S, Lesná J, Kopáčová M. Experimental administration of the probiotic Escherichia coli strain Nissle 1917 results in decreased diversity of E. coli strains in pigs. Curr Microbiol. 2012;64:205–210. doi: 10.1007/s00284-011-0051-x. PubMed DOI

Yamamoto S, Terai A, Yuri K, Kurazono H, Takeda Y, Yoshida O. Detection of urovirulence factors in Escherichia coli by multiplex polymerase chain reaction. FEMS Immunol Med Microbiol. 1995;12:85–90. doi: 10.1111/j.1574-695X.1995.tb00179.x. PubMed DOI

Schmidt H, Knop C, Franke S, Aleksic S, Heesemann J, Karch H. Development of PCR for screening of enteroaggregative Escherichia coli. J Clin Microbiol. 1995;33:701–705. PubMed PMC

López-Saucedo C, Cerna JF, Villegas-Sepulveda N, Thompson R, Velazquez FR, Torres J, Tarr PI, Estrada-García T. Single multiplex polymerase chain reaction to detect diverse loci associated with diarrheagenic Escherichia coli. Emerg Infect Dis. 2003;9:127–131. doi: 10.3201/eid0901.010507. PubMed DOI PMC

Kuhnert P, Hacker J, Mühldorfer I, Burnens AP, Nicolet J, Fey J. Detection system for Escherichia coli-specific virulence genes: absence of virulence determinants in B and C strains. Appl Environ Microbiol. 1997;63:703–709. PubMed PMC

Martínez JL, Herrero M, de Lorenzo V. The organization of intercistronic regions of the aerobactin operon of pColV-K30 may account for the differential expression of the iucABCD iutA genes. J Mol Biol. 1994;238:288–293. doi: 10.1006/jmbi.1994.1290. PubMed DOI

Paton AW, Paton JC. Detection and characterization of Shiga toxigenic Escherichia coli by using multiplex PCR assays for stx1, stx2, eaeA, enterohemorrhagic E. coli hlyA, rfbO111, and rfbO157. J Clin Microbiol. 1998;36:598–602. PubMed PMC

Asadi KM, Oloomi M, Habibi M, Bouzari S. Cloning of fimH and fliC and expression of the fusion protein FimH/FliC from Uropathogenic Escherichia coli (UPEC) isolated in Iran. Iran J Microbiol. 2012;4:55–62. PubMed PMC

Paciorek J. Virulence properties of Escherichia coli faecal strains isolated in Poland from healthy children and strains belonging to serogroups O18, O26, O44, O86, O126 and O127 isolated from children with diarrhoea. J Med Microbiol. 2002;51:548–556. doi: 10.1099/0022-1317-51-7-548. PubMed DOI

Bírošová E, Siegfried L, Kmetová M, Makara A, Ostró A, Gresová A, Urdzík P, Liptáková A, Molokácová M, Bártl R, Valanský L. Detection of virulence factors in alpha-haemolytic Escherichia coli strains isolated from various clinical materials. Clin Microbiol Infect Off Publ Eur Soc Clin Microbiol Infect Dis. 2004;10:569–573. PubMed

Clermont O, Bonacorsi S, Bingen E. Rapid and simple determination of the Escherichia coli phylogenetic group. Appl Environ Microbiol. 2000;66:4555–4558. doi: 10.1128/AEM.66.10.4555-4558.2000. PubMed DOI PMC

Smith TF, Waterman MS. Identification of Common Molecular Subsequences. J Mol Biol. 1981;147:195–197. doi: 10.1016/0022-2836(81)90087-5. PubMed DOI

Zobrazit více v PubMed

GENBANK
LC076552, LC076553, LC076554, LC076555, LC076556, LC076557, LC076558, LC076559, LC076560, LC076561, LC076562, LC076563, LC076564, LC076565, LC076566, LC076567, LC076568, LC076569, LC076570, LC076571, LC076572, LC076573, LC076574, LC076575, LC076576, LC076577, LC076578, LC076579, LC076580, LC076581, LC076582, LC076583, LC076584, LC076585

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...