Novel Temperate Phages of Salmonella enterica subsp. salamae and subsp. diarizonae and Their Activity against Pathogenic S. enterica subsp. enterica Isolates
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu srovnávací studie, časopisecké články
PubMed
28118395
PubMed Central
PMC5261728
DOI
10.1371/journal.pone.0170734
PII: PONE-D-16-44241
Knihovny.cz E-zdroje
- MeSH
- DNA virů genetika izolace a purifikace MeSH
- druhová specificita MeSH
- elektronová mikroskopie MeSH
- fágy salmonel klasifikace izolace a purifikace fyziologie ultrastruktura MeSH
- fylogeneze MeSH
- genom virový MeSH
- lyzogenie MeSH
- mikrobiologie životního prostředí MeSH
- Salmonella enterica izolace a purifikace virologie MeSH
- salmonelóza mikrobiologie MeSH
- sekvenční analýza DNA MeSH
- sekvenční homologie nukleových kyselin MeSH
- virová nálož MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
- Geografické názvy
- Československo MeSH
- Názvy látek
- DNA virů MeSH
Forty strains of Salmonella enterica (S. enterica) subspecies salamae (II), arizonae (IIIa), diarizonae (IIIb), and houtenae (IV) were isolated from human or environmental samples and tested for bacteriophage production. Production of bacteriophages was observed in 15 S. enterica strains (37.5%) belonging to either the subspecies salamae (8 strains) or diarizonae (7 strains). Activity of phages was tested against 52 pathogenic S. enterica subsp. enterica isolates and showed that phages produced by subsp. salamae had broader activity against pathogenic salmonellae compared to phages from the subsp. diarizonae. All 15 phages were analyzed using PCR amplification of phage-specific regions and 9 different amplification profiles were identified. Five phages (SEN1, SEN4, SEN5, SEN22, and SEN34) were completely sequenced and classified as temperate phages. Phages SEN4 and SEN5 were genetically identical, thus representing a single phage type (i.e. SEN4/5). SEN1 and SEN4/5 fit into the group of P2-like phages, while the SEN22 phage showed sequence relatedness to P22-like phages. Interestingly, while phage SEN34 was genetically distantly related to Lambda-like phages (Siphoviridae), it had the morphology of the Myoviridae family. Based on sequence analysis and electron microscopy, phages SEN1 and SEN4/5 were members of the Myoviridae family and phage SEN22 belonged to the Podoviridae family.
Department of Biology Faculty of Medicine Masaryk University Kamenice 5 Brno Czech Republic
Institute of Microbiology of ASCR v v i Vídeňská Prague Czech Republic
Zobrazit více v PubMed
Judicial Commission of the International Committee on Systematics of Prokaryotes. The type species of the genus Salmonella Lignieres 1900 is Salmonella enterica (ex Kauffmann and Edwards 1952) Le Minor and Popoff 1987, with the type strain LT2T, and conservation of the epithet enterica in Salmonella enterica over all earlier epithets that may be applied to this species. Opinion 80. Int J Syst Evol Microbiol. 2005;55:519–20. 10.1099/ijs.0.63579-0 PubMed DOI
Tindall BJ, Grimont PAD, Garrity GM, Euzéby JP. Nomenclature and taxonomy of the genus Salmonella. Int J Syst Evol Microbiol. 2005;55:521–24. 10.1099/ijs.0.63580-0 PubMed DOI
Lan R, Reeves PR, Octavia S. Population structure, origins and evolution of major Salmonella enterica clones. Infect Genet Evol. 2009;9:996–1005. 10.1016/j.meegid.2009.04.011 PubMed DOI
Scallan E, Hoekstra RM, Angulo FJ, Tauxe RV, Widdowson MA, Roy SL, et al. Foodborne illness acquired in the United States—major pathogens. Emerg Infect Dis. 2011;17:7–15. 10.3201/eid1701.P11101 PubMed DOI PMC
European Food Safety Authority. The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2014. EFSA J 2015;13:4329. PubMed PMC
Centers for Disease Control and Prevention (CDC). Surveillance for Foodborne Disease Outbreaks, United States, 2014, Annual Report. Atlanta, Georgia: US Department of Health and Human Services, CDC, 2016. [WWW document] URL www.cdc.gov/foodsafety/pdfs/foodborne-outbreaks-annual-report-2014-508.pdf
Guibourdenche M, Roggentin P, Mikoleit M, Fields PI, Bockemühl J, Grimont PAD, et al. Supplement 2003–2007 (No. 47) to the White-Kauffmann-Le Minor scheme. Res Microbiol. 2010;161:26–9. 10.1016/j.resmic.2009.10.002 PubMed DOI
Snehalatha S, Mathai E, Jayasheela M, Chandy M, Lalitha MK, John TJ. Salmonella choleraesuis subsp. indica serovar bornheim causing urinary tract infection. J Clin Microbiol. 1992;30:2504–5. PubMed PMC
Giammanco GM, Pignato S, Mammina C, Grimont F, Grimont PAD, Nastasi A, et al. Persistent endemicity of Salmonella bongori 48:z(35):—in Southern Italy: molecular characterization of human, animal, and environmental isolates. J Clin Microbiol. 2002;40:3502–5. 10.1128/JCM.40.9.3502-3505.2002 PubMed DOI PMC
Schröter M, Roggentin P, Hofmann J, Speicher A, Laufs R, Mac D. Pet snakes as a reservoir for Salmonella enterica subsp. diarizonae (Serogroup IIIb): a prospective study. Appl Environ Microbiol. 2004;70:613–5. 10.1128/AEM.70.1.613-615.2004 PubMed DOI PMC
Tabarani CM, Bennett NJ, Kiska DL, Riddell SW, Botash AS, Domachowske JB. Empyema of preexisting subdural hemorrhage caused by a rare Salmonella species after exposure to bearded dragons in a foster home. J Pediatr. 2010;156:322–3. 10.1016/j.jpeds.2009.07.050 PubMed DOI
Abbott SL, Ni FCY, Janda JM Increase in extraintestinal infections caused by Salmonella enterica subspecies II-IV. Emerg Infect Dis. 2012;18:637–9. 10.3201/eid1804.111386 PubMed DOI PMC
Kolker S, Itsekzon T, Yinnon AM, Lachish T. Osteomyelitis due to Salmonella enterica subsp. arizonae: the price of exotic pets. Clin Microbiol Infect. 2012;18:167–70. 10.1111/j.1469-0691.2011.03533.x PubMed DOI
Casjens SR. Comparative genomics and evolution of the tailed-bacteriophages. Curr Opin Microbiol. 2005;8:451–8. 10.1016/j.mib.2005.06.014 PubMed DOI
Ackermann HW. 5500 Phages examined in the electron microscope. Arch Virol. 2007;152:227–43. 10.1007/s00705-006-0849-1 PubMed DOI
Krupovic M, Prangishvili D, Hendrix RW, Bamford DH. Genomics of bacterial and archaeal viruses: dynamics within the prokaryotic virosphere. Microbiol Mol Biol Rev. 2011;75:610–35. 10.1128/MMBR.00011-11 PubMed DOI PMC
Grose JH, Casjens SR. Understanding the enormous diversity of bacteriophages: the tailed phages that infect the bacterial family Enterobacteriaceae. Virology. 2014;468–470:421–43. 10.1016/j.virol.2014.08.024 PubMed DOI PMC
Casjens SR, Grose JH. Contributions of P2- and P22-like prophages to understanding the enormous diversity and abundance of tailed bacteriophages.Virology. 2016;496:255–76. 10.1016/j.virol.2016.05.022 PubMed DOI PMC
Grimont PAD, Weill FX. Antigenic formulae of the Salmonella serovars, 9th ed. WHO Collaborating Centre for Reference and Research on Salmonella. Institut Pasteur, Paris, France: [WWW document] URL www.scacm.org/free/Antigenic Formulae of the Salmonella Serovars 2007 9th edition.pdf
Šmarda J, Šmajs D, Horynová S. Incidence of lysogenic, colicinogenic and siderophore-producing strains among human non-pathogenic Escherichia coli. Folia Microbiol. 2006;51:387–91. PubMed
Šmajs D, Micenková L, Šmarda J, Vrba M, Ševčíková, Vališová Z, et al. Bacteriocin synthesis in uropathogenic and commensal Escherichia coli: colicin E1 is a potential virulence factor. BMC Microbiol. 2010;10:e288. PubMed PMC
Sambrook J, Russell DW. Molecular cloning: a laboratory manual, 3rd ed, vol 1 Cold Spring Harbor, NY, USA: Cold Spring Harbor Laboratory Press; 2001.
Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, et al. The RAST Server: Rapid Annotations using Subsystems Technology. BMC Genomics. 2008;9:e75. PubMed PMC
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10. 10.1016/S0022-2836(05)80360-2 PubMed DOI
Sullivan MJ, Petty NK, Beatson SA. Easyfig: a genome comparison visualizer. Bioinformatics. 2011;27(7):1009–10. 10.1093/bioinformatics/btr039 PubMed DOI PMC
Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics. 2016;32:929–31. 10.1093/bioinformatics/btv681 PubMed DOI PMC
Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C, Salzberg SL. Versatile and open software for comparing large genomes. Genome Biol. 2004;5(2):R12 10.1186/gb-2004-5-2-r12 PubMed DOI PMC
Benada O, Pokorny V. Modification of the polaron sputter-coater unit for glow-discharge activation of carbon support films. J Electron Microsc Tech. 1990;16: 235–9. 10.1002/jemt.1060160304 PubMed DOI
Ackermann HW, Eisenstark A. The present state of phage taxonomy. Intervirology. 1974;3:201–19. PubMed
Kropinski AM, Sulakvelidze A, Konczy P, Poppe C. Salmonella phages and prophages—genomics and practical aspects. Methods Mol Biol. 2007;394:133–75. 10.1007/978-1-59745-512-1_9 PubMed DOI
Schicklmaier P, Moser E, Wieland T, Rabsch W, Schmieger H. A comparative study on the frequency of prophages among natural isolates of Salmonella and Escherichia coli with emphasis on generalized transducers. Antonie Van Leeuwenhoek. 1998;73 49–54. PubMed
Switt AI, Sulakvelidze A, Wiedmann M, Kropinski AM, Wishart DS, Poppe C, et al. Salmonella phages and prophages: Genomics, taxonomy, and applied aspects. Methods Mol Biol. 2015;1225:237–87. 10.1007/978-1-4939-1625-2_15 PubMed DOI
Casjens SR, Thuman-Commike PA. Evolution of mosaically related tailed bacteriophage genomes seen through the lens of phage P22 virion assembly. Virology. 2011;411:393–415. 10.1016/j.virol.2010.12.046 PubMed DOI
Sathyabama S, Kaur G, Arora A, Verma S, Mubin N, Mayilraj S, et al. Genome sequencing, annotation and analysis of Salmonella enterica subspecies salamae strain DMA-1. Gut Pathog. 2014;6:e8. PubMed PMC
Ackermann HW. Bacteriophage observations and evolution. Res Microbiol. 2003;154:245–51. 10.1016/S0923-2508(03)00067-6 PubMed DOI
Chibani-Chennoufi S, Dillmann ML, Marvin-Guy L, Rami-Shojaei S, Brüssow H. Lactobacillus plantarum bacteriophage LP65: a new member of the SPO1-like genus of the family Myoviridae. J Bacteriol. 2004;186:7069–7083. 10.1128/JB.186.21.7069-7083.2004 PubMed DOI PMC
Juhala RJ, Ford ME, Duda RL, Youlton A, Hatfull GF, Hendrix RW. Genomic sequences of bacteriophages HK97 and HK022: pervasive genetic mosaicism in the lambdoid bacteriophages. J Mol Biol. 2000;299:27–51. 10.1006/jmbi.2000.3729 PubMed DOI
Clark AJ, Inwood W, Cloutier T, Dhillon TS. Nucleotide sequence of coliphage HK620 and the evolution of lambdoid phages. J Mol Biol. 2001;311:657–79. 10.1006/jmbi.2001.4868 PubMed DOI
Pedulla ML, Ford ME, Houtz JM, Karthikeyan T, Wadsworth C, Lewis JA, et al. Origins of highly mosaic mycobacteriophage genomes. Cell. 2003;113:171–82. PubMed
Proux C, van Sinderen D, Suarez J, Garcia P, Ladero V, Fitzgerald GF, et al. The dilemma of phage taxonomy illustrated by comparative genomics of Sfi21-like Siphoviridae in lactic acid bacteria. J Bacteriol. 2002;184:6026–36. 10.1128/JB.184.21.6026-6036.2002 PubMed DOI PMC
Desai PT, Porwollik S, Long F, Cheng P, Wollam A, Bhonagiri-Palsikar V, et al. Evolutionary genomics of Salmonella enterica subspecies. MBio. 2013;4(2):e00198–13. PubMed PMC