Mild Behavioral Impairment Is Associated With Atrophy of Entorhinal Cortex and Hippocampus in a Memory Clinic Cohort
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection
Document type Journal Article
PubMed
34108874
PubMed Central
PMC8180573
DOI
10.3389/fnagi.2021.643271
Knihovny.cz E-resources
- Keywords
- entorhinal cortex, hippocampus, magnetic resonance imaging, mild behavioral impairment-checklist, mild cognitive impairment, neuropsychiatric symptoms, subjective cognitive decline,
- Publication type
- Journal Article MeSH
OBJECTIVES: Mild behavioral impairment (MBI) is a syndrome describing late-onset persistent neuropsychiatric symptoms (NPS) in non-demented older adults. Few studies to date have investigated the associations of MBI with structural brain changes. Our aim was to explore structural correlates of NPS in a non-demented memory clinic sample using the Mild Behavioral Impairment Checklist (MBI-C) that has been developed to measure MBI. METHODS: One hundred sixteen non-demented older adults from the Czech Brain Aging Study with subjective cognitive concerns were classified as subjective cognitive decline (n = 37) or mild cognitive impairment (n = 79). Participants underwent neurological and neuropsychological examinations and brain magnetic resonance imaging (MRI) (1.5 T). The Czech version of the MBI-C was administered to participants' informants. Five a priori selected brain regions were measured, namely, thicknesses of the orbitofrontal cortex (OFC), anterior cingulate cortex (ACC), posterior cingulate cortex (PCC), and entorhinal cortex (ERC) and volume of the hippocampus (HV), and correlated with MBI-C total and domain scores. RESULTS: Entorhinal cortex was associated with MBI-C total score (rS = -0.368, p < 0.001) and with impulse dyscontrol score (rS = -0.284, p = 0.002). HV was associated with decreased motivation (rS = -0.248, p = 0.008) and impulse dyscontrol score (rS = -0.240, p = 0.011). CONCLUSION: Neuropsychiatric symptoms, particularly in the MBI impulse dyscontrol and motivation domains, are associated with medial temporal lobe atrophy in a clinical cohort of non-demented older adults. This study supports earlier involvement of temporal rather than frontal regions in NPS manifestation. Since these regions are typically affected early in the course of Alzheimer's disease (AD), the MBI-C may potentially help further identify individuals at-risk of developing AD dementia.
Department of Clinical Neurosciences Cumming School of Medicine Calgary AB Canada
Department of Community Health Sciences Cumming School of Medicine Calgary AB Canada
Department of Psychiatry Cumming School of Medicine Calgary AB Canada
International Clinical Research Center St Anne's University Hospital Brno Brno Czechia
See more in PubMed
Albert M. S., DeKosky S. T., Dickson D., Dubois B., Feldman H. H., Fox N. C., et al. (2011). The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 7 270–279. 10.1016/j.jalz.2011.03.008 PubMed DOI PMC
Andrews S. J., Ismail Z., Anstey K. J., Mortby M. (2018). Association of Alzheimer’s genetic loci with mild behavioral impairment. Am. J. Med. Genet. B Neuropsychiatr. Genet. 177 727–735. 10.1002/ajmg.b.32684 PubMed DOI
Bateman D. R., Gill S., Hu S., Foster E. D., Ruthirakuhan M. T., Sellek A. F., et al. (2020). Agitation and impulsivity in mid and late life as possible risk markers for incident dementia. Alzheimers Dement. (N. Y.) 6:e12016. 10.1002/trc2.12016 PubMed DOI PMC
Bensamoun D., Guignard R., Furst A. J., Derreumaux A., Manera V., Darcourt J., et al. (2016). Associations between neuropsychiatric symptoms and cerebral amyloid deposition in cognitively impaired elderly people. J. Alzheimers Dis. 49 387–398. 10.3233/JAD-150181 PubMed DOI
Berron D., van Westen D., Ossenkoppele R., Strandberg O., Hansson O. (2020). Medial temporal lobe connectivity and its associations with cognition in early Alzheimer’s disease. Brain 143 1233–1248. 10.1093/brain/awaa068 PubMed DOI PMC
Boublay N., Schott A. M., Krolak-Salmon P. (2016). Neuroimaging correlates of neuropsychiatric symptoms in Alzheimer’s disease: a review of 20 years of research. Eur. J. Neurol. 23 1500–1509. 10.1111/ene.13076 PubMed DOI
Braak H., Alafuzoff I., Arzberger T., Kretzschmar H., Del Tredici K. (2006). Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathol. 112 389–404. 10.1007/s00401-006-0127-z PubMed DOI PMC
Bunce D., Batterham P. J., Mackinnon A. J., Christensen H. (2012). Depression, anxiety and cognition in community-dwelling adults aged 70 years and over. J. Psychiatr. Res. 46 1662–1666. 10.1016/j.jpsychires.2012.08.023 PubMed DOI
Catenoix H., Magnin M., Guénot M., Isnard J., Mauguière F., Ryvlin P. (2005). Hippocampal-orbitofrontal connectivity in human: an electrical stimulation study. Clin. Neurophysiol. 116 1779–1784. 10.1016/j.clinph.2005.03.016 PubMed DOI
Creese B., Arathimos R., Brooker H., Aarsland D., Corbett A., Lewis C., et al. (2021). Genetic risk for Alzheimer’s disease, cognition, and mild behavioral impairment in healthy older adults. Alzheimers Dement. (Amst.) 13:e12164. 10.1002/dad2.12164 PubMed DOI PMC
Creese B., Brooker H., Ismail Z., Wesnes K. A., Hampshire A., Khan Z., et al. (2019). Mild behavioral impairment as a marker of cognitive decline in cognitively normal older adults. Am. J. Geriatr. Psychiatry 27 823–834. 10.1016/j.jagp.2019.01.215 PubMed DOI
Creese B., Griffiths A., Brooker H., Corbett A., Aarsland D., Ballard C., et al. (2020). Profile of mild behavioral impairment and factor structure of the mild behavioral impairment checklist in cognitively normal older adults. Int. Psychogeriatr. 32 705–717. 10.1017/S1041610219001200 PubMed DOI
Desmarais P., Lanctôt K. L., Masellis M., Black S. E., Herrmann N. (2018). Social inappropriateness in neurodegenerative disorders. Int. Psychogeriatr. 30 197–207. 10.1017/S1041610217001260 PubMed DOI
Donovan N. J., Hsu D. C., Dagley A. S., Schultz A. P., Amariglio R. E., Mormino E. C., et al. (2015). Depressive symptoms and biomarkers of Alzheimer’s disease in cognitively normal older adults. J. Alzheimers Dis. 46 63–73. 10.3233/JAD-142940 PubMed DOI PMC
Fanselow M. S., Dong H.-W. (2010). Are the dorsal and ventral hippocampus functionally distinct structures? Neuron 65:7. 10.1016/j.neuron.2009.11.031 PubMed DOI PMC
Fischer C. E., Agüera-Ortiz L. (2018). Psychosis and dementia: risk factor, prodrome, or cause? Int. Psychogeriatr. 30 209–219. 10.1017/S1041610217000874 PubMed DOI
Fischl B., Dale A. M. (2000). Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc. Natl. Acad. Sci. U. S. A. 97 11050–11055. 10.1073/pnas.200033797 PubMed DOI PMC
Fischl B., Salat D. H., Busa E., Albert M., Dieterich M., Haselgrove C., et al. (2002). Whole brain segmentation. Neuron 33 341–355. 10.1016/s0896-6273(02)00569-x PubMed DOI
Fischl B., Salat D. H., van der Kouwe A. J. W., Makris N., Ségonne F., Quinn B. T., et al. (2004a). Sequence-independent segmentation of magnetic resonance images. Neuroimage 23(Suppl. 1) S69–S84. 10.1016/j.neuroimage.2004.07.016 PubMed DOI
Fischl B., van der Kouwe A., Destrieux C., Halgren E., Ségonne F., Salat D. H., et al. (2004b). Automatically parcellating the human cerebral cortex. Cereb. Cortex 14 11–22. 10.1093/cercor/bhg087 PubMed DOI
Gallagher D., Kiss A., Lanctot K., Herrmann N. (2018). Depression and risk of alzheimer dementia: a longitudinal analysis to determine predictors of increased risk among older adults with depression. Am. J. Geriatr. Psychiatry 26 819–827. 10.1016/j.jagp.2018.05.002 PubMed DOI PMC
Gatchel J. R., Donovan N. J., Locascio J. J., Becker J. A., Rentz D. M., Sperling R. A., et al. (2017a). Regional 18F-fluorodeoxyglucose hypometabolism is associated with higher apathy scores over time in early Alzheimer disease. Am. J. Geriatr. Psychiatry 25 683–693. 10.1016/j.jagp.2016.12.017 PubMed DOI PMC
Gatchel J. R., Donovan N. J., Locascio J. J., Schultz A. P., Becker J. A., Chhatwal J., et al. (2017b). Depressive symptoms and tau accumulation in the inferior temporal lobe and entorhinal cortex in cognitively normal older adults: a pilot study. J. Alzheimers Dis. 59 975–985. 10.3233/JAD-170001 PubMed DOI PMC
Gatchel J. R., Rabin J. S., Buckley R. F., Locascio J. J., Quiroz Y. T., Yang H.-S., et al. (2019). Longitudinal association of depression symptoms with cognition and cortical amyloid among community-dwelling older adults. JAMA Netw. Open 2:e198964. 10.1001/jamanetworkopen.2019.8964 PubMed DOI PMC
Gill S., Mouches P., Hu S., Rajashekar D., MacMaster F. P., Smith E. E., et al. (2020). Using machine learning to predict dementia from neuropsychiatric symptom and neuroimaging data. J. Alzheimers Dis. 75 277–288. 10.3233/JAD-191169 PubMed DOI PMC
Gill S., Wang M., Mouches P., Rajashekar D., Sajobi T., MacMaster F. P., et al. (2021). Neural correlates of the impulse dyscontrol domain of mild behavioral impairment. Int. J. Geriatr. Psychiatry 10.1002/gps.5540 [Epub ahead of print]. PubMed DOI PMC
Goukasian N., Hwang K. S., Romero T., Grotts J., Do T. M., Groh J. R., et al. (2019). Association of brain amyloidosis with the incidence and frequency of neuropsychiatric symptoms in ADNI: a multisite observational cohort study. BMJ Open 9:e031947. 10.1136/bmjopen-2019-031947 PubMed DOI PMC
Guercio B. J., Donovan N. J., Ward A., Schultz A., Lorius N., Amariglio R. E., et al. (2015). Apathy is associated with lower inferior temporal cortical thickness in mild cognitive impairment and normal elderly individuals. J. Neuropsychiatry Clin. Neurosci. 27 e22–e27. 10.1176/appi.neuropsych.13060141 PubMed DOI PMC
Han X., Jovicich J., Salat D., van der Kouwe A., Quinn B., Czanner S., et al. (2006). Reliability of MRI-derived measurements of human cerebral cortical thickness: the effects of field strength, scanner upgrade and manufacturer. Neuroimage 32 180–194. 10.1016/j.neuroimage.2006.02.051 PubMed DOI
Ismail Z., Agüera-Ortiz L., Brodaty H., Cieslak A., Cummings J., Fischer C. E., et al. (2017a). The Mild Behavioral Impairment Checklist (MBI-C): a rating scale for neuropsychiatric symptoms in pre-dementia populations. J. Alzheimers Dis. 56 929–938. 10.3233/JAD-160979 PubMed DOI PMC
Ismail Z., Elbayoumi H., Fischer C. E., Hogan D. B., Millikin C. P., Schweizer T., et al. (2017b). Prevalence of depression in patients with mild cognitive impairment: a systematic review and meta-analysis. JAMA Psychiatry 74 58–67. 10.1001/jamapsychiatry.2016.3162 PubMed DOI
Ismail Z., Gatchel J., Bateman D. R., Barcelos-Ferreira R., Chantillon M., Jaeger J., et al. (2018). Affective and emotional dysregulation as pre-dementia risk markers: exploring the mild behavioral impairment symptoms of depression, anxiety, irritability, and euphoria. Int. Psychogeriatr. 30 185–196. 10.1017/S1041610217001880 PubMed DOI
Ismail Z., McGirr A., Gill S., Hu S., Forkert N. D., Smith E. E. (2020). Mild behavioral impairment and subjective cognitive decline predict mild cognitive impairment. medRxiv [Preprint]. 10.1101/2020.05.24.20112284 PubMed DOI PMC
Ismail Z., McGirr A., Gill S., Hu S., Forkert N. D., Smith E. E. (2021). Mild behavioral impairment and subjective cognitive decline predict cognitive and functional decline. J. Alzheimers Dis. 80 459–469. 10.3233/JAD-201184 PubMed DOI PMC
Ismail Z., Smith E. E., Geda Y., Sultzer D., Brodaty H., Smith G., et al. (2016). Neuropsychiatric symptoms as early manifestations of emergent dementia: provisional diagnostic criteria for mild behavioral impairment. Alzheimers Dement. 12 195–202. 10.1016/j.jalz.2015.05.017 PubMed DOI PMC
Jessen F., Amariglio R. E., van Boxtel M., Breteler M., Ceccaldi M., Chételat G., et al. (2014). A conceptual framework for research on subjective cognitive decline in preclinical Alzheimer’s disease. Alzheimers Dement. 10 844–852. 10.1016/j.jalz.2014.01.001 PubMed DOI PMC
Johansson M., Stomrud E., Insel P. S., Leuzy A., Johansson P. M., Smith R., et al. (2021). Mild behavioral impairment and its relation to tau pathology in preclinical Alzheimer’s disease. Transl. Psychiatry 11:76. 10.1038/s41398-021-01206-z PubMed DOI PMC
Johansson M., Stomrud E., Lindberg O., Westman E., Johansson P. M., van Westen D., et al. (2020). Apathy and anxiety are early markers of Alzheimer’s disease. Neurobiol. Aging 85 74–82. 10.1016/j.neurobiolaging.2019.10.008 PubMed DOI
Jovicich J., Czanner S., Greve D., Haley E., Kouwe A., van der Gollub R., et al. (2006). Reliability in multi-site structural MRI studies: effects of gradient non-linearity correction on phantom and human data. NeuroImage 30 436–443. 10.1016/j.neuroimage.2005.09.046 PubMed DOI
Laczó J., Andel R., Nedelska Z., Vyhnalek M., Vlcek K., Crutch S., et al. (2017). Exploring the contribution of spatial navigation to cognitive functioning in older adults. Neurobiol. Aging 51 67–70. 10.1016/j.neurobiolaging.2016.12.003 PubMed DOI
Lee J. R., Suh S. W., Han J. W., Byun S., Kwon S. J., Lee K. H., et al. (2019). Anhedonia and dysphoria are differentially associated with the risk of dementia in the cognitively normal elderly individuals: a prospective cohort study. Psychiatry Investig. 16 575–580. 10.30773/pi.2019.06.07 PubMed DOI PMC
Lussier F. Z., Pascoal T. A., Chamoun M., Therriault J., Tissot C., Savard M., et al. (2020). Mild behavioral impairment is associated with β−amyloid but not tau or neurodegeneration in cognitively intact elderly individuals. Alzheimers Dement. 16 192–199. 10.1002/alz.12007 PubMed DOI PMC
Mallo S. C., Ismail Z., Pereiro A. X., Facal D., Lojo-Seoane C., Campos-Magdaleno M., et al. (2018b). Assessing mild behavioral impairment with the mild behavioral impairment checklist in people with subjective cognitive decline. Int. Psychogeriatr. 31 231–239. 10.1017/S1041610218000698 PubMed DOI
Mallo S. C., Ismail Z., Pereiro A. X., Facal D., Lojo-Seoane C., Campos-Magdaleno M., et al. (2018a). Assessing mild behavioral impairment with the mild behavioral impairment-checklist in people with mild cognitive impairment. J. Alzheimers Dis. 66 83–95. 10.3233/JAD-180131 PubMed DOI
Matsuoka T., Ismail Z., Narumoto J. (2019). Prevalence of mild behavioral impairment and risk of dementia in a psychiatric outpatient clinic. J. Alzheimers Dis. 70 505–513. 10.3233/JAD-190278 PubMed DOI PMC
Matuskova V., Nikolai T., Markova H., Cechova K., Laczo J., Hort J., et al. (2020). Neuropsychiatric symp-toms as early manifestation of Alzheimer’s dis-ease. Cesk. Slov. Neurol. N. 83 64–72. 10.14735/amcsnn202064 DOI
Mortby M. E., Ismail Z., Anstey K. J. (2018). Prevalence estimates of mild behavioral impairment in a population-based sample of pre-dementia states and cognitively healthy older adults. Int. Psychogeriatr. 30 221–232. 10.1017/S1041610217001909 PubMed DOI
Naude J., Gill S., Hu S., McGirr A., Forkert N., Monchi O., et al. (2020). Plasma neurofilament light: a marker of cognitive decline in mild behavioural impairment. J. Alzheimers Dis. 76 1017–1027. 10.3233/JAD-200011 PubMed DOI PMC
Ng K. P., Pascoal T. A., Mathotaarachchi S., Chung C.-O., Benedet A. L., Shin M., et al. (2017). Neuropsychiatric symptoms predict hypometabolism in preclinical Alzheimer disease. Neurology 88 1814–1821. 10.1212/WNL.0000000000003916 PubMed DOI PMC
Nikolai T., Stepankova H., Kopecek M., Sulc Z., Vyhnalek M., Bezdicek O. (2018). The uniform data set, czech version: normative data in older adults from an international perspective. J. Alzheimers Dis. 61 1233–1240. 10.3233/JAD-170595 PubMed DOI PMC
Nobis L., Husain M. (2018). Apathy in Alzheimer’s disease. Curr. Opin. Behav. Sci. 22 7–13. 10.1016/j.cobeha.2017.12.007 PubMed DOI PMC
O’Brien L. M., Ziegler D. A., Deutsch C. K., Frazier J. A., Herbert M. R., Locascio J. J. (2011). Statistical adjustments for brain size in volumetric neuroimaging studies: some practical implications in methods. Psychiatry Res. 193 113–122. 10.1016/j.pscychresns.2011.01.007 PubMed DOI PMC
Orso B., Mattei C., Arnaldi D., Massa F., Serafini G., Plantone D., et al. (2020). Clinical and MRI predictors of conversion from mild behavioural impairment to dementia. Am. J. Geriatr. Psychiatry 28 755–763. 10.1016/j.jagp.2019.12.007 PubMed DOI
Pietrzak R. H., Lim Y. Y., Neumeister A., Ames D., Ellis K. A., Harrington K., et al. (2015). Amyloid-β, anxiety, and cognitive decline in preclinical Alzheimer disease: a multicenter, prospective cohort study. JAMA Psychiatry 72 284–291. 10.1001/jamapsychiatry.2014.2476 PubMed DOI
Poulin S. P., Dautoff R., Morris J. C., Barrett L. F., Dickerson B. C. (2011). Amygdala atrophy is prominent in early Alzheimer’s disease and relates to symptom severity. Psychiatry Res. 194 7–13. 10.1016/j.pscychresns.2011.06.014 PubMed DOI PMC
Puzo C., Labriola C., Sugarman M. A., Tripodis Y., Martin B., Palmisano J. N., et al. (2019). Independent effects of white matter hyperintensities on cognitive, neuropsychiatric, and functional decline: a longitudinal investigation using the National Alzheimer’s Coordinating Center Uniform Data Set. Alzheimers Res. Ther. 11:64. 10.1186/s13195-019-0521-0 PubMed DOI PMC
Ranganath C., Ritchey M. (2012). Two cortical systems for memory-guided behaviour. Nat. Rev. Neurosci. 13 713–726. 10.1038/nrn3338 PubMed DOI
Reuter M., Rosas H. D., Fischl B. (2010). Highly accurate inverse consistent registration: a robust approach. NeuroImage 53 1181–1196. 10.1016/j.neuroimage.2010.07.020 PubMed DOI PMC
Rodriguez-Oroz M. C., Gago B., Clavero P., Delgado-Alvarado M., Garcia-Garcia D., Jimenez-Urbieta H. (2015). The relationship between atrophy and hypometabolism: is it regionally dependent in dementias? Curr. Neurol. Neurosci. Rep. 15:44. 10.1007/s11910-015-0562-0 PubMed DOI
Rosenberg P. B., Nowrangi M. A., Lyketsos C. G. (2015). Neuropsychiatric symptoms in Alzheimer’s disease: what might be associated brain circuits? Mol. Aspects Med. 43–44 25–37. 10.1016/j.mam.2015.05.005 PubMed DOI PMC
Ross R. S., LoPresti M. L., Schon K., Stern C. E. (2013). Role of the hippocampus and orbitofrontal cortex during the disambiguation of social cues in working memory. Cogn. Affect. Behav. Neurosci. 13 900–915. 10.3758/s13415-013-0170-x PubMed DOI PMC
Saari T., Smith E. E., Ismail Z. (2021). Network analysis of impulse dyscontrol in mild cognitive impairment and subjective cognitive decline. Int. Psychogeriatr. 1–10. 10.1017/S1041610220004123 [Epub ahead of print]. PubMed DOI
Ségonne F., Dale A. M., Busa E., Glessner M., Salat D., Hahn H. K., et al. (2004). A hybrid approach to the skull stripping problem in MRI. NeuroImage 22 1060–1075. 10.1016/j.neuroimage.2004.03.032 PubMed DOI
Sheardova K., Vyhnalek M., Nedelska Z., Laczo J., Andel R., Marciniak R., et al. (2019). Czech Brain Aging Study (CBAS): prospective multicentre cohort study on risk and protective factors for dementia in the Czech Republic. BMJ Open 9:e030379. 10.1136/bmjopen-2019-030379 PubMed DOI PMC
Sheikh F., Ismail Z., Mortby M. E., Barber P., Cieslak A., Fischer K., et al. (2018). Prevalence of mild behavioral impairment in mild cognitive impairment and subjective cognitive decline, and its association with caregiver burden. Int. Psychogeriatr. 30 233–244. 10.1017/S104161021700151X PubMed DOI
Sherman C., Liu C. S., Herrmann N., Lanctôt K. L. (2018). Prevalence, neurobiology, and treatments for apathy in prodromal dementia. Int. Psychogeriatr. 30 177–184. 10.1017/S1041610217000527 PubMed DOI
Šimić G., Babić Leko M., Wray S., Harrington C. R., Delalle I., Jovanov-Milošević N., et al. (2017). Monoaminergic neuropathology in Alzheimer’s disease. Prog. Neurobiol. 151 101–138. 10.1016/j.pneurobio.2016.04.001 PubMed DOI PMC
Singh-Manoux A., Dugravot A., Fournier A., Abell J., Ebmeier K., Kivimäki M., et al. (2017). Trajectories of depressive symptoms before diagnosis of dementia. JAMA Psychiatry 74 712–718. 10.1001/jamapsychiatry.2017.0660 PubMed DOI PMC
Sturm V. E., Yokoyama J. S., Seeley W. W., Kramer J. H., Miller B. L., Rankin K. P. (2013). Heightened emotional contagion in mild cognitive impairment and Alzheimer’s disease is associated with temporal lobe degeneration. Proc. Natl. Acad. Sci. U. S. A. 110 9944–9949. 10.1073/pnas.1301119110 PubMed DOI PMC
Sugarman M. A., Alosco M. L., Tripodis Y., Steinberg E. G., Stern R. A. (2018). Neuropsychiatric symptoms and the diagnostic stability of mild cognitive impairment. J. Alzheimers Dis. 62 1841–1855. 10.3233/JAD-170527 PubMed DOI PMC
Tapiainen V., Hartikainen S., Taipale H., Tiihonen J., Tolppanen A.-M. (2017). Hospital-treated mental and behavioral disorders and risk of Alzheimer’s disease: a nationwide nested case-control study. Eur. Psychiatry 43 92–98. 10.1016/j.eurpsy.2017.02.486 PubMed DOI
Taragano F. E., Allegri R. F., Heisecke S. L., Martelli M. I., Feldman M. L., Sánchez V., et al. (2018). Risk of conversion to dementia in a mild behavioral impairment group compared to a psychiatric group and to a mild cognitive impairment group. J. Alzheimers Dis. 62 227–238. 10.3233/JAD-170632 PubMed DOI
Tiel C., Sudo F. K., Alves G. S., Ericeira-Valente L., Moreira D. M., Laks J., et al. (2015). Neuropsychiatric symptoms in vascular cognitive impairment: a systematic review. Dement. Neuropsychol. 9 230–236. 10.1590/1980-57642015DN93000004 PubMed DOI PMC
Trzepacz P. T., Yu P., Bhamidipati P. K., Willis B., Forrester T., Tabas L., et al. (2013). Frontolimbic atrophy is associated with agitation and aggression in mild cognitive impairment and Alzheimer’s disease. Alzheimers Dement. 9 S95–S104. 10.1016/j.jalz.2012.10.005 PubMed DOI PMC
Wise E. A., Rosenberg P. B., Lyketsos C. G., Leoutsakos J.-M. (2019). Time course of neuropsychiatric symptoms and cognitive diagnosis in National Alzheimer’s Coordinating Centers volunteers. Alzheimers Dement. (Amst.) 11 333–339. 10.1016/j.dadm.2019.02.006 PubMed DOI PMC