Colicin Z, a structurally and functionally novel colicin type that selectively kills enteroinvasive Escherichia coli and Shigella strains

. 2019 Jul 31 ; 9 (1) : 11127. [epub] 20190731

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31366939
Odkazy

PubMed 31366939
PubMed Central PMC6668396
DOI 10.1038/s41598-019-47488-8
PII: 10.1038/s41598-019-47488-8
Knihovny.cz E-zdroje

Colicin production in Escherichia coli (E. coli) strains represents an important trait with regard to microbial survival and competition in the complex intestinal environment. A novel colicin type, colicin Z (26.3 kDa), was described as a product of an original producer, extraintestinal E. coli B1356 strain, isolated from the anorectal abscess of a 17 years-old man. The 4,007 bp plasmid (pColZ) was completely sequenced and colicin Z activity (cza) and colicin Z immunity (czi) genes were identified. The cza and czi genes are transcribed in opposite directions and encode for 237 and 151 amino acid-long proteins, respectively. Colicin Z shows a narrow inhibitory spectrum, being active only against enteroinvasive E. coli (EIEC) and Shigella strains via CjrC receptor recognition and CjrB- and ExbB-, ExbD-mediated colicin translocation. All tested EIEC and Shigella strains isolated between the years 1958-2010 were sensitive to colicin Z. The lethal effect of colicin Z was found to be directed against cell wall peptidoglycan (PG) resulting in PG degradation, as revealed by experiments with Remazol Brilliant Blue-stained purified peptidoglycans and with MALDI-TOF MS analyses of treated PG. Colicin Z represents a new class of colicins that is structurally and functionally distinct from previously studied colicin types.

Zobrazit více v PubMed

Majeed H, Gillor O, Kerr B, Riley MA. Competitive interactions in Escherichia coli populations: the role of bacteriocins. ISME J. 2011;5:71–8. doi: 10.1038/ismej.2010.90. PubMed DOI PMC

Braun V, Pilsl H, Gross P. Colicins: structures, modes of action, transfer through membranes, and evolution. Arch. Microbiol. 1994;161:199–206. doi: 10.1007/BF00248693. PubMed DOI

Šmarda J, Šmajs D. Colicins–exocellular lethal proteins of Escherichia coli. Folia Microbiol. (Praha). 1998;43:563–582. doi: 10.1007/BF02816372. PubMed DOI

Cascales E, et al. Colicin biology. Microbiol. Mol. Biol. Rev. 2007;71:158–229. doi: 10.1128/MMBR.00036-06. PubMed DOI PMC

Duquesne S, Destoumieux-Garzón D, Peduzzi J, Rebuffat S. Microcins, gene-encoded antibacterial peptides from enterobacteria. Nat. Prod. Rep. 2007;24:708–734. doi: 10.1039/b516237h. PubMed DOI

Timmis K. Purification and characterization of colicin D. J. Bacteriol. 1972;109:12–20. PubMed PMC

Šmajs D, Weinstock GM. Genetic organization of plasmid ColJs, encoding colicin Js activity, immunity, and release genes. J. Bacteriol. 2001;183:3949–3957. doi: 10.1128/JB.183.13.3949-3957.2001. PubMed DOI PMC

Riley MA, Gordon DM. The ecological role of bacteriocins in bacterial competition. Trends Microbiol. 1999;7:129–133. doi: 10.1016/S0966-842X(99)01459-6. PubMed DOI

Kerr B, Riley MA, Feldman MW, Bohannan BJ. Local dispersal promotes biodiversity in a real-life game of rock-paper-scissors. Nature. 2002;418:171–174. doi: 10.1038/nature00823. PubMed DOI

Lenski RE, Riley MA. Chemical warfare from an ecological perspective. Proc. Natl. Acad. Sci. USA. 2002;99:556–558. doi: 10.1073/pnas.022641999. PubMed DOI PMC

Wassenaar TM. Insights from 100 years of research with probiotic E. coli. Eur. J. Microbiol. Immunol. (Bp). 2016;6:147–161. doi: 10.1556/1886.2016.00029. PubMed DOI PMC

Azpiroz MF, Poey ME, Laviña M. Microcins and urovirulence in Escherichia coli. Microb. Pathog. 2009;47:274–280. doi: 10.1016/j.micpath.2009.09.003. PubMed DOI

Šmajs D, et al. Bacteriocin synthesis in uropathogenic and commensal Escherichia coli: colicin E1 is a potential virulence factor. BMC Microbiol. 2010;10:288. doi: 10.1186/1471-2180-10-288. PubMed DOI PMC

Budič M, Rijavec M, Petkovšek Z, Zgur-Bertok D. Escherichia coli bacteriocins: antimicrobial efficacy and prevalence among isolates from patients with bacteraemia. PLoS ONE. 2011;6:e28769. doi: 10.1371/journal.pone.0028769. PubMed DOI PMC

Micenková L, et al. Bacteriocin-encoding genes and ExPEC virulence determinants are associated in human fecal Escherichia coli strains. BMC Microbiol. 2014;14:109. doi: 10.1186/1471-2180-14-109. PubMed DOI PMC

Micenková L, Bosák J, Vrba M, Ševčíková A, Šmajs D. Human extraintestinal pathogenic Escherichia coli strains differ in prevalence of virulence factors, phylogroups, and bacteriocin determinants. BMC Microbiol. 2016;16:218. doi: 10.1186/s12866-016-0835-z. PubMed DOI PMC

Micenková L, et al. Human Escherichia coli isolates from hemocultures: Septicemia linked to urogenital tract infections is caused by isolates harboring more virulence genes than bacteraemia linked to other conditions. Int. J. Med. Microbiol. 2017;307:182–189. doi: 10.1016/j.ijmm.2017.02.003. PubMed DOI

Rendueles O, Beloin C, Latour-Lambert P, Ghigo JM. A new biofilm-associated colicin with increased efficiency against biofilm bacteria. ISME J. 2014;8:1275–1288. doi: 10.1038/ismej.2013.238. PubMed DOI PMC

Chan PT, Ohmori H, Tomizawa J, Lebowitz J. Nucleotide sequence and gene organization of ColE1 DNA. J. Biol. Chem. 1985;260:8925–8935. PubMed

Gillor O, Vriezen JA, Riley MA. The role of SOS boxes in enteric bacteriocin regulation. Microbiology. 2008;154:1783–92. doi: 10.1099/mic.0.2007/016139-0. PubMed DOI PMC

Geli V, Baty D, Pattus F, Lazdunski C. Topology and function of the integral membrane protein conferring immunity to colicin A. Mol. Microbiol. 1989;3:679–87. doi: 10.1111/j.1365-2958.1989.tb00216.x. PubMed DOI

Šmajs D, Weinstock GM. The iron- and temperature-regulated cjrBC genes of Shigella and enteroinvasive Escherichia coli strains code for colicin Js uptake. J. Bacteriol. 2001;183:3958–3966. doi: 10.1128/JB.183.13.3958-3966.2001. PubMed DOI PMC

Riley MA, Wertz JE. Bacteriocins: evolution, ecology, and application. Annu Rev. Microbiol. 2002;56:117–137. doi: 10.1146/annurev.micro.56.012302.161024. PubMed DOI

Braun V, Pilsl H, Gross P. Colicins: structures, modes of action, transfer through membranes, and evolution. Arch. Microbiol. 1994;161:199–206. doi: 10.1007/BF00248693. PubMed DOI

Arnold T, Zeth K, Linke D. Structure and function of colicin S4, a colicin with a duplicated receptor-binding domain. J. Biol. Chem. 2009;284:6403–6413. doi: 10.1074/jbc.M808504200. PubMed DOI PMC

Sano Y, Kobayashi M, Kageyama M. Functional domains of S-type pyocins deduced from chimeric molecules. J. Bacteriol. 1993;175:6179–6185. doi: 10.1128/jb.175.19.6179-6185.1993. PubMed DOI PMC

Michel-Briand Y, Baysse C. The pyocins of Pseudomonas aeruginosa. Biochimie. 2002;84:499–510. doi: 10.1016/S0300-9084(02)01422-0. PubMed DOI

Bosák J, et al. Novel colicin Fy of Yersinia frederiksenii inhibits pathogenic Yersinia strains via YiuR-mediated reception, TonB import, and cell membrane pore formation. J. Bacteriol. 2012;194:1950–1959. doi: 10.1128/JB.05885-11. PubMed DOI PMC

Devanga Ragupathi NK, Muthuirulandi Sethuvel DP, Inbanathan FY, Veeraraghavan B. Accurate differentiation of Escherichia coli and Shigella serogroups: challenges and strategies. New Microbes New Infect. 2017;21:58–62. doi: 10.1016/j.nmni.2017.09.003. PubMed DOI PMC

Penfold CN, Li C, Zhang Y, Vankemmelbeke M, James R. Colicin A binds to a novel binding site of TolA in the Escherichia coli periplasm. Biochem. Soc. Trans. 2012;40:1469–1474. doi: 10.1042/BST20120239. PubMed DOI

Gordon DM, O´Brien CL. Bacteriocin diversity and the frequency of multiple production in Escherichia coli. Microbiology. 2006;152:3239–3244. doi: 10.1099/mic.0.28690-0. PubMed DOI

Bosák J, et al. Unique activity spectrum of colicin FY: all 110 characterized Yersinia enterocolitica isolates were colicin FY susceptible. PLoS One. 2013;8:e81829. doi: 10.1371/journal.pone.0081829. PubMed DOI PMC

Feldgarden M, Riley MA. High levels of colicin resistance in Escherichia coli. Evolution. 1998;52:1270–1276. doi: 10.1111/j.1558-5646.1998.tb02008.x. PubMed DOI

Nahum JR, Harding BN, Kerr B. Evolution of restraint in a structured rock–paper–scissors community. Proc. Natl. Acad. Sci. USA. 2001;108:10831–10838. doi: 10.1073/pnas.1100296108. PubMed DOI PMC

Gross P, Braun V. Colicin M is inactivated during import by its immunity protein. Mol. Gen. Genet. 1996;251:388–396. doi: 10.1007/BF02172531. PubMed DOI

Martinez MC, Lazdunski C, Pattus F. Isolation, molecular and functional properties of the C-terminal domain of colicin A. EMBO J. 1983;2:1501–1507. doi: 10.1002/j.1460-2075.1983.tb01614.x. PubMed DOI PMC

Pressler U, Braun V, Wittmann-Liebold B, Benz R. Structural and functional properties of colicin B. J. Biol. Chem. 1986;261:2654–2659. PubMed

Tettelin H, et al. Complete genome sequence and comparative genomic analysis of an emerging human pathogen, serotype V Streptococcus agalactiae. Proc. Natl. Acad. Sci. USA. 2002;99:12391–12396. doi: 10.1073/pnas.182380799. PubMed DOI PMC

Lu JZ, Fujiwara T, Komatsuzawa H, Sugai M, Sakon J. Cell wall-targeting domain of glycylglycine endopeptidase distinguishes among peptidoglycan cross-bridges. J. Biol. Chem. 2006;281:549–558. doi: 10.1074/jbc.M509691200. PubMed DOI

Kurushima J, Hayashi I, Sugai M, Tomita H. Bacteriocin protein BacL1 of Enterococcus faecalis is a peptidoglycan D-isoglutamyl-L-lysine endopeptidase. J. Biol. Chem. 2013;288:36915–36925. doi: 10.1074/jbc.M113.506618. PubMed DOI PMC

Vollmer W, Joris B, Charlier P, Foster S. Bacterial peptidoglycan (murein) hydrolases. FEMS Microbiol. Rev. 2008;32:259–286. doi: 10.1111/j.1574-6976.2007.00099.x. PubMed DOI

Šmajs D. The morphology of bacterial cells in inhibition zones produced by colicins. Scripta medica (Brno). 1995;5:171–180.

Šmajs D, Pilsl H, Braun V, Colicin U. a novel colicin produced by Shigella boydii. J. Bacteriol. 1997;179:4919–4928. doi: 10.1128/jb.179.15.4919-4928.1997. PubMed DOI PMC

Patton BS, Dickson JS, Lonergan SM, Cutler SA, Stahl CH. Inhibitory activity of colicin E1 against Listeria monocytogenes. J. Food Prot. 2007;70:1256–1262. doi: 10.4315/0362-028X-70.5.1256. PubMed DOI

Bosák J, Micenková L, Doležalová M, Šmajs D, Colicins U. and Y inhibit growth of Escherichia coli strains via recognition of conserved OmpA extracellular loop 1. Int. J. Med. Microbiol. 2016;306:486–494. doi: 10.1016/j.ijmm.2016.07.002. PubMed DOI

Guterman SK, Dann L. Excretion of enterochelin by exbA and exbB mutants of Escherichia coli. J. Bacteriol. 1973;114:1225–1230. PubMed PMC

Sun TP, Webster RE. Nucleotide sequence of a gene cluster involved in entry of E colicins and single-stranded DNA of infecting filamentous bacteriophages into Escherichia coli. J. Bacteriol. 1987;169:2667–2674. doi: 10.1128/jb.169.6.2667-2674.1987. PubMed DOI PMC

Clermont O, Bonacorsi S, Bingen E. Rapid and simple determination of the Escherichia coli phylogenetic group. Appl. Environ. Microbiol. 2000;66:4555–4558. doi: 10.1128/AEM.66.10.4555-4558.2000. PubMed DOI PMC

Gómez-Moreno R, Robledo IE, Baerga-Ortiz A. Direct detection and quantification of bacterial genes associated with inflammation in DNA isolated from stool. Adv. Microbiol. 2014;4:1065–1075. doi: 10.4236/aim.2014.415117. PubMed DOI PMC

Seydlová G, et al. Lipophosphonoxins II: Design, Synthesis, and Properties of Novel Broad Spectrum Antibacterial Agents. J. Med. Chem. 2017;60:6098–6118. doi: 10.1021/acs.jmedchem.7b00355. PubMed DOI

Zhou R, Chen S, Recsei P. A dye release assay for determination of lysostaphin activity. Anal. Biochem. 1988;171:141–144. doi: 10.1016/0003-2697(88)90134-0. PubMed DOI

Benešík M, et al. Role of SH3b binding domain in a natural deletion mutant of Kayvirus endolysin LysF1 with a broad range of lytic activity. Virus Genes. 2018;54:130–139. doi: 10.1007/s11262-017-1507-2. PubMed DOI

Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 2016;33:1870–1874. doi: 10.1093/molbev/msw054. PubMed DOI PMC

Gao F, Luo H, Zhang CT. DoriC 5.0: an updated database of oriC regions in both bacterial and archaeal genomes. Nucleic Acids Res. 2013;41:D90–93. doi: 10.1093/nar/gks990. PubMed DOI PMC

Yang J, Zhang Y. I-TASSER server: new development for protein structure and function predictions. Nucleic Acids. Res. 2015;43:W174–181. doi: 10.1093/nar/gkv342. PubMed DOI PMC

Artimo P, et al. ExPASy: SIB bioinformatics resource portal. Nucleic Acids Res. 2012;40:W597–W603. doi: 10.1093/nar/gks400. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...