Negatively charged residues of the segment linking the enzyme and cytolysin moieties restrict the membrane-permeabilizing capacity of adenylate cyclase toxin

. 2016 Sep 01 ; 6 () : 29137. [epub] 20160901

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid27581058

The whooping cough agent, Bordetella pertussis, secretes an adenylate cyclase toxin-hemolysin (CyaA) that plays a crucial role in host respiratory tract colonization. CyaA targets CR3-expressing cells and disrupts their bactericidal functions by delivering into their cytosol an adenylate cyclase enzyme that converts intracellular ATP to cAMP. In parallel, the hydrophobic domain of CyaA forms cation-selective pores that permeabilize cell membrane. The invasive AC and pore-forming domains of CyaA are linked by a segment that is unique in the RTX cytolysin family. We used mass spectrometry and circular dichroism to show that the linker segment forms α-helical structures that penetrate into lipid bilayer. Replacement of the positively charged arginine residues, proposed to be involved in target membrane destabilization by the linker segment, reduced the capacity of the toxin to translocate the AC domain across cell membrane. Substitutions of negatively charged residues then revealed that two clusters of negative charges within the linker segment control the size and the propensity of CyaA pore formation, thereby restricting the cell-permeabilizing capacity of CyaA. The 'AC to Hly-linking segment' thus appears to account for the smaller size and modest cell-permeabilizing capacity of CyaA pores, as compared to typical RTX hemolysins.

Zobrazit více v PubMed

Linhartova I. et al.. RTX proteins: a highly diverse family secreted by a common mechanism. FEMS Microbiol Rev 34, 1076–1112, 10.1111/j.1574-6976.2010.00231.x (2010). PubMed DOI PMC

Guermonprez P. et al.. The adenylate cyclase toxin of Bordetella pertussis binds to target cells via the alpha(M)beta(2) integrin (CD11b/CD18). J Exp Med 193, 1035–1044 (2001). PubMed PMC

Osicka R. et al.. adenylate cyclase toxin is a unique ligand of the integrin complement receptor 3. Elife 4, 10.7554/eLife.10766 (2015). PubMed DOI PMC

Wald T. et al.. Transmembrane segments of complement receptor 3 do not participate in cytotoxic activities but determine receptor structure required for action of Bordetella adenylate cyclase toxin. Pathog Dis, 10.1093/femspd/ftw008 (2016). PubMed DOI

Gordon V. M., Leppla S. H. & Hewlett E. L. Inhibitors of receptor-mediated endocytosis block the entry of Bacillus anthracis adenylate cyclase toxin but not that of Bordetella pertussis adenylate cyclase toxin. Infect Immun 56, 1066–1069 (1988). PubMed PMC

Rogel A. & Hanski E. Distinct steps in the penetration of adenylate cyclase toxin of Bordetella pertussis into sheep erythrocytes. Translocation of the toxin across the membrane. J Biol Chem 267, 22599–22605 (1992). PubMed

Glaser P., Sakamoto H., Bellalou J., Ullmann A. & Danchin A. Secretion of cyclolysin, the calmodulin-sensitive adenylate cyclase-haemolysin bifunctional protein of Bordetella pertussis. Embo J 7, 3997–4004 (1988). PubMed PMC

Ahmad J. N. et al.. cAMP signalling of Bordetella adenylate cyclase toxin through the SHP-1 phosphatase activates the BimEL-Bax pro-apoptotic cascade in phagocytes. Cell Microbiol, 10.1111/cmi.12519 (2016). PubMed DOI

Bellalou J., Sakamoto H., Ladant D., Geoffroy C. & Ullmann A. Deletions affecting hemolytic and toxin activities of Bordetella pertussis adenylate cyclase. Infect Immun 58, 3242–3247 (1990). PubMed PMC

Wolff J., Cook G. H., Goldhammer A. R. & Berkowitz S. A. Calmodulin activates prokaryotic adenylate cyclase. Proc Natl Acad Sci USA 77, 3841–3844 (1980). PubMed PMC

Holubova J. et al.. Delivery of large heterologous polypeptides across the cytoplasmic membrane of antigen-presenting cells by the Bordetella RTX hemolysin moiety lacking the adenylyl cyclase domain. Infect Immun 80, 1181–1192, 10.1128/IAI.05711-11 (2012). PubMed DOI PMC

Benz R., Maier E., Ladant D., Ullmann A. & Sebo P. Adenylate cyclase toxin (CyaA) of Bordetella pertussis. Evidence for the formation of small ion-permeable channels and comparison with HlyA of Escherichia coli. J Biol Chem 269, 27231–27239 (1994). PubMed

Dunne A. et al.. Inflammasome activation by adenylate cyclase toxin directs Th17 responses and protection against Bordetella pertussis. J Immunol 185, 1711–1719, 10.4049/jimmunol.1000105 (2010). PubMed DOI

Gray M., Szabo G., Otero A. S., Gray L. & Hewlett E. Distinct mechanisms for K+ efflux, intoxication, and hemolysis by Bordetella pertussis AC toxin. J Biol Chem 273, 18260–18267 (1998). PubMed

Wald T. et al.. Quantification of potassium levels in cells treated with Bordetella adenylate cyclase toxin. Anal Biochem 450, 57–62, 10.1016/j.ab.2013.10.039 (2014). PubMed DOI

Barry E. M. et al.. Bordetella pertussis adenylate cyclase toxin and hemolytic activities require a second gene, cyaC, for activation. J Bacteriol 173, 720–726 (1991). PubMed PMC

Basar T. et al.. The conserved lysine 860 in the additional fatty-acylation site of Bordetella pertussis adenylate cyclase is crucial for toxin function independently of its acylation status. J Biol Chem 274, 10777–10783 (1999). PubMed

Hackett M., Guo L., Shabanowitz J., Hunt D. F. & Hewlett E. L. Internal lysine palmitoylation in adenylate cyclase toxin from Bordetella pertussis. Science 266, 433–435 (1994). PubMed

Hackett M. et al.. Hemolytic, but not cell-invasive activity, of adenylate cyclase toxin is selectively affected by differential fatty-acylation in Escherichia coli. J Biol Chem 270, 20250–20253 (1995). PubMed

Masin J. et al.. Acylation of lysine 860 allows tight binding and cytotoxicity of Bordetella adenylate cyclase on CD11b-expressing cells. Biochemistry 44, 12759–12766 (2005). PubMed

Baumann U., Wu S., Flaherty K. M. & McKay D. B. Three-dimensional structure of the alkaline protease of Pseudomonas aeruginosa: a two-domain protein with a calcium binding parallel beta roll motif. EMBO J 12, 3357–3364 (1993). PubMed PMC

Knapp O. et al.. Channel formation in model membranes by the adenylate cyclase toxin of Bordetella pertussis: effect of calcium. Biochemistry 42, 8077–8084 (2003). PubMed

Rose T., Sebo P., Bellalou J. & Ladant D. Interaction of calcium with Bordetella pertussis adenylate cyclase toxin. Characterization of multiple calcium-binding sites and calcium-induced conformational changes. J Biol Chem 270, 26370–26376 (1995). PubMed

Basler M. et al.. Segments Crucial for Membrane Translocation and Pore-forming Activity of Bordetella Adenylate Cyclase Toxin. J Biol Chem 282, 12419–12429 (2007). PubMed

Osickova A. et al.. Adenylate cyclase toxin translocates across target cell membrane without forming a pore. Mol Microbiol 75, 1550–1562, 10.1111/j.1365-2958.2010.07077.x (2010). PubMed DOI

Osickova A., Osicka R., Maier E., Benz R. & Sebo P. An amphipathic alpha-helix including glutamates 509 and 516 is crucial for membrane translocation of adenylate cyclase toxin and modulates formation and cation selectivity of its membrane channels. J Biol Chem 274, 37644–37650 (1999). PubMed

Gray M. C. et al.. Translocation-specific conformation of adenylate cyclase toxin from Bordetella pertussis inhibits toxin-mediated hemolysis. J Bacteriol 183, 5904–5910, 10.1128/JB.183.20.5904-5910.2001 (2001). PubMed DOI PMC

Otero A. S., Yi X. B., Gray M. C., Szabo G. & Hewlett E. L. Membrane depolarization prevents cell invasion by Bordetella pertussis adenylate cyclase toxin. J Biol Chem 270, 9695–9697 (1995). PubMed

Veneziano R. et al.. Bordetella pertussis adenylate cyclase toxin translocation across a tethered lipid bilayer. Proc Natl Acad Sci USA 110, 20473–20478, 10.1073/pnas.1312975110 (2013). PubMed DOI PMC

Guo Q. et al.. Structural basis for the interaction of Bordetella pertussis adenylyl cyclase toxin with calmodulin. EMBO J 24, 3190–3201, 10.1038/sj.emboj.7600800 (2005). PubMed DOI PMC

Chenal A., Guijarro J. I., Raynal B., Delepierre M. & Ladant D. RTX calcium binding motifs are intrinsically disordered in the absence of calcium: implication for protein secretion. J Biol Chem 284, 1781–1789, 10.1074/jbc.M807312200 (2009). PubMed DOI

Osicka R. et al.. Delivery of CD8(+) T-cell epitopes into major histocompatibility complex class I antigen presentation pathway by Bordetella pertussis adenylate cyclase: delineation of cell invasive structures and permissive insertion sites. Infect Immun 68, 247–256 (2000). PubMed PMC

Sotomayor Perez A. C. et al.. Characterization of the regions involved in the calcium-induced folding of the intrinsically disordered RTX motifs from the Bordetella pertussis adenylate cyclase toxin. J Mol Biol 397, 534–549, 10.1016/j.jmb.2010.01.031 (2010). PubMed DOI

Juntapremjit S. et al.. Functional importance of the Gly cluster in transmembrane helix 2 of the Bordetella pertussis CyaA-hemolysin: Implications for toxin oligomerization and pore formation. Toxicon 106, 14–19, 10.1016/j.toxicon.2015.09.006 (2015). PubMed DOI

O’Brien D. P. et al.. Structural models of intrinsically disordered and calcium-bound folded states of a protein adapted for secretion. Sci Rep 5, 14223, 10.1038/srep14223 (2015). PubMed DOI PMC

Bumba L. et al.. Calcium-Driven Folding of RTX Domain beta-Rolls Ratchets Translocation of RTX Proteins through Type I Secretion Ducts. Mol Cell 62, 47–62, 10.1016/j.molcel.2016.03.018 (2016). PubMed DOI

Shur O. & Banta S. Rearranging and concatenating a native RTX domain to understand sequence modularity. Protein Eng Des Sel 26, 171–180, 10.1093/protein/gzs092 (2013). PubMed DOI

Sotomayor-Perez A. C., Subrini O., Hessel A., Ladant D. & Chenal A. Molecular crowding stabilizes both the intrinsically disordered calcium-free state and the folded calcium-bound state of a repeat in toxin (RTX) protein. J Am Chem Soc 135, 11929–11934, 10.1021/ja404790f (2013). PubMed DOI

Zhang L., Morrison A. J. & Thibodeau P. H. Interdomain Contacts and the Stability of Serralysin Protease from Serratia marcescens. PLoS One 10, e0138419 (2015). PubMed PMC

Karst J. C. et al.. Identification of a region that assists membrane insertion and translocation of the catalytic domain of Bordetella pertussis CyaA toxin. J Biol Chem 287, 9200–9212, 10.1074/jbc.M111.316166 (2012). PubMed DOI PMC

Subrini O. et al.. Characterization of a Membrane-Active Peptide from the Bordetella pertussis CyaA Toxin. J Biol Chem, 10.1074/jbc.M113.508838 (2013). PubMed DOI PMC

Masin J. et al.. Differences in purinergic amplification of osmotic cell lysis by the pore-forming RTX toxins Bordetella pertussis CyaA and Actinobacillus pleuropneumoniae ApxIA: the role of pore size. Infect Immun 81, 4571–4582, 10.1128/IAI.00711-13 (2013). PubMed DOI PMC

Geourjon C. & Deleage G. SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Comput Appl Biosci 11, 681–684 (1995). PubMed

Basler M., Masin J., Osicka R. & Sebo P. Pore-forming and enzymatic activities of Bordetella pertussis adenylate cyclase toxin synergize in promoting lysis of monocytes. Infect Immun 74, 2207–2214 (2006). PubMed PMC

Hewlett E. L., Donato G. M. & Gray M. C. Macrophage cytotoxicity produced by adenylate cyclase toxin from Bordetella pertussis: more than just making cyclic AMP! Mol Microbiol 59, 447–459, 10.1111/j.1365-2958.2005.04958.x (2006). PubMed DOI

Ziolo K. J. et al.. Vibrio vulnificus biotype 3 multifunctional autoprocessing RTX toxin is an adenylate cyclase toxin essential for virulence in mice. Infect Immun 82, 2148–2157, 10.1128/IAI.00017-14 (2014). PubMed DOI PMC

Karst J. C. et al.. Calcium, acylation, and molecular confinement favor folding of Bordetella pertussis adenylate cyclase CyaA toxin into a monomeric and cytotoxic form. J Biol Chem 289, 30702–30716, 10.1074/jbc.M114.580852 (2014). PubMed DOI PMC

Masin J., Osicka R., Bumba L. & Sebo P. Bordetella adenylate cyclase toxin: a unique combination of a pore-forming moiety with a cell-invading adenylate cyclase enzyme. Pathog Dis, 10.1093/femspd/ftv075 (2015). PubMed DOI PMC

Fiser R. et al.. Third activity of Bordetella adenylate cyclase (AC) toxin-hemolysin. Membrane translocation of AC domain polypeptide promotes calcium influx into CD11b+ monocytes independently of the catalytic and hemolytic activities. J Biol Chem 282, 2808–2820, 10.1074/jbc.M609979200 (2007). PubMed DOI

Karimova G. et al.. Charge-dependent translocation of Bordetella pertussis adenylate cyclase toxin into eukaryotic cells: implication for the in vivo delivery of CD8(+) T cell epitopes into antigen-presenting cells. Proc Natl Acad Sci USA 95, 12532–12537 (1998). PubMed PMC

Hervas-Stubbs S. et al.. High frequency of CD4+ T cells specific for the TB10.4 protein correlates with protection against Mycobacterium tuberculosis infection. Infect Immun 74, 3396–3407, 10.1128/IAI.02086-05 (2006). PubMed DOI PMC

Tartz S. et al.. Immunization with a circumsporozoite epitope fused to Bordetella pertussis adenylate cyclase in conjunction with cytotoxic T-lymphocyte-associated antigen 4 blockade confers protection against Plasmodium berghei liver-stage malaria. Infect Immun 74, 2277–2285, 10.1128/IAI.74.4.2277-2285.2006 (2006). PubMed DOI PMC

Fujiki Y., Hubbard A. L., Fowler S. & Lazarow P. B. Isolation of intracellular membranes by means of sodium carbonate treatment: application to endoplasmic reticulum. J Cell Biol 93, 97–102 (1982). PubMed PMC

Masin J., Konopasek I., Svobodova J. & Sebo P. Different structural requirements for adenylate cyclase toxin interactions with erythrocyte and liposome membranes. Biochim Biophys Acta 1660, 144–154 (2004). PubMed

Kumar S. & Nussinov R. Salt bridge stability in monomeric proteins. J Mol Biol 293, 1241–1255, (1999). PubMed

Musafia B., Buchner V. & Arad D. Complex salt bridges in proteins: statistical analysis of structure and function. J Mol Biol 254, 761–770, 10.1006/jmbi.1995.0653 (1995). PubMed DOI

Rogel A., Meller R. & Hanski E. Adenylate cyclase toxin from Bordetella pertussis. The relationship between induction of cAMP and hemolysis. J Biol Chem 266, 3154–3161 (1991). PubMed

Vojtova J., Kamanova J. & Sebo P. Bordetella adenylate cyclase toxin: a swift saboteur of host defense. Curr Opin Microbiol 9, 69–75, 10.1016/j.mib.2005.12.011 (2006). PubMed DOI

Svedova M. et al.. Pore-formation by adenylate cyclase toxoid activates dendritic cells to prime CD8 and CD4 T cells. Immunol Cell Biol, 10.1038/icb.2015.87 (2016). PubMed DOI

Kuban V., Novacek J., Bumba L. & Zidek L. NMR assignment of intrinsically disordered self-processing module of the FrpC protein of Neisseria meningitidis. Biomol NMR Assign, 10.1007/s12104-015-9625-z (2015). PubMed DOI

Ladant D. Interaction of Bordetella pertussis adenylate cyclase with calmodulin. Identification of two separated calmodulin-binding domains. J Biol Chem 263, 2612–2618 (1988). PubMed

Iwaki M., Ullmann A. & Sebo P. Identification by in vitro complementation of regions required for cell-invasive activity of Bordetella pertussis adenylate cyclase toxin. Mol Microbiol 17, 1015–1024 (1995). PubMed

Micsonai A. et al.. Accurate secondary structure prediction and fold recognition for circular dichroism spectroscopy. Proc Natl Acad Sci USA 112, E3095–3103, 10.1073/pnas.1500851112 (2015). PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

A conserved tryptophan in the acylated segment of RTX toxins controls their β2 integrin-independent cell penetration

. 2023 Aug ; 299 (8) : 104978. [epub] 20230628

Kingella kingae RtxA Cytotoxin in the Context of Other RTX Toxins

. 2022 Feb 27 ; 10 (3) : . [epub] 20220227

Selective Enhancement of the Cell-Permeabilizing Activity of Adenylate Cyclase Toxin Does Not Increase Virulence of Bordetella pertussis

. 2021 Oct 28 ; 22 (21) : . [epub] 20211028

Different roles of conserved tyrosine residues of the acylated domains in folding and activity of RTX toxins

. 2021 Oct 06 ; 11 (1) : 19814. [epub] 20211006

Almost half of the RTX domain is dispensable for complement receptor 3 binding and cell-invasive activity of the Bordetella adenylate cyclase toxin

. 2021 Jul ; 297 (1) : 100833. [epub] 20210526

Retargeting from the CR3 to the LFA-1 receptor uncovers the adenylyl cyclase enzyme-translocating segment of Bordetella adenylate cyclase toxin

. 2020 Jul 10 ; 295 (28) : 9349-9365. [epub] 20200511

Acyltransferase-mediated selection of the length of the fatty acyl chain and of the acylation site governs activation of bacterial RTX toxins

. 2020 Jul 10 ; 295 (28) : 9268-9280. [epub] 20200527

Colicin U from Shigella boydii Forms Voltage-Dependent Pores

. 2019 Dec 15 ; 201 (24) : . [epub] 20191120

Rapid Purification of Endotoxin-Free RTX Toxins

. 2019 Jun 12 ; 11 (6) : . [epub] 20190612

Residues 529 to 549 participate in membrane penetration and pore-forming activity of the Bordetella adenylate cyclase toxin

. 2019 Apr 08 ; 9 (1) : 5758. [epub] 20190408

Bordetella Pertussis Adenylate Cyclase Toxin Does Not Possess a Phospholipase A Activity; Serine 606 and Aspartate 1079 Residues Are Not Involved in Target Cell Delivery of the Adenylyl Cyclase Enzyme Domain

. 2018 Jun 16 ; 10 (6) : . [epub] 20180616

Phosphoproteomics of cAMP signaling of Bordetella adenylate cyclase toxin in mouse dendritic cells

. 2017 Nov 24 ; 7 (1) : 16298. [epub] 20171124

Structure-Function Relationships Underlying the Capacity of Bordetella Adenylate Cyclase Toxin to Disarm Host Phagocytes

. 2017 Sep 24 ; 9 (10) : . [epub] 20170924

The conserved tyrosine residue 940 plays a key structural role in membrane interaction of Bordetella adenylate cyclase toxin

. 2017 Aug 24 ; 7 (1) : 9330. [epub] 20170824

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace