Negatively charged residues of the segment linking the enzyme and cytolysin moieties restrict the membrane-permeabilizing capacity of adenylate cyclase toxin
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
27581058
PubMed Central
PMC5007505
DOI
10.1038/srep29137
PII: srep29137
Knihovny.cz E-zdroje
- MeSH
- adenylátcyklasový toxin chemie genetika metabolismus MeSH
- adenylátcyklasy chemie genetika MeSH
- AMP cyklický metabolismus MeSH
- Bordetella pertussis chemie patogenita MeSH
- hemolyziny genetika MeSH
- lidé MeSH
- lipidové dvojvrstvy chemie metabolismus MeSH
- perforin chemie MeSH
- permeabilita buněčné membrány účinky léků MeSH
- pertuse genetika mikrobiologie patologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- adenylátcyklasový toxin MeSH
- adenylátcyklasy MeSH
- AMP cyklický MeSH
- hemolyziny MeSH
- lipidové dvojvrstvy MeSH
- perforin MeSH
The whooping cough agent, Bordetella pertussis, secretes an adenylate cyclase toxin-hemolysin (CyaA) that plays a crucial role in host respiratory tract colonization. CyaA targets CR3-expressing cells and disrupts their bactericidal functions by delivering into their cytosol an adenylate cyclase enzyme that converts intracellular ATP to cAMP. In parallel, the hydrophobic domain of CyaA forms cation-selective pores that permeabilize cell membrane. The invasive AC and pore-forming domains of CyaA are linked by a segment that is unique in the RTX cytolysin family. We used mass spectrometry and circular dichroism to show that the linker segment forms α-helical structures that penetrate into lipid bilayer. Replacement of the positively charged arginine residues, proposed to be involved in target membrane destabilization by the linker segment, reduced the capacity of the toxin to translocate the AC domain across cell membrane. Substitutions of negatively charged residues then revealed that two clusters of negative charges within the linker segment control the size and the propensity of CyaA pore formation, thereby restricting the cell-permeabilizing capacity of CyaA. The 'AC to Hly-linking segment' thus appears to account for the smaller size and modest cell-permeabilizing capacity of CyaA pores, as compared to typical RTX hemolysins.
Faculty of Science Charles University Prague Czech Republic
Institute of Microbiology of the CAS v v i Prague Czech Republic
Zobrazit více v PubMed
Linhartova I. et al.. RTX proteins: a highly diverse family secreted by a common mechanism. FEMS Microbiol Rev 34, 1076–1112, 10.1111/j.1574-6976.2010.00231.x (2010). PubMed DOI PMC
Guermonprez P. et al.. The adenylate cyclase toxin of Bordetella pertussis binds to target cells via the alpha(M)beta(2) integrin (CD11b/CD18). J Exp Med 193, 1035–1044 (2001). PubMed PMC
Osicka R. et al.. adenylate cyclase toxin is a unique ligand of the integrin complement receptor 3. Elife 4, 10.7554/eLife.10766 (2015). PubMed DOI PMC
Wald T. et al.. Transmembrane segments of complement receptor 3 do not participate in cytotoxic activities but determine receptor structure required for action of Bordetella adenylate cyclase toxin. Pathog Dis, 10.1093/femspd/ftw008 (2016). PubMed DOI
Gordon V. M., Leppla S. H. & Hewlett E. L. Inhibitors of receptor-mediated endocytosis block the entry of Bacillus anthracis adenylate cyclase toxin but not that of Bordetella pertussis adenylate cyclase toxin. Infect Immun 56, 1066–1069 (1988). PubMed PMC
Rogel A. & Hanski E. Distinct steps in the penetration of adenylate cyclase toxin of Bordetella pertussis into sheep erythrocytes. Translocation of the toxin across the membrane. J Biol Chem 267, 22599–22605 (1992). PubMed
Glaser P., Sakamoto H., Bellalou J., Ullmann A. & Danchin A. Secretion of cyclolysin, the calmodulin-sensitive adenylate cyclase-haemolysin bifunctional protein of Bordetella pertussis. Embo J 7, 3997–4004 (1988). PubMed PMC
Ahmad J. N. et al.. cAMP signalling of Bordetella adenylate cyclase toxin through the SHP-1 phosphatase activates the BimEL-Bax pro-apoptotic cascade in phagocytes. Cell Microbiol, 10.1111/cmi.12519 (2016). PubMed DOI
Bellalou J., Sakamoto H., Ladant D., Geoffroy C. & Ullmann A. Deletions affecting hemolytic and toxin activities of Bordetella pertussis adenylate cyclase. Infect Immun 58, 3242–3247 (1990). PubMed PMC
Wolff J., Cook G. H., Goldhammer A. R. & Berkowitz S. A. Calmodulin activates prokaryotic adenylate cyclase. Proc Natl Acad Sci USA 77, 3841–3844 (1980). PubMed PMC
Holubova J. et al.. Delivery of large heterologous polypeptides across the cytoplasmic membrane of antigen-presenting cells by the Bordetella RTX hemolysin moiety lacking the adenylyl cyclase domain. Infect Immun 80, 1181–1192, 10.1128/IAI.05711-11 (2012). PubMed DOI PMC
Benz R., Maier E., Ladant D., Ullmann A. & Sebo P. Adenylate cyclase toxin (CyaA) of Bordetella pertussis. Evidence for the formation of small ion-permeable channels and comparison with HlyA of Escherichia coli. J Biol Chem 269, 27231–27239 (1994). PubMed
Dunne A. et al.. Inflammasome activation by adenylate cyclase toxin directs Th17 responses and protection against Bordetella pertussis. J Immunol 185, 1711–1719, 10.4049/jimmunol.1000105 (2010). PubMed DOI
Gray M., Szabo G., Otero A. S., Gray L. & Hewlett E. Distinct mechanisms for K+ efflux, intoxication, and hemolysis by Bordetella pertussis AC toxin. J Biol Chem 273, 18260–18267 (1998). PubMed
Wald T. et al.. Quantification of potassium levels in cells treated with Bordetella adenylate cyclase toxin. Anal Biochem 450, 57–62, 10.1016/j.ab.2013.10.039 (2014). PubMed DOI
Barry E. M. et al.. Bordetella pertussis adenylate cyclase toxin and hemolytic activities require a second gene, cyaC, for activation. J Bacteriol 173, 720–726 (1991). PubMed PMC
Basar T. et al.. The conserved lysine 860 in the additional fatty-acylation site of Bordetella pertussis adenylate cyclase is crucial for toxin function independently of its acylation status. J Biol Chem 274, 10777–10783 (1999). PubMed
Hackett M., Guo L., Shabanowitz J., Hunt D. F. & Hewlett E. L. Internal lysine palmitoylation in adenylate cyclase toxin from Bordetella pertussis. Science 266, 433–435 (1994). PubMed
Hackett M. et al.. Hemolytic, but not cell-invasive activity, of adenylate cyclase toxin is selectively affected by differential fatty-acylation in Escherichia coli. J Biol Chem 270, 20250–20253 (1995). PubMed
Masin J. et al.. Acylation of lysine 860 allows tight binding and cytotoxicity of Bordetella adenylate cyclase on CD11b-expressing cells. Biochemistry 44, 12759–12766 (2005). PubMed
Baumann U., Wu S., Flaherty K. M. & McKay D. B. Three-dimensional structure of the alkaline protease of Pseudomonas aeruginosa: a two-domain protein with a calcium binding parallel beta roll motif. EMBO J 12, 3357–3364 (1993). PubMed PMC
Knapp O. et al.. Channel formation in model membranes by the adenylate cyclase toxin of Bordetella pertussis: effect of calcium. Biochemistry 42, 8077–8084 (2003). PubMed
Rose T., Sebo P., Bellalou J. & Ladant D. Interaction of calcium with Bordetella pertussis adenylate cyclase toxin. Characterization of multiple calcium-binding sites and calcium-induced conformational changes. J Biol Chem 270, 26370–26376 (1995). PubMed
Basler M. et al.. Segments Crucial for Membrane Translocation and Pore-forming Activity of Bordetella Adenylate Cyclase Toxin. J Biol Chem 282, 12419–12429 (2007). PubMed
Osickova A. et al.. Adenylate cyclase toxin translocates across target cell membrane without forming a pore. Mol Microbiol 75, 1550–1562, 10.1111/j.1365-2958.2010.07077.x (2010). PubMed DOI
Osickova A., Osicka R., Maier E., Benz R. & Sebo P. An amphipathic alpha-helix including glutamates 509 and 516 is crucial for membrane translocation of adenylate cyclase toxin and modulates formation and cation selectivity of its membrane channels. J Biol Chem 274, 37644–37650 (1999). PubMed
Gray M. C. et al.. Translocation-specific conformation of adenylate cyclase toxin from Bordetella pertussis inhibits toxin-mediated hemolysis. J Bacteriol 183, 5904–5910, 10.1128/JB.183.20.5904-5910.2001 (2001). PubMed DOI PMC
Otero A. S., Yi X. B., Gray M. C., Szabo G. & Hewlett E. L. Membrane depolarization prevents cell invasion by Bordetella pertussis adenylate cyclase toxin. J Biol Chem 270, 9695–9697 (1995). PubMed
Veneziano R. et al.. Bordetella pertussis adenylate cyclase toxin translocation across a tethered lipid bilayer. Proc Natl Acad Sci USA 110, 20473–20478, 10.1073/pnas.1312975110 (2013). PubMed DOI PMC
Guo Q. et al.. Structural basis for the interaction of Bordetella pertussis adenylyl cyclase toxin with calmodulin. EMBO J 24, 3190–3201, 10.1038/sj.emboj.7600800 (2005). PubMed DOI PMC
Chenal A., Guijarro J. I., Raynal B., Delepierre M. & Ladant D. RTX calcium binding motifs are intrinsically disordered in the absence of calcium: implication for protein secretion. J Biol Chem 284, 1781–1789, 10.1074/jbc.M807312200 (2009). PubMed DOI
Osicka R. et al.. Delivery of CD8(+) T-cell epitopes into major histocompatibility complex class I antigen presentation pathway by Bordetella pertussis adenylate cyclase: delineation of cell invasive structures and permissive insertion sites. Infect Immun 68, 247–256 (2000). PubMed PMC
Sotomayor Perez A. C. et al.. Characterization of the regions involved in the calcium-induced folding of the intrinsically disordered RTX motifs from the Bordetella pertussis adenylate cyclase toxin. J Mol Biol 397, 534–549, 10.1016/j.jmb.2010.01.031 (2010). PubMed DOI
Juntapremjit S. et al.. Functional importance of the Gly cluster in transmembrane helix 2 of the Bordetella pertussis CyaA-hemolysin: Implications for toxin oligomerization and pore formation. Toxicon 106, 14–19, 10.1016/j.toxicon.2015.09.006 (2015). PubMed DOI
O’Brien D. P. et al.. Structural models of intrinsically disordered and calcium-bound folded states of a protein adapted for secretion. Sci Rep 5, 14223, 10.1038/srep14223 (2015). PubMed DOI PMC
Bumba L. et al.. Calcium-Driven Folding of RTX Domain beta-Rolls Ratchets Translocation of RTX Proteins through Type I Secretion Ducts. Mol Cell 62, 47–62, 10.1016/j.molcel.2016.03.018 (2016). PubMed DOI
Shur O. & Banta S. Rearranging and concatenating a native RTX domain to understand sequence modularity. Protein Eng Des Sel 26, 171–180, 10.1093/protein/gzs092 (2013). PubMed DOI
Sotomayor-Perez A. C., Subrini O., Hessel A., Ladant D. & Chenal A. Molecular crowding stabilizes both the intrinsically disordered calcium-free state and the folded calcium-bound state of a repeat in toxin (RTX) protein. J Am Chem Soc 135, 11929–11934, 10.1021/ja404790f (2013). PubMed DOI
Zhang L., Morrison A. J. & Thibodeau P. H. Interdomain Contacts and the Stability of Serralysin Protease from Serratia marcescens. PLoS One 10, e0138419 (2015). PubMed PMC
Karst J. C. et al.. Identification of a region that assists membrane insertion and translocation of the catalytic domain of Bordetella pertussis CyaA toxin. J Biol Chem 287, 9200–9212, 10.1074/jbc.M111.316166 (2012). PubMed DOI PMC
Subrini O. et al.. Characterization of a Membrane-Active Peptide from the Bordetella pertussis CyaA Toxin. J Biol Chem, 10.1074/jbc.M113.508838 (2013). PubMed DOI PMC
Masin J. et al.. Differences in purinergic amplification of osmotic cell lysis by the pore-forming RTX toxins Bordetella pertussis CyaA and Actinobacillus pleuropneumoniae ApxIA: the role of pore size. Infect Immun 81, 4571–4582, 10.1128/IAI.00711-13 (2013). PubMed DOI PMC
Geourjon C. & Deleage G. SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Comput Appl Biosci 11, 681–684 (1995). PubMed
Basler M., Masin J., Osicka R. & Sebo P. Pore-forming and enzymatic activities of Bordetella pertussis adenylate cyclase toxin synergize in promoting lysis of monocytes. Infect Immun 74, 2207–2214 (2006). PubMed PMC
Hewlett E. L., Donato G. M. & Gray M. C. Macrophage cytotoxicity produced by adenylate cyclase toxin from Bordetella pertussis: more than just making cyclic AMP! Mol Microbiol 59, 447–459, 10.1111/j.1365-2958.2005.04958.x (2006). PubMed DOI
Ziolo K. J. et al.. Vibrio vulnificus biotype 3 multifunctional autoprocessing RTX toxin is an adenylate cyclase toxin essential for virulence in mice. Infect Immun 82, 2148–2157, 10.1128/IAI.00017-14 (2014). PubMed DOI PMC
Karst J. C. et al.. Calcium, acylation, and molecular confinement favor folding of Bordetella pertussis adenylate cyclase CyaA toxin into a monomeric and cytotoxic form. J Biol Chem 289, 30702–30716, 10.1074/jbc.M114.580852 (2014). PubMed DOI PMC
Masin J., Osicka R., Bumba L. & Sebo P. Bordetella adenylate cyclase toxin: a unique combination of a pore-forming moiety with a cell-invading adenylate cyclase enzyme. Pathog Dis, 10.1093/femspd/ftv075 (2015). PubMed DOI PMC
Fiser R. et al.. Third activity of Bordetella adenylate cyclase (AC) toxin-hemolysin. Membrane translocation of AC domain polypeptide promotes calcium influx into CD11b+ monocytes independently of the catalytic and hemolytic activities. J Biol Chem 282, 2808–2820, 10.1074/jbc.M609979200 (2007). PubMed DOI
Karimova G. et al.. Charge-dependent translocation of Bordetella pertussis adenylate cyclase toxin into eukaryotic cells: implication for the in vivo delivery of CD8(+) T cell epitopes into antigen-presenting cells. Proc Natl Acad Sci USA 95, 12532–12537 (1998). PubMed PMC
Hervas-Stubbs S. et al.. High frequency of CD4+ T cells specific for the TB10.4 protein correlates with protection against Mycobacterium tuberculosis infection. Infect Immun 74, 3396–3407, 10.1128/IAI.02086-05 (2006). PubMed DOI PMC
Tartz S. et al.. Immunization with a circumsporozoite epitope fused to Bordetella pertussis adenylate cyclase in conjunction with cytotoxic T-lymphocyte-associated antigen 4 blockade confers protection against Plasmodium berghei liver-stage malaria. Infect Immun 74, 2277–2285, 10.1128/IAI.74.4.2277-2285.2006 (2006). PubMed DOI PMC
Fujiki Y., Hubbard A. L., Fowler S. & Lazarow P. B. Isolation of intracellular membranes by means of sodium carbonate treatment: application to endoplasmic reticulum. J Cell Biol 93, 97–102 (1982). PubMed PMC
Masin J., Konopasek I., Svobodova J. & Sebo P. Different structural requirements for adenylate cyclase toxin interactions with erythrocyte and liposome membranes. Biochim Biophys Acta 1660, 144–154 (2004). PubMed
Kumar S. & Nussinov R. Salt bridge stability in monomeric proteins. J Mol Biol 293, 1241–1255, (1999). PubMed
Musafia B., Buchner V. & Arad D. Complex salt bridges in proteins: statistical analysis of structure and function. J Mol Biol 254, 761–770, 10.1006/jmbi.1995.0653 (1995). PubMed DOI
Rogel A., Meller R. & Hanski E. Adenylate cyclase toxin from Bordetella pertussis. The relationship between induction of cAMP and hemolysis. J Biol Chem 266, 3154–3161 (1991). PubMed
Vojtova J., Kamanova J. & Sebo P. Bordetella adenylate cyclase toxin: a swift saboteur of host defense. Curr Opin Microbiol 9, 69–75, 10.1016/j.mib.2005.12.011 (2006). PubMed DOI
Svedova M. et al.. Pore-formation by adenylate cyclase toxoid activates dendritic cells to prime CD8 and CD4 T cells. Immunol Cell Biol, 10.1038/icb.2015.87 (2016). PubMed DOI
Kuban V., Novacek J., Bumba L. & Zidek L. NMR assignment of intrinsically disordered self-processing module of the FrpC protein of Neisseria meningitidis. Biomol NMR Assign, 10.1007/s12104-015-9625-z (2015). PubMed DOI
Ladant D. Interaction of Bordetella pertussis adenylate cyclase with calmodulin. Identification of two separated calmodulin-binding domains. J Biol Chem 263, 2612–2618 (1988). PubMed
Iwaki M., Ullmann A. & Sebo P. Identification by in vitro complementation of regions required for cell-invasive activity of Bordetella pertussis adenylate cyclase toxin. Mol Microbiol 17, 1015–1024 (1995). PubMed
Micsonai A. et al.. Accurate secondary structure prediction and fold recognition for circular dichroism spectroscopy. Proc Natl Acad Sci USA 112, E3095–3103, 10.1073/pnas.1500851112 (2015). PubMed DOI PMC
Kingella kingae RtxA Cytotoxin in the Context of Other RTX Toxins
Colicin U from Shigella boydii Forms Voltage-Dependent Pores
Rapid Purification of Endotoxin-Free RTX Toxins
Phosphoproteomics of cAMP signaling of Bordetella adenylate cyclase toxin in mouse dendritic cells