Rapid Purification of Endotoxin-Free RTX Toxins
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31212877
PubMed Central
PMC6628407
DOI
10.3390/toxins11060336
PII: toxins11060336
Knihovny.cz E-zdroje
- Klíčová slova
- RTX toxins, Triton X-100, Triton X-114, endotoxin, lipopolysaccharide,
- MeSH
- bakteriální proteiny izolace a purifikace toxicita MeSH
- cytotoxiny izolace a purifikace toxicita MeSH
- detergenty chemie MeSH
- erytrocyty účinky léků MeSH
- Escherichia coli metabolismus MeSH
- hemolýza MeSH
- hemolyziny izolace a purifikace toxicita MeSH
- lidé MeSH
- lipopolysacharidy analýza MeSH
- močovina chemie MeSH
- nádorové buněčné linie MeSH
- oktoxynol chemie MeSH
- ovce MeSH
- THP-1 buňky MeSH
- viabilita buněk účinky léků MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- bakteriální proteiny MeSH
- cytotoxiny MeSH
- detergenty MeSH
- hemolyziny MeSH
- lipopolysacharidy MeSH
- močovina MeSH
- Nonidet P-40 MeSH Prohlížeč
- oktoxynol MeSH
Cytolytic leukotoxins of the repeat in toxin (RTX) family are large proteins excreted by gram-negative bacterial pathogens through the type 1 secretion system (T1SS). Due to low yields and poor stability in cultures of the original pathogens, it is useful to purify recombinant fatty-acylated RTX cytolysins from inclusion bodies produced in E. coli. Such preparations are, however, typically contaminated by high amounts of E. coli lipopolysaccharide (LPS or endotoxin). We report a simple procedure for purification of large amounts of biologically active and endotoxin-free RTX toxins. It is based on the common feature of RTX cytolysins that are T1SS-excreted as unfolded polypeptides and fold into a biologically active toxin only upon binding of calcium ions outside of the bacterial cell. Mimicking this process, the RTX proteins are solubilized from inclusion bodies with buffered 8 M urea, bound onto a suitable chromatographic medium under denaturing conditions and the contaminating LPS is removed through extensive on-column washes with buffers containing 6 to 8 M urea and 1% Triton X-100 or Triton X-114. Extensive on-column rinsing with 8 M urea buffer removes residual detergent and the eluted highly active RTX protein preparations then contain only trace amounts of LPS. The procedure is exemplified using four prototypic RTX cytolysins, the Bordetella pertussis CyaA and the hemolysins of Escherichia coli (HlyA), Kingella kingae (RtxA), and Actinobacillus pleuropneumoniae (ApxIA).
Faculty of Science Charles University Hlavova 2030 128 43 Prague Czech Republic
Institute of Microbiology of the CAS Videnska 1083 142 20 Prague Czech Republic
Zobrazit více v PubMed
Linhartova I., Bumba L., Masin J., Basler M., Osicka R., Kamanova J., Prochazkova K., Adkins I., Hejnova-Holubova J., Sadilkova L., et al. RTX proteins: A highly diverse family secreted by a common mechanism. FEMS Microbiol. Rev. 2010;34:1076–1112. doi: 10.1111/j.1574-6976.2010.00231.x. PubMed DOI PMC
Goodwin M.S., Weiss A.A. Adenylate cyclase toxin is critical for colonization and pertussis toxin is critical for lethal infection by Bordetella pertussis in infant mice. Infect. Immun. 1990;58:3445–3447. PubMed PMC
Khelef N., Sakamoto H., Guiso N. Both adenylate cyclase and hemolytic activities are required by Bordetella pertussis to initiate infection. Microb. Pathog. 1992;12:227–235. doi: 10.1016/0882-4010(92)90057-U. PubMed DOI
Kamanova J., Kofronova O., Masin J., Genth H., Vojtova J., Linhartova I., Benada O., Just I., Sebo P. Adenylate cyclase toxin subverts phagocyte function by RhoA inhibition and unproductive ruffling. J. Immunol. 2008;181:5587–5597. doi: 10.4049/jimmunol.181.8.5587. PubMed DOI
Novak J., Cerny O., Osickova A., Linhartova I., Masin J., Bumba L., Sebo P., Osicka R. Structure-function relationships underlying the capacity of Bordetella adenylate cyclase toxin to disarm host phagocytes. Toxins. 2017;9:300. doi: 10.3390/toxins9100300. PubMed DOI PMC
Ristow L.C., Welch R.A. Hemolysin of uropathogenic Escherichia coli: A cloak or a dagger? Biochim. ET Biophys. Acta. 2016;1858:538–545. doi: 10.1016/j.bbamem.2015.08.015. PubMed DOI
Kehl-Fie T.E., St Geme J.W., 3rd Identification and characterization of an RTX toxin in the emerging pathogen Kingella kingae. J. Bacteriol. 2007;189:430–436. doi: 10.1128/JB.01319-06. PubMed DOI PMC
Maier E., Reinhard N., Benz R., Frey J. Channel-forming activity and channel size of the RTX toxins ApxI, ApxII, and ApxIII of Actinobacillus pleuropneumoniae. Infect. Immun. 1996;64:4415–4423. PubMed PMC
Masin J., Fiser R., Linhartova I., Osicka R., Bumba L., Hewlett E.L., Benz R., Sebo P. Differences in purinergic amplification of osmotic cell lysis by the pore-forming RTX toxins Bordetella pertussis CyaA and Actinobacillus pleuropneumoniae ApxIA: The role of pore size. Infect. Immun. 2013;81:4571–4582. doi: 10.1128/IAI.00711-13. PubMed DOI PMC
Bumba L., Masin J., Macek P., Wald T., Motlova L., Bibova I., Klimova N., Bednarova L., Veverka V., Kachala M., et al. Calcium-driven folding of RTX domain beta-rolls ratchets translocation of RTX proteins through type I secretion ducts. Mol. Cell. 2016;62:47–62. doi: 10.1016/j.molcel.2016.03.018. PubMed DOI
Park B.S., Song D.H., Kim H.M., Choi B.S., Lee H., Lee J.O. The structural basis of lipopolysaccharide recognition by the TLR4-MD-2 complex. Nature. 2009;458:1191–1195. doi: 10.1038/nature07830. PubMed DOI
Guha M., Mackman N. LPS induction of gene expression in human monocytes. Cell Signal. 2001;13:85–94. doi: 10.1016/S0898-6568(00)00149-2. PubMed DOI
Bache C., Hoonakker M., Hendriksen C., Buchheit K.H., Spreitzer I., Montag T. Workshop on animal free detection of pertussis toxin in vaccines--alternatives to the histamine sensitisation test. Biol. J. Int. Assoc. Biol. Stand. 2012;40:309–311. doi: 10.1016/j.biologicals.2012.04.002. PubMed DOI
Gao B., Tsan M.F. Recombinant human heat shock protein 60 does not induce the release of tumor necrosis factor alpha from murine macrophages. J. Biol. Chem. 2003;278:22523–22529. doi: 10.1074/jbc.M303161200. PubMed DOI
Tsan M.F., Gao B. Endogenous ligands of toll-like receptors. J. Leukoc. Biol. 2004;76:514–519. doi: 10.1189/jlb.0304127. PubMed DOI
Villarino Romero R., Hasan S., Fae K., Holubova J., Geurtsen J., Schwarzer M., Wiertsema S., Osicka R., Poolman J., Sebo P. Bordetella pertussis filamentous hemagglutinin itself does not trigger anti-inflammatory interleukin-10 production by human dendritic cells. Int. J. Med. Microbiol. IJMM. 2016;306:38–47. doi: 10.1016/j.ijmm.2015.11.003. PubMed DOI
Wakelin S.J., Sabroe I., Gregory C.D., Poxton I.R., Forsythe J.L., Garden O.J., Howie S.E. “Dirty little secrets”—Endotoxin contamination of recombinant proteins. Immunol. Lett. 2006;106:1–7. doi: 10.1016/j.imlet.2006.04.007. PubMed DOI
Magalhaes P.O., Lopes A.M., Mazzola P.G., Rangel-Yagui C., Penna T.C., Pessoa A., Jr. Methods of endotoxin removal from biological preparations: A review. J. Pharm. Pharm. Sci. 2007;10:388–404. PubMed
Aida Y., Pabst M.J. Removal of endotoxin from protein solutions by phase separation using Triton X-114. J. Immunol. Methods. 1990;132:191–195. doi: 10.1016/0022-1759(90)90029-U. PubMed DOI
Cavallaro A.S., Mahony D., Commins M., Mahony T.J., Mitter N. Endotoxin-free purification for the isolation of bovine viral diarrhoea virus E2 protein from insoluble inclusion body aggregates. Microb. Cell Factories. 2011;10:57. doi: 10.1186/1475-2859-10-57. PubMed DOI PMC
Liu S., Tobias R., McClure S., Styba G., Shi Q., Jackowski G. Removal of endotoxin from recombinant protein preparations. Clin. Biochem. 1997;30:455–463. doi: 10.1016/S0009-9120(97)00049-0. PubMed DOI
Reichelt P., Schwarz C., Donzeau M. Single step protocol to purify recombinant proteins with low endotoxin contents. Protein Expr. Purif. 2006;46:483–488. doi: 10.1016/j.pep.2005.09.027. PubMed DOI
Orr B., Douce G., Baillie S., Parton R., Coote J. Adjuvant effects of adenylate cyclase toxin of Bordetella pertussis after intranasal immunisation of mice. Vaccine. 2007;25:64–71. doi: 10.1016/j.vaccine.2006.07.019. PubMed DOI
Franken K.L., Hiemstra H.S., van Meijgaarden K.E., Subronto Y., den Hartigh J., Ottenhoff T.H., Drijfhout J.W. Purification of his-tagged proteins by immobilized chelate affinity chromatography: The benefits from the use of organic solvent. Protein Expr. Purif. 2000;18:95–99. doi: 10.1006/prep.1999.1162. PubMed DOI
Mascarell L., Fayolle C., Bauche C., Ladant D., Leclerc C. Induction of neutralizing antibodies and Th1-polarized and CD4-independent CD8+ T-cell responses following delivery of human immunodeficiency virus type 1 Tat protein by recombinant adenylate cyclase of Bordetella pertussis. J. Virol. 2005;79:9872–9884. doi: 10.1128/JVI.79.15.9872-9884.2005. PubMed DOI PMC
Dunne A., Ross P.J., Pospisilova E., Masin J., Meaney A., Sutton C.E., Iwakura Y., Tschopp J., Sebo P., Mills K.H. Inflammasome activation by adenylate cyclase toxin directs Th17 responses and protection against Bordetella pertussis. J. Immunol. 2010;185:1711–1719. doi: 10.4049/jimmunol.1000105. PubMed DOI
Prior S., Corbel M.J., Xing D.K. Development of an approach for the laboratory toxicological evaluation of Bordetella pertussis adenylate cyclase genetic toxoid constructs as multipurpose vaccines. Hum. Vaccines. 2005;1:151–159. doi: 10.4161/hv.1.4.1972. PubMed DOI
Nasrin A., Hassan M., Ye P. Inhibition of notch signaling pathway using gamma-secretase inhibitor delivered by a low dose of Triton-x100 in cultured oral cancer cells. Biochem. Biophys. Res. Commun. 2018;495:2118–2124. doi: 10.1016/j.bbrc.2017.12.082. PubMed DOI
Guermonprez P., Khelef N., Blouin E., Rieu P., Ricciardi-Castagnoli P., Guiso N., Ladant D., Leclerc C. The adenylate cyclase toxin of Bordetella pertussis binds to target cells via the alpha(M)beta(2) integrin (CD11b/CD18) J. Exp. Med. 2001;193:1035–1044. doi: 10.1084/jem.193.9.1035. PubMed DOI PMC
Osicka R., Osickova A., Hasan S., Bumba L., Cerny J., Sebo P. Bordetella adenylate cyclase toxin is a unique ligand of the integrin complement receptor 3. eLife. 2015;4:e10766. doi: 10.7554/eLife.10766. PubMed DOI PMC
Osickova A., Balashova N., Masin J., Sulc M., Roderova J., Wald T., Brown A.C., Koufos E., Chang E.H., Giannakakis A., et al. Cytotoxic activity of Kingella kingae RtxA toxin depends on post-translational acylation of lysine residues and cholesterol binding. Emerg. Microbes Infect. 2018;7:178. doi: 10.1038/s41426-018-0179-x. PubMed DOI PMC
Osicka R., Osickova A., Basar T., Guermonprez P., Rojas M., Leclerc C., Sebo P. Delivery of CD8(+) T-cell epitopes into major histocompatibility complex class I antigen presentation pathway by Bordetella pertussis adenylate cyclase: Delineation of cell invasive structures and permissive insertion sites. Infect. Immun. 2000;68:247–256. PubMed PMC
Bellalou J., Sakamoto H., Ladant D., Geoffroy C., Ullmann A. Deletions affecting hemolytic and toxin activities of Bordetella pertussis adenylate cyclase. Infect. Immun. 1990;58:3242–3247. PubMed PMC
Ladant D. Interaction of Bordetella pertussis adenylate cyclase with calmodulin. Identification of two separated calmodulin-binding domains. J. Biol. Chem. 1988;263:2612–2618. PubMed
Masin J., Osickova A., Sukova A., Fiser R., Halada P., Bumba L., Linhartova I., Osicka R., Sebo P. Negatively charged residues of the segment linking the enzyme and cytolysin moieties restrict the membrane-permeabilizing capacity of adenylate cyclase toxin. Sci. Rep. 2016;6:29137. doi: 10.1038/srep29137. PubMed DOI PMC
Zenner H.P., Lehner W., Herrmann I.F. Establishment of carcinoma cell lines from larynx and submandibular gland. Arch. Oto-Rhino-Laryngol. 1979;225:269–277. doi: 10.1007/BF00455679. PubMed DOI
Karimova G., Pidoux J., Ullmann A., Ladant D. A bacterial two-hybrid system based on a reconstituted signal transduction pathway. Proc. Natl. Acad. Sci. USA. 1998;95:5752–5756. doi: 10.1073/pnas.95.10.5752. PubMed DOI PMC
Acellular Pertussis Vaccine Inhibits Bordetella pertussis Clearance from the Nasal Mucosa of Mice
Production of Highly Active Recombinant Dermonecrotic Toxin of Bordetella Pertussis