Rapid Purification of Endotoxin-Free RTX Toxins

. 2019 Jun 12 ; 11 (6) : . [epub] 20190612

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31212877

Cytolytic leukotoxins of the repeat in toxin (RTX) family are large proteins excreted by gram-negative bacterial pathogens through the type 1 secretion system (T1SS). Due to low yields and poor stability in cultures of the original pathogens, it is useful to purify recombinant fatty-acylated RTX cytolysins from inclusion bodies produced in E. coli. Such preparations are, however, typically contaminated by high amounts of E. coli lipopolysaccharide (LPS or endotoxin). We report a simple procedure for purification of large amounts of biologically active and endotoxin-free RTX toxins. It is based on the common feature of RTX cytolysins that are T1SS-excreted as unfolded polypeptides and fold into a biologically active toxin only upon binding of calcium ions outside of the bacterial cell. Mimicking this process, the RTX proteins are solubilized from inclusion bodies with buffered 8 M urea, bound onto a suitable chromatographic medium under denaturing conditions and the contaminating LPS is removed through extensive on-column washes with buffers containing 6 to 8 M urea and 1% Triton X-100 or Triton X-114. Extensive on-column rinsing with 8 M urea buffer removes residual detergent and the eluted highly active RTX protein preparations then contain only trace amounts of LPS. The procedure is exemplified using four prototypic RTX cytolysins, the Bordetella pertussis CyaA and the hemolysins of Escherichia coli (HlyA), Kingella kingae (RtxA), and Actinobacillus pleuropneumoniae (ApxIA).

Zobrazit více v PubMed

Linhartova I., Bumba L., Masin J., Basler M., Osicka R., Kamanova J., Prochazkova K., Adkins I., Hejnova-Holubova J., Sadilkova L., et al. RTX proteins: A highly diverse family secreted by a common mechanism. FEMS Microbiol. Rev. 2010;34:1076–1112. doi: 10.1111/j.1574-6976.2010.00231.x. PubMed DOI PMC

Goodwin M.S., Weiss A.A. Adenylate cyclase toxin is critical for colonization and pertussis toxin is critical for lethal infection by Bordetella pertussis in infant mice. Infect. Immun. 1990;58:3445–3447. PubMed PMC

Khelef N., Sakamoto H., Guiso N. Both adenylate cyclase and hemolytic activities are required by Bordetella pertussis to initiate infection. Microb. Pathog. 1992;12:227–235. doi: 10.1016/0882-4010(92)90057-U. PubMed DOI

Kamanova J., Kofronova O., Masin J., Genth H., Vojtova J., Linhartova I., Benada O., Just I., Sebo P. Adenylate cyclase toxin subverts phagocyte function by RhoA inhibition and unproductive ruffling. J. Immunol. 2008;181:5587–5597. doi: 10.4049/jimmunol.181.8.5587. PubMed DOI

Novak J., Cerny O., Osickova A., Linhartova I., Masin J., Bumba L., Sebo P., Osicka R. Structure-function relationships underlying the capacity of Bordetella adenylate cyclase toxin to disarm host phagocytes. Toxins. 2017;9:300. doi: 10.3390/toxins9100300. PubMed DOI PMC

Ristow L.C., Welch R.A. Hemolysin of uropathogenic Escherichia coli: A cloak or a dagger? Biochim. ET Biophys. Acta. 2016;1858:538–545. doi: 10.1016/j.bbamem.2015.08.015. PubMed DOI

Kehl-Fie T.E., St Geme J.W., 3rd Identification and characterization of an RTX toxin in the emerging pathogen Kingella kingae. J. Bacteriol. 2007;189:430–436. doi: 10.1128/JB.01319-06. PubMed DOI PMC

Maier E., Reinhard N., Benz R., Frey J. Channel-forming activity and channel size of the RTX toxins ApxI, ApxII, and ApxIII of Actinobacillus pleuropneumoniae. Infect. Immun. 1996;64:4415–4423. PubMed PMC

Masin J., Fiser R., Linhartova I., Osicka R., Bumba L., Hewlett E.L., Benz R., Sebo P. Differences in purinergic amplification of osmotic cell lysis by the pore-forming RTX toxins Bordetella pertussis CyaA and Actinobacillus pleuropneumoniae ApxIA: The role of pore size. Infect. Immun. 2013;81:4571–4582. doi: 10.1128/IAI.00711-13. PubMed DOI PMC

Bumba L., Masin J., Macek P., Wald T., Motlova L., Bibova I., Klimova N., Bednarova L., Veverka V., Kachala M., et al. Calcium-driven folding of RTX domain beta-rolls ratchets translocation of RTX proteins through type I secretion ducts. Mol. Cell. 2016;62:47–62. doi: 10.1016/j.molcel.2016.03.018. PubMed DOI

Park B.S., Song D.H., Kim H.M., Choi B.S., Lee H., Lee J.O. The structural basis of lipopolysaccharide recognition by the TLR4-MD-2 complex. Nature. 2009;458:1191–1195. doi: 10.1038/nature07830. PubMed DOI

Guha M., Mackman N. LPS induction of gene expression in human monocytes. Cell Signal. 2001;13:85–94. doi: 10.1016/S0898-6568(00)00149-2. PubMed DOI

Bache C., Hoonakker M., Hendriksen C., Buchheit K.H., Spreitzer I., Montag T. Workshop on animal free detection of pertussis toxin in vaccines--alternatives to the histamine sensitisation test. Biol. J. Int. Assoc. Biol. Stand. 2012;40:309–311. doi: 10.1016/j.biologicals.2012.04.002. PubMed DOI

Gao B., Tsan M.F. Recombinant human heat shock protein 60 does not induce the release of tumor necrosis factor alpha from murine macrophages. J. Biol. Chem. 2003;278:22523–22529. doi: 10.1074/jbc.M303161200. PubMed DOI

Tsan M.F., Gao B. Endogenous ligands of toll-like receptors. J. Leukoc. Biol. 2004;76:514–519. doi: 10.1189/jlb.0304127. PubMed DOI

Villarino Romero R., Hasan S., Fae K., Holubova J., Geurtsen J., Schwarzer M., Wiertsema S., Osicka R., Poolman J., Sebo P. Bordetella pertussis filamentous hemagglutinin itself does not trigger anti-inflammatory interleukin-10 production by human dendritic cells. Int. J. Med. Microbiol. IJMM. 2016;306:38–47. doi: 10.1016/j.ijmm.2015.11.003. PubMed DOI

Wakelin S.J., Sabroe I., Gregory C.D., Poxton I.R., Forsythe J.L., Garden O.J., Howie S.E. “Dirty little secrets”—Endotoxin contamination of recombinant proteins. Immunol. Lett. 2006;106:1–7. doi: 10.1016/j.imlet.2006.04.007. PubMed DOI

Magalhaes P.O., Lopes A.M., Mazzola P.G., Rangel-Yagui C., Penna T.C., Pessoa A., Jr. Methods of endotoxin removal from biological preparations: A review. J. Pharm. Pharm. Sci. 2007;10:388–404. PubMed

Aida Y., Pabst M.J. Removal of endotoxin from protein solutions by phase separation using Triton X-114. J. Immunol. Methods. 1990;132:191–195. doi: 10.1016/0022-1759(90)90029-U. PubMed DOI

Cavallaro A.S., Mahony D., Commins M., Mahony T.J., Mitter N. Endotoxin-free purification for the isolation of bovine viral diarrhoea virus E2 protein from insoluble inclusion body aggregates. Microb. Cell Factories. 2011;10:57. doi: 10.1186/1475-2859-10-57. PubMed DOI PMC

Liu S., Tobias R., McClure S., Styba G., Shi Q., Jackowski G. Removal of endotoxin from recombinant protein preparations. Clin. Biochem. 1997;30:455–463. doi: 10.1016/S0009-9120(97)00049-0. PubMed DOI

Reichelt P., Schwarz C., Donzeau M. Single step protocol to purify recombinant proteins with low endotoxin contents. Protein Expr. Purif. 2006;46:483–488. doi: 10.1016/j.pep.2005.09.027. PubMed DOI

Orr B., Douce G., Baillie S., Parton R., Coote J. Adjuvant effects of adenylate cyclase toxin of Bordetella pertussis after intranasal immunisation of mice. Vaccine. 2007;25:64–71. doi: 10.1016/j.vaccine.2006.07.019. PubMed DOI

Franken K.L., Hiemstra H.S., van Meijgaarden K.E., Subronto Y., den Hartigh J., Ottenhoff T.H., Drijfhout J.W. Purification of his-tagged proteins by immobilized chelate affinity chromatography: The benefits from the use of organic solvent. Protein Expr. Purif. 2000;18:95–99. doi: 10.1006/prep.1999.1162. PubMed DOI

Mascarell L., Fayolle C., Bauche C., Ladant D., Leclerc C. Induction of neutralizing antibodies and Th1-polarized and CD4-independent CD8+ T-cell responses following delivery of human immunodeficiency virus type 1 Tat protein by recombinant adenylate cyclase of Bordetella pertussis. J. Virol. 2005;79:9872–9884. doi: 10.1128/JVI.79.15.9872-9884.2005. PubMed DOI PMC

Dunne A., Ross P.J., Pospisilova E., Masin J., Meaney A., Sutton C.E., Iwakura Y., Tschopp J., Sebo P., Mills K.H. Inflammasome activation by adenylate cyclase toxin directs Th17 responses and protection against Bordetella pertussis. J. Immunol. 2010;185:1711–1719. doi: 10.4049/jimmunol.1000105. PubMed DOI

Prior S., Corbel M.J., Xing D.K. Development of an approach for the laboratory toxicological evaluation of Bordetella pertussis adenylate cyclase genetic toxoid constructs as multipurpose vaccines. Hum. Vaccines. 2005;1:151–159. doi: 10.4161/hv.1.4.1972. PubMed DOI

Nasrin A., Hassan M., Ye P. Inhibition of notch signaling pathway using gamma-secretase inhibitor delivered by a low dose of Triton-x100 in cultured oral cancer cells. Biochem. Biophys. Res. Commun. 2018;495:2118–2124. doi: 10.1016/j.bbrc.2017.12.082. PubMed DOI

Guermonprez P., Khelef N., Blouin E., Rieu P., Ricciardi-Castagnoli P., Guiso N., Ladant D., Leclerc C. The adenylate cyclase toxin of Bordetella pertussis binds to target cells via the alpha(M)beta(2) integrin (CD11b/CD18) J. Exp. Med. 2001;193:1035–1044. doi: 10.1084/jem.193.9.1035. PubMed DOI PMC

Osicka R., Osickova A., Hasan S., Bumba L., Cerny J., Sebo P. Bordetella adenylate cyclase toxin is a unique ligand of the integrin complement receptor 3. eLife. 2015;4:e10766. doi: 10.7554/eLife.10766. PubMed DOI PMC

Osickova A., Balashova N., Masin J., Sulc M., Roderova J., Wald T., Brown A.C., Koufos E., Chang E.H., Giannakakis A., et al. Cytotoxic activity of Kingella kingae RtxA toxin depends on post-translational acylation of lysine residues and cholesterol binding. Emerg. Microbes Infect. 2018;7:178. doi: 10.1038/s41426-018-0179-x. PubMed DOI PMC

Osicka R., Osickova A., Basar T., Guermonprez P., Rojas M., Leclerc C., Sebo P. Delivery of CD8(+) T-cell epitopes into major histocompatibility complex class I antigen presentation pathway by Bordetella pertussis adenylate cyclase: Delineation of cell invasive structures and permissive insertion sites. Infect. Immun. 2000;68:247–256. PubMed PMC

Bellalou J., Sakamoto H., Ladant D., Geoffroy C., Ullmann A. Deletions affecting hemolytic and toxin activities of Bordetella pertussis adenylate cyclase. Infect. Immun. 1990;58:3242–3247. PubMed PMC

Ladant D. Interaction of Bordetella pertussis adenylate cyclase with calmodulin. Identification of two separated calmodulin-binding domains. J. Biol. Chem. 1988;263:2612–2618. PubMed

Masin J., Osickova A., Sukova A., Fiser R., Halada P., Bumba L., Linhartova I., Osicka R., Sebo P. Negatively charged residues of the segment linking the enzyme and cytolysin moieties restrict the membrane-permeabilizing capacity of adenylate cyclase toxin. Sci. Rep. 2016;6:29137. doi: 10.1038/srep29137. PubMed DOI PMC

Zenner H.P., Lehner W., Herrmann I.F. Establishment of carcinoma cell lines from larynx and submandibular gland. Arch. Oto-Rhino-Laryngol. 1979;225:269–277. doi: 10.1007/BF00455679. PubMed DOI

Karimova G., Pidoux J., Ullmann A., Ladant D. A bacterial two-hybrid system based on a reconstituted signal transduction pathway. Proc. Natl. Acad. Sci. USA. 1998;95:5752–5756. doi: 10.1073/pnas.95.10.5752. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Delivery of Mycobacterium tuberculosis epitopes by Bordetella pertussis adenylate cyclase toxoid expands HLA-E-restricted cytotoxic CD8+ T cells

. 2023 ; 14 () : 1289212. [epub] 20231201

A conserved tryptophan in the acylated segment of RTX toxins controls their β2 integrin-independent cell penetration

. 2023 Aug ; 299 (8) : 104978. [epub] 20230628

Different roles of conserved tyrosine residues of the acylated domains in folding and activity of RTX toxins

. 2021 Oct 06 ; 11 (1) : 19814. [epub] 20211006

Bordetella Adenylate Cyclase Toxin Elicits Airway Mucin Secretion through Activation of the cAMP Response Element Binding Protein

. 2021 Aug 23 ; 22 (16) : . [epub] 20210823

Almost half of the RTX domain is dispensable for complement receptor 3 binding and cell-invasive activity of the Bordetella adenylate cyclase toxin

. 2021 Jul ; 297 (1) : 100833. [epub] 20210526

Simultaneous Determination of Antibodies to Pertussis Toxin and Adenylate Cyclase Toxin Improves Serological Diagnosis of Pertussis

. 2021 Jan 27 ; 11 (2) : . [epub] 20210127

Acellular Pertussis Vaccine Inhibits Bordetella pertussis Clearance from the Nasal Mucosa of Mice

. 2020 Nov 19 ; 8 (4) : . [epub] 20201119

Production of Highly Active Recombinant Dermonecrotic Toxin of Bordetella Pertussis

. 2020 Sep 15 ; 12 (9) : . [epub] 20200915

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...