Production of Highly Active Recombinant Dermonecrotic Toxin of Bordetella Pertussis

. 2020 Sep 15 ; 12 (9) : . [epub] 20200915

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32942577

Grantová podpora
19-27630X Grantová Agentura České Republiky - International
19-12695S Grantová Agentura České Republiky - International
LM2018133 Ministerstvo školství, mládeže a tělovýchovy České republiky - International
LM2015062 Czech-BioImaging Ministerstvo školství, mládeže a tělovýchovy České republiky - International

Pathogenic Bordetella bacteria release a neurotropic dermonecrotic toxin (DNT) that is endocytosed into animal cells and permanently activates the Rho family GTPases by polyamination or deamidation of the glutamine residues in their switch II regions (e.g., Gln63 of RhoA). DNT was found to enable high level colonization of the nasal cavity of pigs by B. bronchiseptica and the capacity of DNT to inhibit differentiation of nasal turbinate bone osteoblasts causes atrophic rhinitis in infected pigs. However, it remains unknown whether DNT plays any role also in virulence of the human pathogen B. pertussis and in pathogenesis of the whooping cough disease. We report a procedure for purification of large amounts of LPS-free recombinant DNT that exhibits a high biological activity on cells expressing the DNT receptors Cav3.1 and Cav3.2. Electron microscopy and single particle image analysis of negatively stained preparations revealed that the DNT molecule adopts a V-shaped structure with well-resolved protein domains. These results open the way to structure-function studies on DNT and its interactions with airway epithelial layers.

Zobrazit více v PubMed

Mattoo S., Cherry J.D. Molecular pathogenesis, epidemiology, and clinical manifestations of respiratory infections due to Bordetella pertussis and other Bordetella subspecies. Clin. Microbiol. Rev. 2005;18:326–382. doi: 10.1128/CMR.18.2.326-382.2005. PubMed DOI PMC

Yeung K.H.T., Duclos P., Nelson E.A.S., Hutubessy R.C.W. An update of the global burden of pertussis in children younger than 5 years: A modelling study. Lancet Infect. Dis. 2017;17:974–980. doi: 10.1016/S1473-3099(17)30390-0. PubMed DOI

World Health Organization Pertussis Vaccines: Who Position Paper—September 2015. Wkly. Epidemiol. Rec. 2015;90:433–458. PubMed

Octavia S., Sintchenko V., Gilbert G.L., Lawrence A., Keil A.D., Hogg G., Lan R. Newly emerging clones of Bordetella pertussis carrying prn2 and ptxp3 alleles implicated in australian pertussis epidemic in 2008–2010. J. Infect. Dis. 2012;205:1220–1224. doi: 10.1093/infdis/jis178. PubMed DOI

Winter K., Harriman K., Zipprich J., Schechter R., Talarico J., Watt J., Chavez G. California pertussis epidemic, 2010. J. Pediatr. 2012;161:1091–1096. doi: 10.1016/j.jpeds.2012.05.041. PubMed DOI

Melvin J.A., Scheller E.V., Miller J.F., Cotter P.A. Bordetella pertussis pathogenesis: Current and future challenges. Nat. Rev. Microbiol. 2014;12:274–288. doi: 10.1038/nrmicro3235. PubMed DOI PMC

Walker K.E., Weiss A.A. Characterization of the dermonecrotic toxin in members of the genus Bordetella. Infect. Immun. 1994;62:3817–3828. doi: 10.1128/IAI.62.9.3817-3828.1994. PubMed DOI PMC

Horiguchi Y. Swine atrophic rhinitis caused by Pasteurella multocida toxin and Bordetella dermonecrotic toxin. Curr. Top. Microbiol. Immunol. 2012;361:113–129. PubMed

Horiguchi Y., Nakai T., Kume K. Purification and characterization of Bordetella bronchiseptica dermonecrotic toxin. Microb. Pathog. 1989;6:361–368. doi: 10.1016/0882-4010(89)90078-8. PubMed DOI

Magyar T., Glavits R., Pullinger G.D., Lax A.J. The pathological effect of the Bordetella dermonecrotic toxin in mice. Acta Vet. Hung. 2000;48:397–406. doi: 10.1556/004.48.2000.4.3. PubMed DOI

Brockmeier S.L., Register K.B., Magyar T., Lax A.J., Pullinger G.D., Kunkle R.A. Role of the dermonecrotic toxin of Bordetella bronchiseptica in the pathogenesis of respiratory disease in swine. Infect. Immun. 2002;70:481–490. doi: 10.1128/IAI.70.2.481-490.2002. PubMed DOI PMC

Hanada M., Shimoda K., Tomita S., Nakase Y., Nishiyama Y. Production of lesions similar to naturally occurring swine atrophic rhinitis by cell-free sonicated extract of Bordetella bronchiseptica. Jpn. J. Vet. Sci. 1979;41:1. doi: 10.1292/jvms1939.41.1. PubMed DOI

Fetter A.W., Switzer W.P., Capen C.C. Electron microscopic evaluation of bone cells in pigs with experimentally induced Bordetella rhinitis (turbinate osteoporosis) Am. J. Vet. Res. 1975;36:15–22. PubMed

Silveira D., Edington N., Smith I.M. Ultrastructural changes in the nasal turbinate bones of pigs in early infection with Bordetella bronchiseptica. Res. Vet. Sci. 1982;33:37–42. doi: 10.1016/S0034-5288(18)32356-7. PubMed DOI

Horiguchi Y., Nakai T., Kume K. Effects of Bordetella bronchiseptica dermonecrotic toxin on the structure and function of osteoblastic clone MC3T3-E1 cells. Infect. Immun. 1991;59:1112–1116. doi: 10.1128/IAI.59.3.1112-1116.1991. PubMed DOI PMC

Horiguchi Y., Okada T., Sugimoto N., Morikawa Y., Katahira J., Matsuda M. Effects of Bordetella bronchiseptica dermonecrotizing toxin on bone formation in calvaria of neonatal rats. FEMS Immunol. Med. Microbiol. 1995;12:29–32. doi: 10.1111/j.1574-695X.1995.tb00170.x. PubMed DOI

Horiguchi Y., Inoue N., Masuda M., Kashimoto T., Katahira J., Sugimoto N., Matsuda M. Bordetella bronchiseptica dermonecrotizing toxin induces reorganization of actin stress fibers through deamidation of Gln-63 of the GTP-binding protein Rho. Proc. Natl. Acad. Sci. USA. 1997;94:11623–11626. doi: 10.1073/pnas.94.21.11623. PubMed DOI PMC

Pullinger G.D., Adams T.E., Mullan P.B., Garrod T.I., Lax A.J. Cloning, expression, and molecular characterization of the dermonecrotic toxin gene of Bordetella spp. Infect. Immun. 1996;64:4163–4171. doi: 10.1128/IAI.64.10.4163-4171.1996. PubMed DOI PMC

Matsuzawa T., Kashimoto T., Katahira J., Horiguchi Y. Identification of a receptor-binding domain of Bordetella dermonecrotic toxin. Infect. Immun. 2002;70:3427–3432. doi: 10.1128/IAI.70.7.3427-3432.2002. PubMed DOI PMC

Fukui-Miyazaki A., Ohnishi S., Kamitani S., Abe H., Horiguchi Y. Bordetella dermonecrotic toxin binds to target cells via the N-terminal 30 amino acids. Microbiol. Immunol. 2011;55:154–159. doi: 10.1111/j.1348-0421.2010.00300.x. PubMed DOI

Schmidt G., Goehring U.M., Schirmer J., Lerm M., Aktories K. Identification of the C-terminal part of Bordetella dermonecrotic toxin as a transglutaminase for Rho GTPases. J. Biol. Chem. 1999;274:31875–31881. doi: 10.1074/jbc.274.45.31875. PubMed DOI

Kashimoto T., Katahira J., Cornejo W.R., Masuda M., Fukuoh A., Matsuzawa T., Ohnishi T., Horiguchi Y. Identification of functional domains of Bordetella dermonecrotizing toxin. Infect. Immun. 1999;67:3727–3732. doi: 10.1128/IAI.67.8.3727-3732.1999. PubMed DOI PMC

Matsuzawa T., Fukui A., Kashimoto T., Nagao K., Oka K., Miyake M., Horiguchi Y. Bordetella dermonecrotic toxin undergoes proteolytic processing to be translocated from a dynamin-related endosome into the cytoplasm in an acidification-independent manner. J. Biol. Chem. 2004;279:2866–2872. doi: 10.1074/jbc.M310340200. PubMed DOI

Horiguchi Y., Senda T., Sugimoto N., Katahira J., Matsuda M. Bordetella bronchiseptica dermonecrotizing toxin stimulates assembly of actin stress fibers and focal adhesions by modifying the small GTP-binding protein Rho. J. Cell Sci. 1995;108:3243–3251. PubMed

Horiguchi Y., Sugimoto N., Matsuda M. Stimulation of DNA synthesis in osteoblast-like MC3T3-E1 cells by Bordetella bronchiseptica dermonecrotic toxin. Infect. Immun. 1993;61:3611–3615. doi: 10.1128/IAI.61.9.3611-3615.1993. PubMed DOI PMC

Horiguchi Y., Sugimoto N., Matsuda M. Bordetella bronchiseptica dermonecrotizing toxin stimulates protein synthesis in an osteoblastic clone, MC3T3-E1 cells. FEMS Microbiol. Lett. 1994;120:19–22. doi: 10.1111/j.1574-6968.1994.tb07001.x. PubMed DOI

Teruya S., Hiramatsu Y., Nakamura K., Fukui-Miyazaki A., Tsukamoto K., Shinoda N., Motooka D., Nakamura S., Ishigaki K., Shinzawa N., et al. Bordetella dermonecrotic toxin is a neurotropic virulence factor that uses Cav3.1 as the cell surface receptor. mBio. 2020;11 doi: 10.1128/mBio.03146-19. PubMed DOI PMC

Endoh M., Amitani M., Nakase Y. Purification and characterization of heat-labile toxin from Bordetella bronchiseptica. Microbiol. Immunol. 1986;30:659–673. doi: 10.1111/j.1348-0421.1986.tb02992.x. PubMed DOI

Kume K., Nakai T., Samejima Y., Sugimoto C. Properties of dermonecrotic toxin prepared from sonic extracts Bordetella bronchiseptica. Infect. Immun. 1986;52:370–377. doi: 10.1128/IAI.52.2.370-377.1986. PubMed DOI PMC

Nakase Y., Endoh M. Bordetella heat-labile toxin: Further purification, characterization and mode of action. Dev. Biol. Stand. 1985;61:93–102. PubMed

Stanek O., Masin J., Osicka R., Jurnecka D., Osickova A., Sebo P. Rapid purification of endotoxin-free RTX toxins. Toxins. 2019;11:336. doi: 10.3390/toxins11060336. PubMed DOI PMC

Buetow L., Flatau G., Chiu K., Boquet P., Ghosh P. Structure of the Rho-activating domain of Escherichia coli cytotoxic necrotizing factor 1. Nat. Struct. Biol. 2001;8:584–588. doi: 10.1038/89610. PubMed DOI

Lesne E., Coutte L., Solans L., Slupek S., Debrie A.S., Dhennin V., Froguel P., Hot D., Locht C., Antoine R., et al. Distinct virulence ranges for infection of mice by Bordetella pertussis revealed by engineering of the sensor-kinase BvgS. PLoS ONE. 2018;13:e0204861. doi: 10.1371/journal.pone.0204861. PubMed DOI PMC

Warfel J.M., Beren J., Kelly V.K., Lee G., Merkel T.J. Nonhuman primate model of pertussis. Infect. Immun. 2012;80:1530–1536. doi: 10.1128/IAI.06310-11. PubMed DOI PMC

Khan F., He M., Taussig M.J. Double-hexahistidine tag with high-affinity binding for protein immobilization, purification, and detection on Ni-nitrilotriacetic acid surfaces. Anal. Chem. 2006;78:3072–3079. doi: 10.1021/ac060184l. PubMed DOI

Karttunen J., Sanderson S., Shastri N. Detection of rare antigen-presenting cells by the lacZ T-cell activation assay suggests an expression cloning strategy for T-cell antigens. Proc. Natl. Acad. Sci. USA. 1992;89:6020–6024. doi: 10.1073/pnas.89.13.6020. PubMed DOI PMC

Zhang Y., Zhang J., Jiang D., Zhang D., Qian Z., Liu C., Tao J. Inhibition of T-type Ca(2)(+) channels by endostatin attenuates human glioblastoma cell proliferation and migration. Br. J. Pharmacol. 2012;166:1247–1260. doi: 10.1111/j.1476-5381.2012.01852.x. PubMed DOI PMC

Mogal A., Abdulkadir S.A. Effects of histone deacetylase inhibitor (HDACi); trichostatin-A (TSA) on the expression of housekeeping genes. Mol. Cell. Probes. 2006;20:81–86. doi: 10.1016/j.mcp.2005.09.008. PubMed DOI

Watanabe M., Ueda T., Shibata Y., Kumamoto N., Shimada S., Ugawa S. Expression and regulation of Cav3.2 T-type calcium channels during inflammatory hyperalgesia in mouse dorsal root ganglion neurons. PLoS ONE. 2015;10:e0127572. doi: 10.1371/journal.pone.0127572. PubMed DOI PMC

De la Rosa-Trevin J.M., Oton J., Marabini R., Zaldivar A., Vargas J., Carazo J.M., Sorzano C.O. Xmipp 3.0: An improved software suite for image processing in electron microscopy. J. Struct. Biol. 2013;184:321–328. doi: 10.1016/j.jsb.2013.09.015. PubMed DOI

Scheres S.H. Relion: Implementation of a bayesian approach to cryo-EM structure determination. J. Struct. Biol. 2012;180:519–530. doi: 10.1016/j.jsb.2012.09.006. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...