Production of Highly Active Recombinant Dermonecrotic Toxin of Bordetella Pertussis
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
19-27630X
Grantová Agentura České Republiky - International
19-12695S
Grantová Agentura České Republiky - International
LM2018133
Ministerstvo školství, mládeže a tělovýchovy České republiky - International
LM2015062 Czech-BioImaging
Ministerstvo školství, mládeže a tělovýchovy České republiky - International
PubMed
32942577
PubMed Central
PMC7551409
DOI
10.3390/toxins12090596
PII: toxins12090596
Knihovny.cz E-zdroje
- Klíčová slova
- Bordetella, GTPase, deamidation, dermonecrotic toxin, electron microscopy, image analysis, negative staining, recombinant,
- MeSH
- Bordetella pertussis enzymologie genetika patogenita MeSH
- buňky 3T3 MeSH
- buňky A549 MeSH
- epitelové buňky metabolismus ultrastruktura MeSH
- faktory virulence rodu Bordetella genetika metabolismus toxicita MeSH
- kůže účinky léků patologie MeSH
- lidé MeSH
- myši inbrední BALB C MeSH
- myši MeSH
- nekróza MeSH
- novorozená zvířata MeSH
- proteinové domény MeSH
- rekombinantní proteiny metabolismus MeSH
- transglutaminasy genetika metabolismus toxicita ultrastruktura MeSH
- vápníkové kanály - typ T genetika metabolismus MeSH
- vazba proteinů MeSH
- vztahy mezi strukturou a aktivitou MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- CACNA1G protein, human MeSH Prohlížeč
- CACNA1H protein, human MeSH Prohlížeč
- dermonecrotic toxin, Bordetella MeSH Prohlížeč
- faktory virulence rodu Bordetella MeSH
- rekombinantní proteiny MeSH
- transglutaminasy MeSH
- vápníkové kanály - typ T MeSH
Pathogenic Bordetella bacteria release a neurotropic dermonecrotic toxin (DNT) that is endocytosed into animal cells and permanently activates the Rho family GTPases by polyamination or deamidation of the glutamine residues in their switch II regions (e.g., Gln63 of RhoA). DNT was found to enable high level colonization of the nasal cavity of pigs by B. bronchiseptica and the capacity of DNT to inhibit differentiation of nasal turbinate bone osteoblasts causes atrophic rhinitis in infected pigs. However, it remains unknown whether DNT plays any role also in virulence of the human pathogen B. pertussis and in pathogenesis of the whooping cough disease. We report a procedure for purification of large amounts of LPS-free recombinant DNT that exhibits a high biological activity on cells expressing the DNT receptors Cav3.1 and Cav3.2. Electron microscopy and single particle image analysis of negatively stained preparations revealed that the DNT molecule adopts a V-shaped structure with well-resolved protein domains. These results open the way to structure-function studies on DNT and its interactions with airway epithelial layers.
Zobrazit více v PubMed
Mattoo S., Cherry J.D. Molecular pathogenesis, epidemiology, and clinical manifestations of respiratory infections due to Bordetella pertussis and other Bordetella subspecies. Clin. Microbiol. Rev. 2005;18:326–382. doi: 10.1128/CMR.18.2.326-382.2005. PubMed DOI PMC
Yeung K.H.T., Duclos P., Nelson E.A.S., Hutubessy R.C.W. An update of the global burden of pertussis in children younger than 5 years: A modelling study. Lancet Infect. Dis. 2017;17:974–980. doi: 10.1016/S1473-3099(17)30390-0. PubMed DOI
World Health Organization Pertussis Vaccines: Who Position Paper—September 2015. Wkly. Epidemiol. Rec. 2015;90:433–458. PubMed
Octavia S., Sintchenko V., Gilbert G.L., Lawrence A., Keil A.D., Hogg G., Lan R. Newly emerging clones of Bordetella pertussis carrying prn2 and ptxp3 alleles implicated in australian pertussis epidemic in 2008–2010. J. Infect. Dis. 2012;205:1220–1224. doi: 10.1093/infdis/jis178. PubMed DOI
Winter K., Harriman K., Zipprich J., Schechter R., Talarico J., Watt J., Chavez G. California pertussis epidemic, 2010. J. Pediatr. 2012;161:1091–1096. doi: 10.1016/j.jpeds.2012.05.041. PubMed DOI
Melvin J.A., Scheller E.V., Miller J.F., Cotter P.A. Bordetella pertussis pathogenesis: Current and future challenges. Nat. Rev. Microbiol. 2014;12:274–288. doi: 10.1038/nrmicro3235. PubMed DOI PMC
Walker K.E., Weiss A.A. Characterization of the dermonecrotic toxin in members of the genus Bordetella. Infect. Immun. 1994;62:3817–3828. doi: 10.1128/IAI.62.9.3817-3828.1994. PubMed DOI PMC
Horiguchi Y. Swine atrophic rhinitis caused by Pasteurella multocida toxin and Bordetella dermonecrotic toxin. Curr. Top. Microbiol. Immunol. 2012;361:113–129. PubMed
Horiguchi Y., Nakai T., Kume K. Purification and characterization of Bordetella bronchiseptica dermonecrotic toxin. Microb. Pathog. 1989;6:361–368. doi: 10.1016/0882-4010(89)90078-8. PubMed DOI
Magyar T., Glavits R., Pullinger G.D., Lax A.J. The pathological effect of the Bordetella dermonecrotic toxin in mice. Acta Vet. Hung. 2000;48:397–406. doi: 10.1556/004.48.2000.4.3. PubMed DOI
Brockmeier S.L., Register K.B., Magyar T., Lax A.J., Pullinger G.D., Kunkle R.A. Role of the dermonecrotic toxin of Bordetella bronchiseptica in the pathogenesis of respiratory disease in swine. Infect. Immun. 2002;70:481–490. doi: 10.1128/IAI.70.2.481-490.2002. PubMed DOI PMC
Hanada M., Shimoda K., Tomita S., Nakase Y., Nishiyama Y. Production of lesions similar to naturally occurring swine atrophic rhinitis by cell-free sonicated extract of Bordetella bronchiseptica. Jpn. J. Vet. Sci. 1979;41:1. doi: 10.1292/jvms1939.41.1. PubMed DOI
Fetter A.W., Switzer W.P., Capen C.C. Electron microscopic evaluation of bone cells in pigs with experimentally induced Bordetella rhinitis (turbinate osteoporosis) Am. J. Vet. Res. 1975;36:15–22. PubMed
Silveira D., Edington N., Smith I.M. Ultrastructural changes in the nasal turbinate bones of pigs in early infection with Bordetella bronchiseptica. Res. Vet. Sci. 1982;33:37–42. doi: 10.1016/S0034-5288(18)32356-7. PubMed DOI
Horiguchi Y., Nakai T., Kume K. Effects of Bordetella bronchiseptica dermonecrotic toxin on the structure and function of osteoblastic clone MC3T3-E1 cells. Infect. Immun. 1991;59:1112–1116. doi: 10.1128/IAI.59.3.1112-1116.1991. PubMed DOI PMC
Horiguchi Y., Okada T., Sugimoto N., Morikawa Y., Katahira J., Matsuda M. Effects of Bordetella bronchiseptica dermonecrotizing toxin on bone formation in calvaria of neonatal rats. FEMS Immunol. Med. Microbiol. 1995;12:29–32. doi: 10.1111/j.1574-695X.1995.tb00170.x. PubMed DOI
Horiguchi Y., Inoue N., Masuda M., Kashimoto T., Katahira J., Sugimoto N., Matsuda M. Bordetella bronchiseptica dermonecrotizing toxin induces reorganization of actin stress fibers through deamidation of Gln-63 of the GTP-binding protein Rho. Proc. Natl. Acad. Sci. USA. 1997;94:11623–11626. doi: 10.1073/pnas.94.21.11623. PubMed DOI PMC
Pullinger G.D., Adams T.E., Mullan P.B., Garrod T.I., Lax A.J. Cloning, expression, and molecular characterization of the dermonecrotic toxin gene of Bordetella spp. Infect. Immun. 1996;64:4163–4171. doi: 10.1128/IAI.64.10.4163-4171.1996. PubMed DOI PMC
Matsuzawa T., Kashimoto T., Katahira J., Horiguchi Y. Identification of a receptor-binding domain of Bordetella dermonecrotic toxin. Infect. Immun. 2002;70:3427–3432. doi: 10.1128/IAI.70.7.3427-3432.2002. PubMed DOI PMC
Fukui-Miyazaki A., Ohnishi S., Kamitani S., Abe H., Horiguchi Y. Bordetella dermonecrotic toxin binds to target cells via the N-terminal 30 amino acids. Microbiol. Immunol. 2011;55:154–159. doi: 10.1111/j.1348-0421.2010.00300.x. PubMed DOI
Schmidt G., Goehring U.M., Schirmer J., Lerm M., Aktories K. Identification of the C-terminal part of Bordetella dermonecrotic toxin as a transglutaminase for Rho GTPases. J. Biol. Chem. 1999;274:31875–31881. doi: 10.1074/jbc.274.45.31875. PubMed DOI
Kashimoto T., Katahira J., Cornejo W.R., Masuda M., Fukuoh A., Matsuzawa T., Ohnishi T., Horiguchi Y. Identification of functional domains of Bordetella dermonecrotizing toxin. Infect. Immun. 1999;67:3727–3732. doi: 10.1128/IAI.67.8.3727-3732.1999. PubMed DOI PMC
Matsuzawa T., Fukui A., Kashimoto T., Nagao K., Oka K., Miyake M., Horiguchi Y. Bordetella dermonecrotic toxin undergoes proteolytic processing to be translocated from a dynamin-related endosome into the cytoplasm in an acidification-independent manner. J. Biol. Chem. 2004;279:2866–2872. doi: 10.1074/jbc.M310340200. PubMed DOI
Horiguchi Y., Senda T., Sugimoto N., Katahira J., Matsuda M. Bordetella bronchiseptica dermonecrotizing toxin stimulates assembly of actin stress fibers and focal adhesions by modifying the small GTP-binding protein Rho. J. Cell Sci. 1995;108:3243–3251. PubMed
Horiguchi Y., Sugimoto N., Matsuda M. Stimulation of DNA synthesis in osteoblast-like MC3T3-E1 cells by Bordetella bronchiseptica dermonecrotic toxin. Infect. Immun. 1993;61:3611–3615. doi: 10.1128/IAI.61.9.3611-3615.1993. PubMed DOI PMC
Horiguchi Y., Sugimoto N., Matsuda M. Bordetella bronchiseptica dermonecrotizing toxin stimulates protein synthesis in an osteoblastic clone, MC3T3-E1 cells. FEMS Microbiol. Lett. 1994;120:19–22. doi: 10.1111/j.1574-6968.1994.tb07001.x. PubMed DOI
Teruya S., Hiramatsu Y., Nakamura K., Fukui-Miyazaki A., Tsukamoto K., Shinoda N., Motooka D., Nakamura S., Ishigaki K., Shinzawa N., et al. Bordetella dermonecrotic toxin is a neurotropic virulence factor that uses Cav3.1 as the cell surface receptor. mBio. 2020;11 doi: 10.1128/mBio.03146-19. PubMed DOI PMC
Endoh M., Amitani M., Nakase Y. Purification and characterization of heat-labile toxin from Bordetella bronchiseptica. Microbiol. Immunol. 1986;30:659–673. doi: 10.1111/j.1348-0421.1986.tb02992.x. PubMed DOI
Kume K., Nakai T., Samejima Y., Sugimoto C. Properties of dermonecrotic toxin prepared from sonic extracts Bordetella bronchiseptica. Infect. Immun. 1986;52:370–377. doi: 10.1128/IAI.52.2.370-377.1986. PubMed DOI PMC
Nakase Y., Endoh M. Bordetella heat-labile toxin: Further purification, characterization and mode of action. Dev. Biol. Stand. 1985;61:93–102. PubMed
Stanek O., Masin J., Osicka R., Jurnecka D., Osickova A., Sebo P. Rapid purification of endotoxin-free RTX toxins. Toxins. 2019;11:336. doi: 10.3390/toxins11060336. PubMed DOI PMC
Buetow L., Flatau G., Chiu K., Boquet P., Ghosh P. Structure of the Rho-activating domain of Escherichia coli cytotoxic necrotizing factor 1. Nat. Struct. Biol. 2001;8:584–588. doi: 10.1038/89610. PubMed DOI
Lesne E., Coutte L., Solans L., Slupek S., Debrie A.S., Dhennin V., Froguel P., Hot D., Locht C., Antoine R., et al. Distinct virulence ranges for infection of mice by Bordetella pertussis revealed by engineering of the sensor-kinase BvgS. PLoS ONE. 2018;13:e0204861. doi: 10.1371/journal.pone.0204861. PubMed DOI PMC
Warfel J.M., Beren J., Kelly V.K., Lee G., Merkel T.J. Nonhuman primate model of pertussis. Infect. Immun. 2012;80:1530–1536. doi: 10.1128/IAI.06310-11. PubMed DOI PMC
Khan F., He M., Taussig M.J. Double-hexahistidine tag with high-affinity binding for protein immobilization, purification, and detection on Ni-nitrilotriacetic acid surfaces. Anal. Chem. 2006;78:3072–3079. doi: 10.1021/ac060184l. PubMed DOI
Karttunen J., Sanderson S., Shastri N. Detection of rare antigen-presenting cells by the lacZ T-cell activation assay suggests an expression cloning strategy for T-cell antigens. Proc. Natl. Acad. Sci. USA. 1992;89:6020–6024. doi: 10.1073/pnas.89.13.6020. PubMed DOI PMC
Zhang Y., Zhang J., Jiang D., Zhang D., Qian Z., Liu C., Tao J. Inhibition of T-type Ca(2)(+) channels by endostatin attenuates human glioblastoma cell proliferation and migration. Br. J. Pharmacol. 2012;166:1247–1260. doi: 10.1111/j.1476-5381.2012.01852.x. PubMed DOI PMC
Mogal A., Abdulkadir S.A. Effects of histone deacetylase inhibitor (HDACi); trichostatin-A (TSA) on the expression of housekeeping genes. Mol. Cell. Probes. 2006;20:81–86. doi: 10.1016/j.mcp.2005.09.008. PubMed DOI
Watanabe M., Ueda T., Shibata Y., Kumamoto N., Shimada S., Ugawa S. Expression and regulation of Cav3.2 T-type calcium channels during inflammatory hyperalgesia in mouse dorsal root ganglion neurons. PLoS ONE. 2015;10:e0127572. doi: 10.1371/journal.pone.0127572. PubMed DOI PMC
De la Rosa-Trevin J.M., Oton J., Marabini R., Zaldivar A., Vargas J., Carazo J.M., Sorzano C.O. Xmipp 3.0: An improved software suite for image processing in electron microscopy. J. Struct. Biol. 2013;184:321–328. doi: 10.1016/j.jsb.2013.09.015. PubMed DOI
Scheres S.H. Relion: Implementation of a bayesian approach to cryo-EM structure determination. J. Struct. Biol. 2012;180:519–530. doi: 10.1016/j.jsb.2012.09.006. PubMed DOI PMC