Molecular organization of recombinant human-Arabidopsis chromosomes in hybrid cell lines
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33785802
PubMed Central
PMC8009911
DOI
10.1038/s41598-021-86130-4
PII: 10.1038/s41598-021-86130-4
Knihovny.cz E-zdroje
- MeSH
- Arabidopsis MeSH
- buněčné kultury metody MeSH
- buněčné linie MeSH
- chromozomy rostlin genetika MeSH
- genová introgrese * MeSH
- hybridní buňky * MeSH
- lidé MeSH
- lidské chromozomy, pár 15 genetika MeSH
- sekvenování celého genomu MeSH
- umělé chromozomy genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Although plants and animals are evolutionarily distant, the structure and function of their chromosomes are largely conserved. This allowed the establishment of a human-Arabidopsis hybrid cell line in which a neo-chromosome was formed by insertion of segments of Arabidopsis chromosomes into human chromosome 15. We used this unique system to investigate how the introgressed part of a plant genome was maintained in human genetic background. The analysis of the neo-chromosome in 60- and 300-day-old cell cultures by next-generation sequencing and molecular cytogenetics suggested its origin by fusion of DNA fragments of different sizes from Arabidopsis chromosomes 2, 3, 4, and 5, which were randomly intermingled rather than joined end-to-end. The neo-chromosome harbored Arabidopsis centromeric repeats and terminal human telomeres. Arabidopsis centromere wasn't found to be functional. Most of the introgressed Arabidopsis DNA was eliminated during the culture, and the Arabidopsis genome in 300-day-old culture showed significant variation in copy number as compared with the copy number variation in the 60-day-old culture. Amplified Arabidopsis centromere DNA and satellite repeats were localized at particular loci and some fragments were inserted into various positions of human chromosome. Neo-chromosome reorganization and behavior in somatic cell hybrids between the plant and animal kingdoms are discussed.
Graduate School of Human Development and Environment Kobe University Kobe Hyogo 657 8501 Japan
Graduate School of Pharmaceutical Sciences Osaka University Suita Osaka 565 0871 Japan
Zobrazit více v PubMed
Elsevier SM, et al. Assignment of the gene for galactokinase to human chromosome 17 and its regional localisation to band q21–22. Nature. 1974;251:633–636. doi: 10.1038/251633a0. PubMed DOI
Boyd Y. Characterization and use of somatic cell hybrids with interspecific translocations involving the human X chromosome. Ann. Hum. Genet. 1987;51:13–26. doi: 10.1111/j.1469-1809.1987.tb00863.x. PubMed DOI
Samoilovich SR, Dugan CB, Macario AJ. Hybridoma technology: new developments of practical interest. J. Immunol. Methods. 1987;101:153–170. doi: 10.1016/0022-1759(87)90147-5. PubMed DOI PMC
Weiss MC, Green H. Human-mouse hybrid cell lines containing partial complements of human chromosomes and functioning human genes. Proc. Natl. Acad. Sci. U. S. A. 1967;58:1104–1111. doi: 10.1073/pnas.58.3.1104. PubMed DOI PMC
Tomizuka K, et al. Functional expression and germline transmission of a human chromosome fragment in chimaeric mice. Nat. Genet. 1997;16:133–143. doi: 10.1038/ng0697-133. PubMed DOI
Shinohara T, et al. Stability of transferred human chromosome fragments in cultured cells and in mice. Chromosome Res. 2000;8:713–725. doi: 10.1023/a:1026741321193. PubMed DOI
Wang DY, Kumar S, Hedges SB. Divergence time estimates for the early history of animal phyla and the origin of plants, animals and fungi. Proc. Biol. Sci. 1999;266:163–171. doi: 10.1098/rspb.1999.0617. PubMed DOI PMC
Allshire RC, et al. A fission yeast chromosome can replicate autonomously in mouse cells. Cell. 1987;50:391–403. doi: 10.1016/0092-8674(87)90493-4. PubMed DOI
McManus J, et al. Unusual chromosome structure of fission yeast DNA in mouse cells. J. Cell Sci. 1994;107(Pt 3):469–486. doi: 10.1242/jcs.107.3.469. PubMed DOI
Maximilian HFJ, et al. Large domains of heterochromatin direct the formation of short mitotic chromosome loops. eLife. 2020;9:e57212. doi: 10.7554/eLife.57212. PubMed DOI PMC
Kishida M, Muguruma T, Sakanaka K, Katsuragi T, Sakai T. Chromosomal deletion or rearrangement in chimeric hybrids of Saccharomycopsis fibuligera and Saccharomyces diastaticus obtained by cell fusion. J. Ferment. Bioeng. 1996;81:281–285. doi: 10.1016/0922-338X(96)80577-0. DOI
Dudits D, Rasko I, Hadlaczky G, Lima-de-Faria A. Fusion of human cells with carrot protoplasts induced by polyethylene glycol. Hereditas. 1976;82:121–123. doi: 10.1111/j.1601-5223.1976.tb01545.x. PubMed DOI
Ahkong QF, et al. Fusion of hen erythrocytes with yeast protoplasts induced by polyethylene glycol. Nature. 1975;255:66–67. doi: 10.1038/255066a0. PubMed DOI
Zepp HD, Conover JH, Hirschhorn K, Hodes HL. Human-mosquito somatic cell hybrids induced by ultraviolet-inactivated Sendai virus. Nat. New Biol. 1971;229:119–121. doi: 10.1038/newbio229119a0. PubMed DOI
Wada N, et al. Maintenance and function of a plant chromosome in human cells. ACS Synth. Biol. 2017;6:301–310. doi: 10.1021/acssynbio.6b00180. PubMed DOI
Weckselblatt B, Rudd MK. Human structural variation: mechanisms of chromosome rearrangements. Trends Genet. 2015;31:587–599. doi: 10.1016/j.tig.2015.05.010. PubMed DOI PMC
Rausch T, et al. DELLY: structural variant discovery by integrated paired-end and split-read analysis. Bioinformatics. 2012;28:i333–i339. doi: 10.1093/bioinformatics/bts378. PubMed DOI PMC
Smit, A. F. A., R., H. & P., G. RepeatMasker Open-4.0., http://www.repeatmasker.org/ (2013–2015).
Xie C, Tammi MT. CNV-seq, a new method to detect copy number variation using high-throughput sequencing. BMC Bioinform. 2009;10:80. doi: 10.1186/1471-2105-10-80. PubMed DOI PMC
Richards EJ, Ausubel FM. Isolation of a higher eukaryotic telomere from Arabidopsis thaliana. Cell. 1988;53:127–136. doi: 10.1016/0092-8674(88)90494-1. PubMed DOI
Croce CM. Loss of mouse chromosomes in somatic cell hybrids between HT-1080 human fibrosarcoma cells and mouse peritioneal macrophages. Proc. Natl. Acad. Sci. U. S. A. 1976;73:3248–3252. doi: 10.1073/pnas.73.9.3248. PubMed DOI PMC
Kucherlapati RS, Ruddle FH. Mammalian somatic hybrids and human gene mapping. Ann. Intern. Med. 1975;83:553–560. doi: 10.7326/0003-4819-83-4-553. PubMed DOI
Johnston SD, Zee YP, López-Fernández C, Gosálvez J. The effect of chilled storage and cryopreservation on the sperm DNA fragmentation dynamics of a captive population of koalas. J. Androl. 2012;33:1007–1015. doi: 10.2164/jandrol.111.015248. PubMed DOI
Kopeika J, Thornhill A, Khalaf Y. The effect of cryopreservation on the genome of gametes and embryos: principles of cryobiology and critical appraisal of the evidence. Hum. Reprod. Update. 2015;21:209–227. doi: 10.1093/humupd/dmu063. PubMed DOI
Meyne J, et al. Distribution of non-telomeric sites of the (TTAGGG)n telomeric sequence in vertebrate chromosomes. Chromosoma. 1990;99:3–10. doi: 10.1007/bf01737283. PubMed DOI
Reimann N, et al. Evidence that metacentric and submetacentric chromosomes in canine tumors can result from telomeric fusions. Cytogenet. Cell Genet. 1994;67:81–85. doi: 10.1159/000133804. PubMed DOI
Lee C, Sasi R, Lin CC. Interstitial localization of telomeric DNA sequences in the Indian muntjac chromosomes: further evidence for tandem chromosome fusions in the karyotypic evolution of the Asian muntjacs. Cytogenet. Cell Genet. 1993;63:156–159. doi: 10.1159/000133525. PubMed DOI
Schubert I, Schriever-Schwemmer G, Werner T, Adler ID. Telomeric signals in robertsonian fusion and fission chromosomes: implications for the origin of pseudoaneuploidy. Cytogenet. Cell Genet. 1992;59:6–9. doi: 10.1159/000133186. PubMed DOI
Schlötterer C, Tautz D. Slippage synthesis of simple sequence DNA. Nucleic Acids Res. 1992;20:211–215. doi: 10.1093/nar/20.2.211. PubMed DOI PMC
Messier W, Li SH, Stewart CB. The birth of microsatellites. Nature. 1996;381:483. doi: 10.1038/381483a0. PubMed DOI
Gascoigne KE, Cheeseman IM. Induced dicentric chromosome formation promotes genomic rearrangements and tumorigenesis. Chromosome Res. 2013;21:407–418. doi: 10.1007/s10577-013-9368-6. PubMed DOI PMC
Maciejowski J, Li Y, Bosco N, Campbell PJ, de Lange T. Chromothripsis and kataegis induced by telomere crisis. Cell. 2015;163:1641–1654. doi: 10.1016/j.cell.2015.11.054. PubMed DOI PMC
Gisselsson D, et al. Chromosomal breakage-fusion-bridge events cause genetic intratumor heterogeneity. Proc. Natl. Acad. Sci. U. S. A. 2000;97:5357–5362. doi: 10.1073/pnas.090013497. PubMed DOI PMC
MacKinnon RN, Duivenvoorden HM, Campbell LJ. Unbalanced translocations of 20q in AML and MDS often involve interstitial rather than terminal deletions of 20q. Cancer Genet. 2011;204:153–161. doi: 10.1016/j.cancergen.2010.12.001. PubMed DOI
Aravin AA, Hannon GJ, Brennecke J. The Piwi-piRNA pathway provides an adaptive defense in the transposon arms race. Science. 2007;318:761–764. doi: 10.1126/science.1146484. PubMed DOI
Kapitonov VV, Jurka J. Molecular paleontology of transposable elements from Arabidopsis thaliana. Genetica. 1999;107:27–37. doi: 10.1023/A:1004030922447. PubMed DOI
Friend KK, Dorman BP, Kucherlapati RS, Ruddle FH. Detection of interspecific translocations in mouse-human hybrids by alkaline Giemsa staining. Exp. Cell Res. 1976;99:31–36. doi: 10.1016/0014-4827(76)90676-5. PubMed DOI
Stephens PJ, et al. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell. 2011;144:27–40. doi: 10.1016/j.cell.2010.11.055. PubMed DOI PMC
Zhang CZ, et al. Chromothripsis from DNA damage in micronuclei. Nature. 2015;522:179–184. doi: 10.1038/nature14493. PubMed DOI PMC
Korbel JO, Campbell PJ. Criteria for inference of chromothripsis in cancer genomes. Cell. 2013;152:1226–1236. doi: 10.1016/j.cell.2013.02.023. PubMed DOI
Gu S, et al. Mechanisms for complex chromosomal insertions. PLoS Genet. 2016;12:e1006446. doi: 10.1371/journal.pgen.1006446. PubMed DOI PMC
Ly P, Cleveland DW. Rebuilding chromosomes after catastrophe: emerging mechanisms of chromothripsis. Trends Cell Biol. 2017;27:917–930. doi: 10.1016/j.tcb.2017.08.005. PubMed DOI PMC
Jovtchev G, Stergios M, Schubert I. A comparison of N-methyl-N-nitrosourea-induced chromatid aberrations and micronuclei in barley meristems using FISH techniques. Mutat. Res. 2002;517:47–51. doi: 10.1016/S1383-5718(02)00038-4. PubMed DOI
Miller SA, Dykes DD, Polesky HF. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988;16:1215. doi: 10.1093/nar/16.3.1215. PubMed DOI PMC
Sánchez-Martín J, et al. Rapid gene isolation in barley and wheat by mutant chromosome sequencing. Genome Biol. 2016;17:221. doi: 10.1186/s13059-016-1082-1. PubMed DOI PMC
Tarasov A, Vilella AJ, Cuppen E, Nijman IJ, Prins P. Sambamba: fast processing of NGS alignment formats. Bioinformatics. 2015;31:2032–2034. doi: 10.1093/bioinformatics/btv098. PubMed DOI PMC
Simon, A., Pierre, L., Brian, H., & Phil, E. Babraham Bioinformatics—FastQC A Quality Control tool for High Throughput Sequence Data. https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (2011).
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC
Li H, et al. The sequence alignment/Map format and SAMtools. Bioinformatics. 2009;25:2078–2079. doi: 10.1093/bioinformatics/btp352. PubMed DOI PMC
Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26:841–842. doi: 10.1093/bioinformatics/btq033. PubMed DOI PMC
Chikhi R, Rizk G. Space-efficient and exact de Bruijn graph representation based on a Bloom filter. Algorithms Mol. Biol. 2013;8:22. doi: 10.1186/1748-7188-8-22. PubMed DOI PMC
Chikhi R, Medvedev P. Informed and automated k-mer size selection for genome assembly. Bioinformatics. 2014;30:31–37. doi: 10.1093/bioinformatics/btt310. PubMed DOI
Sramkoski RM, et al. A new human prostate carcinoma cell line, 22Rv1. Vitro Cell. Dev. Biol. Anim. 1999;35:403–409. doi: 10.1007/s11626-999-0115-4. PubMed DOI
Ijdo, J. W., Wells, R. A., Baldini, A. & Reeders, S. T. Improved telomere detection using a telomere repeat probe (TTAGGG)n generated by PCR. 19, 4780 (1991). PubMed PMC
Ohmido N, Fukui K. Visual verification of close disposition between a rice A genome-specific DNA sequence (TrsA) and the telomere sequence. Plant Mol. Biol. 1997;35:963–968. doi: 10.1023/A:1005822504690. PubMed DOI