Less reactogenic whole-cell pertussis vaccine confers protection from Bordetella pertussis infection

. 2025 Apr 29 ; 10 (4) : e0063924. [epub] 20250312

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40071951

Grantová podpora
2014 Revabiotech SE
RVO61388971 Institute of Microbiology of the Czech Academy of Sciences
Programme EXCELES ID Project No. LX22NPO5103, LM2023053, CZ.02.01.01/00/22_008/0004597 Ministry of Education Youth and Sports of the Czech Republic

Pertussis resurged over the last decade in most countries that replaced the traditional whole-cell pertussis vaccines (wP) by the less reactogenic acellular pertussis vaccines (aP). The aP vaccines induce a Th2-polarized immune response and by a yet unknown mechanism hamper the clearance of Bordetella pertussis from infected nasopharyngeal mucosa. The aP-induced pertussis toxin-neutralizing antibodies effectively prevent the life-threatening pertussis pneumonia in infants, but aP-elicited immunity fails to prevent infection of nasopharyngeal mucosa and transmission of B. pertussis. In contrast, the more reactogenic traditional wP vaccines, alike natural infection, elicit a broad antibody response and trigger a Th1/Th17-polarized T cell immunity. We tackled here the reactogenicity of the conventional wP vaccines by genetic modification of the Fim2 and Fim3-producing B. pertussis strains used for wP vaccine manufacturing. Mutations were introduced into the genomes of vaccine strains (i) to reduce the TLR4 signaling potency of the lipid A of B. pertussis lipooligosaccharide (ΔlgmB), (ii) eliminate the enzymatic (immunosuppressive) activity of the pertussis toxin (PtxS1-R9K/E129G), and (iii) ablate the production of the dermonecrotic toxin (Δdnt). Experimental alum-adjuvanted wP vaccines prepared from such triply modified bacteria exhibited a reduced pyrogenicity in rabbits and a reduced systemic toxicity in mice, while conferring a comparable protection from B. pertussis infection as the unmodified wP vaccine.IMPORTANCEThe occasionally severe adverse reactions associated with some lots of the whole-cell pertussis vaccine (wP) led the industrialized nations to switch to the use of less reactogenic acellular pertussis vaccines that confer shorter-lasting protection. This yielded whooping cough resurgence and large whooping cough outbreaks are currently sweeping throughout European countries, calling for the replacement of the pertussis vaccine component of pediatric hexavaccines by an improved wP vaccine. We show that genetic detoxification of the Bordetella pertussis bacteria used for wP preparation yields a reduced reactogenicity wP vaccine that exhibits a reduced systemic toxicity in mice and reduced pyrogenicity in rabbits, while retaining high immunogenicity and protective potency in the mouse model of pneumonic infection by B. pertussis. This result has now been confirmed in a nonhuman primate model of B. pertussis infection of olive baboons, paving the way for the development of the next generation of pertussis vaccines.

Zobrazit více v PubMed

Mattoo S, Cherry JD. 2005. Molecular pathogenesis, epidemiology, and clinical manifestations of respiratory infections due to Bordetella pertussis and other Bordetella subspecies. Clin Microbiol Rev 18:326–382. doi:10.1128/CMR.18.2.326-382.2005 PubMed DOI PMC

Gordon JE, Hood RI. 1951. Whooping cough and its epidemiological anomalies. Am J Med Sci 222:333–361. doi:10.1097/00000441-195109000-00011 PubMed DOI

Kendrick PL. 1975. Can whooping cough be eradicated? J Infect Dis 132:707–712. doi:10.1093/infdis/132.6.707 PubMed DOI

Barkoff A-M, Gröndahl-Yli-Hannuksela K, He Q. 2015. Seroprevalence studies of pertussis: what have we learned from different immunized populations. Pathog Dis 73:ftv050. doi:10.1093/femspd/ftv050 PubMed DOI

Frenkel LD. 2021. The global burden of vaccine-preventable infectious diseases in children less than 5 years of age: implications for COVID-19 vaccination. How can we do better? allergy asthma proc 42:378–385. doi:10.2500/aap.2021.42.210065 PubMed DOI PMC

Macina D, Mathur S, Dvaretskaya M, Ekhtiari S, Hayat P, Montmerle M, Daluwatte C. 2023. Estimating the pertussis burden in adolescents and adults in the United States between 2007 and 2019. Hum Vaccin Immunother 19:2208514. doi:10.1080/21645515.2023.2208514 PubMed DOI PMC

Yeung KHT, Duclos P, Nelson EAS, Hutubessy RCW. 2017. An update of the global burden of pertussis in children younger than 5 years: a modelling study. Lancet Infect Dis 17:974–980. doi:10.1016/S1473-3099(17)30390-0 PubMed DOI

Baraff LJ, Cody CL, Cherry JD. 1984. DTP-associated reactions: an analysis by injection site, manufacturer, prior reactions, and dose. Pediatrics 73:31–36. doi:10.1542/peds.73.1.31 PubMed DOI

Baraff LJ, Cherry JD, Cody CL, Marcy SM, Manclark CR. 1985. DTP vaccine reactions: effect of prior reactions on rate of subsequent reactions. Dev Biol Stand 61:423–428. PubMed

Baraff LJ, Manclark CR, Cherry JD, Christenson P, Marcy SM. 1989. Analyses of adverse reactions to diphtheria and tetanus toxoids and pertussis vaccine by vaccine lot, endotoxin content, pertussis vaccine potency and percentage of mouse weight gain. Pediatr Infect Dis J 8:502–507. doi:10.1097/00006454-198908000-00006 PubMed DOI

Baraff LJ, Shields WD, Beckwith L, Strome G, Marcy SM, Cherry JD, Manclark CR. 1988. Infants and children with convulsions and hypotonic-hyporesponsive episodes following diphtheria-tetanus-pertussis immunization: follow-up evaluation. Pediatrics 81:789–794. PubMed

Cody CL, Baraff LJ, Cherry JD, Marcy SM, Manclark CR. 1981. Nature and rates of adverse reactions associated with DTP and DT immunizations in infants and children. Pediatrics 68:650–660. PubMed

Cherry JD, Baraff LJ, Hewlett E. 1989. The past, present, and future of pertussis. the role of adults in epidemiology and future control. West J Med 150:319–328. PubMed PMC

Melvin JA, Scheller EV, Miller JF, Cotter PA. 2014. Bordetella pertussis pathogenesis: current and future challenges. Nat Rev Microbiol 12:274–288. doi:10.1038/nrmicro3235 PubMed DOI PMC

Chit A, Zivaripiran H, Shin T, Lee JKH, Tomovici A, Macina D, Johnson DR, Decker MD, Wu J. 2018. Acellular pertussis vaccines effectiveness over time: a systematic review, meta-analysis and modeling study. PLoS ONE 13:e0197970. doi:10.1371/journal.pone.0197970 PubMed DOI PMC

Sheridan SL, Ware RS, Grimwood K, Lambert SB. 2012. Number and order of whole cell pertussis vaccines in infancy and disease protection. JAMA 308:454–456. doi:10.1001/jama.2012.6364 PubMed DOI

Wilkinson K, Righolt CH, Elliott LJ, Fanella S, Mahmud SM. 2021. Pertussis vaccine effectiveness and duration of protection - A systematic review and meta-analysis. Vaccine (Auckl) 39:3120–3130. doi:10.1016/j.vaccine.2021.04.032 PubMed DOI

Witt MA, Arias L, Katz PH, Truong ET, Witt DJ. 2013. Reduced risk of pertussis among persons ever vaccinated with whole cell pertussis vaccine compared to recipients of acellular pertussis vaccines in a large US cohort. Clin Infect Dis 56:1248–1254. doi:10.1093/cid/cit046 PubMed DOI

Witt MA, Katz PH, Witt DJ. 2012. Unexpectedly limited durability of immunity following acellular pertussis vaccination in preadolescents in a North American outbreak. Clin Infect Dis 54:1730–1735. doi:10.1093/cid/cis287 PubMed DOI

Warfel JM, Merkel TJ. 2014. The baboon model of pertussis: effective use and lessons for pertussis vaccines. Expert Rev Vaccines 13:1241–1252. doi:10.1586/14760584.2014.946016 PubMed DOI

Warfel JM, Zimmerman LI, Merkel TJ. 2014. Acellular pertussis vaccines protect against disease but fail to prevent infection and transmission in a nonhuman primate model. Proc Natl Acad Sci U S A 111:787–792. doi:10.1073/pnas.1314688110 PubMed DOI PMC

Mills KH, Barnard A, Watkins J, Redhead K. 1993. Cell-mediated immunity to Bordetella pertussis: role of Th1 cells in bacterial clearance in a murine respiratory infection model. Infect Immun 61:399–410. doi:10.1128/iai.61.2.399-410.1993 PubMed DOI PMC

Mills KH, Redhead K. 1993. Cellular immunity in pertussis. J Med Microbiol 39:163–164. doi:10.1099/00222615-39-3-163 PubMed DOI

Redhead K, Watkins J, Barnard A, Mills KH. 1993. Effective immunization against Bordetella pertussis respiratory infection in mice is dependent on induction of cell-mediated immunity. Infect Immun 61:3190–3198. doi:10.1128/iai.61.8.3190-3198.1993 PubMed DOI PMC

Dirix V, Mielcarek N, Debrie AS, Willery E, Alonso S, Versheure V, Mascart F, Locht C. 2014. Human dendritic cell maturation and cytokine secretion upon stimulation with Bordetella pertussis filamentous haemagglutinin. Microbes Infect 16:562–570. doi:10.1016/j.micinf.2014.04.003 PubMed DOI

Dirix V, Verscheure V, Goetghebuer T, Hainaut M, Debrie AS, Locht C, Mascart F. 2009. Monocyte-derived interleukin-10 depresses the Bordetella pertussis- specific gamma interferon response in vaccinated infants. Clin Vaccine Immunol 16:1816–1821. doi:10.1128/CVI.00314-09 PubMed DOI PMC

Dirix V, Verscheure V, Goetghebuer T, Hainaut M, Debrie AS, Locht C, Mascart F. 2009. Cytokine and antibody profiles in 1-year-old children vaccinated with either acellular or whole-cell pertussis vaccine during infancy. Vaccine (Auckl) 27:6042–6047. doi:10.1016/j.vaccine.2009.07.075 PubMed DOI

Dirix V, Verscheure V, Vermeulen F, De Schutter I, Goetghebuer T, Locht C, Mascart F. 2012. Both CD4(+) and CD8(+) lymphocytes participate in the IFN-gamma response to filamentous hemagglutinin from Bordetella pertussis in infants, children, and adults. Clin Dev Immunol 2012:795958. doi:10.1155/2012/795958 PubMed DOI PMC

Who . 2016. Pertussis vaccines: WHO position paper, August 2015—Recommendations. Vaccine (Auckl) 34:1423–1425. doi:10.1016/j.vaccine.2015.10.136 PubMed DOI

Dienstbier A, Pouchnik D, Wildung M, Amman F, Hofacker IL, Parkhill J, Holubova J, Sebo P, Vecerek B. 2018. Comparative genomics of Czech vaccine strains of Bordetella pertussis. Pathog Dis 76:fty071. doi:10.1093/femspd/fty071 PubMed DOI

Pekarek J, Rezabek K. 1959. An endocrinological test for innocuity of the pertussis vaccine. J Hyg Epidemiol Microbiol Immunol 3:79–84. PubMed

Pekarek J, Rezabek K. 1959. The investigation of different components of pertussis vaccine obtained by centrifugation. J Hyg Epidemiol Microbiol Immunol 3:67–78. PubMed

Teruya S, Hiramatsu Y, Nakamura K, Fukui-Miyazaki A, Tsukamoto K, Shinoda N, Motooka D, Nakamura S, Ishigaki K, Shinzawa N, Nishida T, Sugihara F, Maeda Y, Horiguchi Y. 2020. Bordetella dermonecrotic toxin is a neurotropic virulence factor that uses Ca(v)3.1 as the cell surface receptor. mBio 11:e03146-19. doi:10.1128/mBio.03146-19 PubMed DOI PMC

Geurtsen J, Dzieciatkowska M, Steeghs L, Hamstra H-J, Boleij J, Broen K, Akkerman G, El Hassan H, Li J, Richards JC, Tommassen J, van der Ley P. 2009. Identification of A novel lipopolysaccharide core biosynthesis gene cluster in Bordetella pertussis, and influence of core structure and lipid A glucosamine substitution on endotoxic activity. Infect Immun 77:2602–2611. doi:10.1128/IAI.00033-09 PubMed DOI PMC

Marr N, Hajjar AM, Shah NR, Novikov A, Yam CS, Caroff M, Fernandez RC. 2010. Substitution of the Bordetella pertussis lipid A phosphate groups with glucosamine is required for robust NF-kappaB activation and release of proinflammatory cytokines in cells expressing human but not murine Toll-like receptor 4-MD-2-CD14. Infect Immun 78:2060–2069. doi:10.1128/IAI.01346-09 PubMed DOI PMC

Marr N, Tirsoaga A, Blanot D, Fernandez R, Caroff M. 2008. Glucosamine found as a substituent of both phosphate groups in Bordetella lipid A backbones: role of a BvgAS-activated ArnT ortholog. J Bacteriol 190:4281–4290. doi:10.1128/JB.01875-07 PubMed DOI PMC

Nencioni L, Pizza M, Bugnoli M, De Magistris T, Di Tommaso A, Giovannoni F, Manetti R, Marsili I, Matteucci G, Nucci D. 1990. Characterization of genetically inactivated pertussis toxin mutants: candidates for a new vaccine against whooping cough. Infect Immun 58:1308–1315. doi:10.1128/iai.58.5.1308-1315.1990 PubMed DOI PMC

Pizza M, Covacci A, Bartoloni A, Perugini M, Nencioni L, De Magistris MT, Villa L, Nucci D, Manetti R, Bugnoli M. 1989. Mutants of pertussis toxin suitable for vaccine development. Science 246:497–500. doi:10.1126/science.2683073 PubMed DOI

Godfroid F, Denoël P, de Grave D, Schuerman L, Poolman J. 2004. Diphtheria-tetanus-pertussis (DTP) combination vaccines and evaluation of pertussis immune responses. Int J Med Microbiol 294:269–276. doi:10.1016/j.ijmm.2004.07.007 PubMed DOI

Queenan AM, Fernandez J, Shang W, Wiertsema S, van den Dobbelsteen GPJM, Poolman J. 2014. The mouse intranasal challenge model for potency testing of whole-cell pertussis vaccines. Expert Rev Vaccines 13:1265–1270. doi:10.1586/14760584.2014.938642 PubMed DOI

Kaaijk P, van der Ark AAJ, van Amerongen G, van den Dobbelsteen GPJM. 2013. Nonclinical vaccine safety evaluation: advantages of continuous temperature monitoring using abdominally implanted data loggers. J Appl Toxicol 33:521–526. doi:10.1002/jat.2720 PubMed DOI

van der Ark A, van Straaten-van de Kappelle I, Akkermans A, Hendriksen C, van de Donk H. 1994. Development of pertussis serological potency test. Serological assessment of antibody response induced by whole cell vaccine as an alternative to mouse protection in an intracerebral challenge model. Biologicals 22:233–242. doi:10.1006/biol.1994.1034 PubMed DOI

Warfel JM, Beren J, Kelly VK, Lee G, Merkel TJ. 2012. Nonhuman primate model of pertussis. Infect Immun 80:1530–1536. doi:10.1128/IAI.06310-11 PubMed DOI PMC

Warfel JM, Beren J, Merkel TJ. 2012. Airborne transmission of Bordetella pertussis. J Infect Dis 206:902–906. doi:10.1093/infdis/jis443 PubMed DOI PMC

Kapil P, Wang Y, Gregg K, Zimmerman L, Molano D, Maldonado Villeda J, Sebo P, Merkel TJ. 2024. A whole-cell pertussis vaccine engineered to elicit reduced reactogenicity protects baboons against pertussis challenge. mSphere 9:e00647-24. doi:10.1128/msphere.00647-24 PubMed DOI PMC

Brummelman J, Veerman RE, Hamstra HJ, Deuss AJM, Schuijt TJ, Sloots A, Kuipers B, van Els C, van der Ley P, Mooi FR, Han WGH, Pinelli E. 2015. Bordetella pertussis naturally occurring isolates with altered lipooligosaccharide structure fail to fully mature human dendritic cells. Infect Immun 83:227–238. doi:10.1128/IAI.02197-14 PubMed DOI PMC

Geurtsen J, Steeghs L, Hamstra H-J, Ten Hove J, de Haan A, Kuipers B, Tommassen J, van der Ley P. 2006. Expression of the lipopolysaccharide-modifying enzymes PagP and PagL modulates the endotoxic activity of Bordetella pertussis. Infect Immun 74:5574–5585. doi:10.1128/IAI.00834-06 PubMed DOI PMC

Geurtsen J, Vandebriel RJ, Gremmer ER, Kuipers B, Tommassen J, van der Ley P. 2007. Consequences of the expression of lipopolysaccharide-modifying enzymes for the efficacy and reactogenicity of whole-cell pertussis vaccines. Microbes Infect 9:1096–1103. doi:10.1016/j.micinf.2007.04.015 PubMed DOI

Dias WO, van der Ark AAJ, Sakauchi MA, Kubrusly FS, Prestes AFRO, Borges MM, Furuyama N, Horton DSPQ, Quintilio W, Antoniazi M, Kuipers B, van der Zeijst BAM, Raw I. 2013. An improved whole cell pertussis vaccine with reduced content of endotoxin. Hum Vaccin Immunother 9:339–348. doi:10.4161/hv.22847 PubMed DOI PMC

Zorzeto TQ, Higashi HG, da Silva MTN, Carniel E de F, Dias WO, Ramalho VD, Mazzola TN, Lima SCBS, Morcillo AM, Stephano MA, Antonio MAR de G, Zanolli M de L, Raw I, Vilela MM dos S. 2009. Immunogenicity of a whole-cell pertussis vaccine with low lipopolysaccharide content in infants. Clin Vaccine Immunol 16:544–550. doi:10.1128/CVI.00339-08 PubMed DOI PMC

Arciniega J, Wagner L, Prymula R, Sebo P, Isbrucker R, Descampe B, Chapsal JM, Costanzo A, Hendriksen C, Hoonaker M, Nelson S, Lidster K, Casey W, Allen D. 2016. Alternatives to HIST for acellular pertussis vaccines: progress and challenges in replacement. Pharmeur Bio Sci Notes 2015:82–96. PubMed PMC

Dubois V, Chatagnon J, Thiriard A, Bauderlique-Le Roy H, Debrie AS, Coutte L, Locht C. 2021. Suppression of mucosal Th17 memory responses by acellular pertussis vaccines enhances nasal Bordetella pertussis carriage. NPJ Vaccines 6:6. doi:10.1038/s41541-020-00270-8 PubMed DOI PMC

Wilk MM, Borkner L, Misiak A, Curham L, Allen AC, Mills KHG. 2019. Immunization with whole cell but not acellular pertussis vaccines primes CD4 TRM cells that sustain protective immunity against nasal colonization with Bordetella pertussis. Emerg Microbes Infect 8:169–185. doi:10.1080/22221751.2018.1564630 PubMed DOI PMC

Wilk MM, Mills KHG. 2018. CD4 T(RM) cells following infection and immunization: implications for more effective vaccine design. Front Immunol 9:1860. doi:10.3389/fimmu.2018.01860 PubMed DOI PMC

da Silva Antunes R, Babor M, Carpenter C, Khalil N, Cortese M, Mentzer AJ, Seumois G, Petro CD, Purcell LA, Vijayanand P, Crotty S, Pulendran B, Peters B, Sette A. 2018. Th1/Th17 polarization persists following whole-cell pertussis vaccination despite repeated acellular boosters. J Clin Invest 128:3853–3865. doi:10.1172/JCI121309 PubMed DOI PMC

Bancroft T, Dillon MBC, da Silva Antunes R, Paul S, Peters B, Crotty S, Lindestam Arlehamn CS, Sette A. 2016. Th1 versus Th2 T cell polarization by whole-cell and acellular childhood pertussis vaccines persists upon re-immunization in adolescence and adulthood. Cell Immunol 304–305:35–43. doi:10.1016/j.cellimm.2016.05.002 PubMed DOI PMC

Dubois V, Locht C. 2021. Mucosal immunization against pertussis: lessons from the past and perspectives. Front Immunol 12:701285. doi:10.3389/fimmu.2021.701285 PubMed DOI PMC

Misiak A, Wilk MM, Raverdeau M, Mills KHG. 2017. IL-17-producing innate and pathogen-specific tissue resident memory γδ T cells expand in the lungs of Bordetella pertussis-infected mice. J Immunol 198:363–374. doi:10.4049/jimmunol.1601024 PubMed DOI

Borkner L, Curham LM, Wilk MM, Moran B, Mills KHG. 2021. IL-17 mediates protective immunity against nasal infection with Bordetella pertussis by mobilizing neutrophils, especially Siglec-F+ neutrophils. Mucosal Immunol 14:1183–1202. doi:10.1038/s41385-021-00407-5 PubMed DOI PMC

Holubová J, Staněk O, Brázdilová L, Mašín J, Bumba L, Gorringe AR, Alexander F, Šebo P. 2020. Acellular pertussis vaccine inhibits Bordetella pertussis clearance from the nasal mucosa of mice. Vaccines (Basel) 8:695. doi:10.3390/vaccines8040695 PubMed DOI PMC

Gillard J, van Schuppen E, Diavatopoulos DA. 2019. Functional programming of innate immune cells in response to Bordetella pertussis infection and vaccination. Adv Exp Med Biol 1183:53–80. doi:10.1007/5584_2019_404 PubMed DOI

McCarthy KN, Hone S, McLoughlin RM, Mills KHG. 2024. IL-17 and IFN-γ-producing respiratory tissue resident memory CD4 T cells persist for decades in adults immunized as children with whole cell pertussis vaccines. J Infect Dis 230:e518–e523. doi:10.1093/infdis/jiae034 PubMed DOI PMC

Kapil P, Wang Y, Zimmerman L, Gaykema M, Merkel TJ. 2024. Repeated Bordetella pertussis infections are required to reprogram acellular pertussis vaccine-primed host responses in the baboon model. J Infect Dis 229:376–383. doi:10.1093/infdis/jiad332 PubMed DOI PMC

Althouse BM, Scarpino SV. 2015. Asymptomatic transmission and the resurgence of Bordetella pertussis. BMC Med 13:146. doi:10.1186/s12916-015-0382-8 PubMed DOI PMC

Domenech de Cellès M, Magpantay FMG, King AA, Rohani P. 2016. The pertussis enigma: reconciling epidemiology, immunology and evolution. Proc Biol Sci 283:20152309. doi:10.1098/rspb.2015.2309 PubMed DOI PMC

de Graaf H, Gbesemete D, Read RC. 2024. Controlled human infection with Bordetella pertussis. Curr Top Microbiol Immunol 445:155–175. doi:10.1007/82_2022_260 PubMed DOI

de Graaf H, Ibrahim M, Hill AR, Gbesemete D, Vaughan AT, Gorringe A, Preston A, Buisman AM, Faust SN, Kester KE, Berbers GAM, Diavatopoulos DA, Read RC. 2020. Controlled human infection with Bordetella pertussis induces asymptomatic, immunizing colonization. Clin Infect Dis 71:403–411. doi:10.1093/cid/ciz840 PubMed DOI PMC

Diks AM, de Graaf H, Teodosio C, Groenland RJ, de Mooij B, Ibrahim M, Hill AR, Read RC, van Dongen JJ, Berkowska MA, IMI-2 PERISCOPE Consortium . 2023. Distinct early cellular kinetics in participants protected against colonization upon Bordetella pertussis challenge. J Clin Invest 133:e163121. doi:10.1172/JCI163121 PubMed DOI PMC

Stainer DW, Scholte MJ. 1970. A simple chemically defined medium for the production of phase I Bordetella pertussis. J Gen Microbiol 63:211–220. doi:10.1099/00221287-63-2-211 PubMed DOI

Stibitz S. 1994. Use of conditionally counterselectable suicide vectors for allelic exchange. Methods Enzymol 235:458–465. doi:10.1016/0076-6879(94)35161-9 PubMed DOI

Holubova J, Stanek O, Juhasz A, Hamidou Soumana I, Makovicky P, Sebo P. 2022. The Fim and FhaB adhesins play a crucial role in nasal cavity infection and Bordetella pertussis transmission in a novel mouse catarrhal infection model. PLoS Pathog 18:e1010402. doi:10.1371/journal.ppat.1010402 PubMed DOI PMC

Kashimoto T, Katahira J, Cornejo WR, Masuda M, Fukuoh A, Matsuzawa T, Ohnishi T, Horiguchi Y. 1999. Identification of functional domains of Bordetella dermonecrotizing toxin. Infect Immun 67:3727–3732. doi:10.1128/IAI.67.8.3727-3732.1999 PubMed DOI PMC

Stanek O, Linhartova I, Holubova J, Bumba L, Gardian Z, Malandra A, Bockova B, Teruya S, Horiguchi Y, Osicka R, Sebo P. 2020. Production of highly active recombinant dermonecrotic toxin of Bordetella pertussis. Toxins (Basel) 12:596. doi:10.3390/toxins12090596 PubMed DOI PMC

van Straaten I, Levels L, van der Ark A, Thalen M, Hendriksen C. 2002. Toxicity and immunogenicity of pertussis whole cell vaccine in one animal model. Dev Biol (Basel) 111:47–55. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...