A whole-cell pertussis vaccine engineered to elicit reduced reactogenicity protects baboons against pertussis challenge
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
AAI14017-001-00002
HHS | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
Programme EXCELES ID Project No. LX22NPO5103
National Institute of Virology and Microbiology
PubMed
39441011
PubMed Central
PMC11580402
DOI
10.1128/msphere.00647-24
Knihovny.cz E-zdroje
- Klíčová slova
- baboon model, pertussis, whole cell vaccines,
- MeSH
- Bordetella pertussis imunologie MeSH
- modely nemocí na zvířatech MeSH
- Papio * imunologie MeSH
- pertuse * prevence a kontrola imunologie MeSH
- pertusová vakcína * imunologie aplikace a dávkování MeSH
- protilátky bakteriální krev MeSH
- vakcinace MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- pertusová vakcína * MeSH
- protilátky bakteriální MeSH
Whole-cell pertussis (wP) vaccines introduced in the 1940s led to a dramatic reduction of pertussis incidence and are still widely used in low- and middle-income countries (LMICs) worldwide. The reactogenicity of wP vaccines resulted in reduced public acceptance, which drove the development and introduction of acellular pertussis (aP) vaccines in high-income countries in the 1990s. Increased incidence of pertussis disease has been observed in high-income countries following the introduction of aP vaccines despite near universal rates of pediatric vaccination. These increases are attributed to the reduced protection against colonization, carriage, and transmission as well as reduced duration of immunity conferred by aP vaccines relative to the wP vaccines they replaced. A reduced reactogenicity whole-cell pertussis (RRwP) vaccine was recently developed with the goal of achieving the same protection as conferred by wP vaccination but with an improved safety profile, which may benefit countries in which wP vaccines are still in routine use. In this study, we tested the RRwP vaccine in a baboon model of pertussis infection. We found that the RRwP vaccine induced comparable cellular and humoral immune responses and comparable protection following challenge relative to the wP vaccine, while significantly reducing injection-site reactogenicity.IMPORTANCEThe World Health Organization (WHO) recommended in 2015 that countries administering wP vaccines in their national vaccine programs should continue to do so, and that switching to aP vaccines for primary infant immunization should only be considered if periodic booster vaccinations and/or maternal immunization could be assured and sustained in their national immunization schedules (WHO, Vaccine 34:1423-1425, 2016, https://doi.org/10.1016/j.vaccine.2015.10.136). Due to the considerably higher cost of aP vaccines and the larger number of doses required, most LMICs continue to use wP vaccines. The development and introduction of a wP vaccine that induces fewer adverse events without sacrificing protection would significantly benefit countries in which wP vaccines are still in routine use. The results of this study indicate this desirable goal may be achievable.
Center for Biologics Evaluation and Research FDA Bethesda Maryland USA
Institute of Microbiology of the Czech Academy of Sciences Prague Czech Republic
Zobrazit více v PubMed
Cherry JD. 1984. The epidemiology of pertussis and pertussis immunization in the United Kingdom and the United States: a comparative study. Curr Probl Pediatr 14:1–78. doi:10.1016/0045-9380(84)90016-1 PubMed DOI
Deloria MA, Blackwelder WC, Decker MD, Englund JA, Steinhoff MC, Pichichero ME, Rennels MB, Anderson EL, Edwards KM. 1995. Association of reactions after consecutive acellular or whole-cell pertussis vaccine immunizations. Pediatrics 96:592–594. PubMed
Barlow WE, Davis RL, Glasser JW, Rhodes PH, Thompson RS, Mullooly JP, Black SB, Shinefield HR, Ward JI, Marcy SM, DeStefano F, Chen RT, Immanuel V, Pearson JA, Vadheim CM, Rebolledo V, Christakis D, Benson PJ, Lewis N, Centers for Disease Control and Prevention Vaccine Safety Datalink Working Group . 2001. The risk of seizures after receipt of whole-cell pertussis or measles, mumps, and rubella vaccine. N Engl J Med 345:656–661. doi:10.1056/NEJMoa003077 PubMed DOI
Braun MM, Terracciano G, Salive ME, Blumberg DA, Vermeer-de Bondt PE, Heijbel H, Evans G, Patriarca PA, Ellenberg SS. 1998. Report of a US public health service workshop on hypotonic-hyporesponsive episode (HHE) after pertussis immunization. Pediatrics 102:E52. doi:10.1542/peds.102.5.e52 PubMed DOI
Lambert LC. 2014. Pertussis vaccine trials in the 1990s. J Infect Dis 209 Suppl 1:S4–S9. doi:10.1093/infdis/jit592 PubMed DOI PMC
Chitkara AJ, Pujadas Ferrer M, Forsyth K, Guiso N, Heininger U, Hozbor DF, Muloiwa R, Tan TQ, Thisyakorn U, Wirsing von König CH. 2020. Pertussis vaccination in mixed markets: recommendations from the global pertussis initiative. Int J Infect Dis 96:482–488. doi:10.1016/j.ijid.2020.04.081 PubMed DOI
Sage W. 2015. Pertussis vaccines: WHO position paper – August 2015. Wkly Epidemiol Rec 35:433–460. PubMed
Gustafsson L, Hallander HO, Olin P, Reizenstein E, Storsaeter J. 1996. A controlled trial of a two-component acellular, a five-component acellular, and a whole-cell pertussis vaccine. N Engl J Med 334:349–355. doi:10.1056/NEJM199602083340602 PubMed DOI
Greco D, Salmaso S, Mastrantonio P, Giuliano M, Tozzi AE, Anemona A, Ciofi degli Atti ML, Giammanco A, Panei P, Blackwelder WC, Klein DL, Wassilak SG. 1996. A controlled trial of two acellular vaccines and one whole-cell vaccine against pertussis. Progetto pertosse working group. N Engl J Med 334:341–348. doi:10.1056/NEJM199602083340601 PubMed DOI
Olin P, Rasmussen F, Gustafsson L, Hallander HO, Heijbel H. 1997. Randomised controlled trial of two-component, three-component, and five-component acellular pertussis vaccines compared with whole-cell pertussis vaccine. Ad hoc group for the study of pertussis vaccines. Lancet 350:1569–1577. doi:10.1016/s0140-6736(97)06508-2 PubMed DOI
Trollfors B, Taranger J, Lagergård T, Lind L, Sundh V, Zackrisson G, Lowe CU, Blackwelder W, Robbins JB. 1995. A placebo-controlled trial of a pertussis-toxoid vaccine. N Engl J Med 333:1045–1050. doi:10.1056/NEJM199510193331604 PubMed DOI
Berti E, Chiappini E, Orlandini E, Galli L, de Martino M. 2014. Pertussis is still common in a highly vaccinated infant population. Acta Paediatr 103:846–849. doi:10.1111/apa.12655 PubMed DOI
Clark TA. 2014. Changing pertussis epidemiology: everything old is new again. J Infect Dis 209:978–981. doi:10.1093/infdis/jiu001 PubMed DOI
Pillsbury A, Quinn HE, McIntyre PB. 2014. Australian vaccine preventable disease epidemiological review series: pertussis, 2006-2012. Commun Dis Intell Q Rep 38:E179–E194. PubMed
Marshall KS, Quinn HE, Pillsbury AJ, Maguire JE, Lucas RM, Dey A, Beard FH, Macartney KK, McIntyre PB. 2022. Australian vaccine preventable disease epidemiological review series: pertussis, 2013-2018. Commun Dis Intell (2018) 46:46. doi:10.33321/cdi.2022.46.3 PubMed DOI
Mbayei SA, Faulkner A, Miner C, Edge K, Cruz V, Peña SA, Kudish K, Coleman J, Pradhan E, Thomas S, Martin S, Skoff TH. 2019. Severe pertussis infections in the United States, 2011-2015. Clin Infect Dis 69:218–226. doi:10.1093/cid/ciy889 PubMed DOI PMC
Rohani P, Drake JM. 2011. The decline and resurgence of pertussis in the US. Epidemics 3:183–188. doi:10.1016/j.epidem.2011.10.001 PubMed DOI
Tan T, Dalby T, Forsyth K, Halperin SA, Heininger U, Hozbor D, Plotkin S, Ulloa-Gutierrez R, Wirsing von König CH. 2015. Pertussis across the globe: recent epidemiologic trends from 2000 to 2013. Pediatr Infect Dis J 34:e222–e232. doi:10.1097/INF.0000000000000795 PubMed DOI
Poltorak V, Cabré-Riera A, Martínez-Botías F, Borràs López E, Clotet Romero L, Sala Farré MR, Jané Checa M, Working Group for surveillance of pertussis in Vallès . 2024. Increase of pertussis cases in the Vallès region, Catalonia, Spain, September 2023 to April 2024. Euro Surveill 29:2400332. doi:10.2807/1560-7917.ES.2024.29.24.2400332 PubMed DOI PMC
Khalil A, Samara A, Campbell H, Ladhani SN, Amirthalingam G. 2024. Recent increase in infant pertussis cases in Europe and the critical importance of antenatal immunizations: we must do better…now. Int J Infect Dis 146:107148. doi:10.1016/j.ijid.2024.107148:107148 PubMed DOI
Mills KH, Redhead K. 1993. Cellular immunity in pertussis. J Med Microbiol 39:163–164. doi:10.1099/00222615-39-3-163 PubMed DOI
Warfel JM, Zimmerman LI, Merkel TJ. 2014. Acellular pertussis vaccines protect against disease but fail to prevent infection and transmission in a nonhuman primate model. Proc Natl Acad Sci U S A 111:787–792. doi:10.1073/pnas.1314688110 PubMed DOI PMC
Warfel JM, Merkel TJ. 2013. Bordetella pertussis infection induces a mucosal IL-17 response and long-lived Th17 and Th1 immune memory cells in nonhuman primates. Muc Immunol 6:787–796. doi:10.1038/mi.2012.117 PubMed DOI
Warfel JM, Merkel TJ. 2014. Reply to Domenech de Celles et al.: infection and transmission of pertussis in the baboon model. Proc Natl Acad Sci U S A 111:E718. doi:10.1073/pnas.1324074111 PubMed DOI PMC
Warfel JM, Zimmerman LI, Merkel TJ. 2016. Comparison of three whole-cell pertussis vaccines in the baboon model of pertussis. Clin Vaccine Immunol 23:47–54. doi:10.1128/CVI.00449-15 PubMed DOI PMC
Allen AC, Wilk MM, Misiak A, Borkner L, Murphy D, Mills KHG. 2018. Sustained protective immunity against Bordetella pertussis nasal colonization by intranasal immunization with a vaccine-adjuvant combination that induces IL-17-secreting TRM cells. Mucosal Immunol 11:1763–1776. doi:10.1038/s41385-018-0080-x PubMed DOI
Misiak A, Leuzzi R, Allen AC, Galletti B, Baudner BC, D’Oro U, O’Hagan DT, Pizza M, Seubert A, Mills KHG. 2017. Addition of a TLR7 agonist to an acellular pertussis vaccine enhances Th1 and Th17 responses and protective immunity in a mouse model. Vaccine (Auckl) 35:5256–5263. doi:10.1016/j.vaccine.2017.08.009 PubMed DOI
Ross PJ, Sutton CE, Higgins S, Allen AC, Walsh K, Misiak A, Lavelle EC, McLoughlin RM, Mills KHG. 2013. Relative contribution of Th1 and Th17 cells in adaptive immunity to Bordetella pertussis: towards the rational design of an improved acellular pertussis vaccine. PLoS Pathog 9:e1003264. doi:10.1371/journal.ppat.1003264 PubMed DOI PMC
Solans L, Debrie A-S, Borkner L, Aguiló N, Thiriard A, Coutte L, Uranga S, Trottein F, Martín C, Mills KHG, Locht C. 2018. IL-17-dependent SIgA-mediated protection against nasal Bordetella pertussis infection by live attenuated BPZE1 vaccine. Mucosal Immunol 11:1753–1762. doi:10.1038/s41385-018-0073-9 PubMed DOI
Wilk MM, Borkner L, Misiak A, Curham L, Allen AC, Mills KHG. 2019. Immunization with whole cell but not acellular pertussis vaccines primes CD4 TRM cells that sustain protective immunity against nasal colonization with Bordetella pertussis. Emerg Microbes Infect 8:169–185. doi:10.1080/22221751.2018.1564630 PubMed DOI PMC
Wilk MM, Misiak A, McManus RM, Allen AC, Lynch MA, Mills KHG. 2017. Lung CD4 tissue-resident memory T cells mediate adaptive immunity induced by previous infection of mice with Bordetella pertussis. J Immunol 199:233–243. doi:10.4049/jimmunol.1602051 PubMed DOI
McCarthy KN, Hone S, McLoughlin RM, Mills KHG. 2024. IL-17 and IFN-γ-producing respiratory tissue resident memory CD4 T cells persist for decades in adults immunized as children with whole cell pertussis vaccines. J Infect Dis:jiae034. doi:10.1093/infdis/jiae034 PubMed DOI PMC
Althouse BM, Scarpino SV. 2015. Asymptomatic transmission and the resurgence of Bordetella pertussis. BMC Med 13:146. doi:10.1186/s12916-015-0382-8 PubMed DOI PMC
Gill C, Rohani P, Thea DM. 2017. The relationship between mucosal immunity, nasopharyngeal carriage, asymptomatic transmission and the resurgence of Bordetella pertussis. F1000Res 6:1568. doi:10.12688/f1000research.11654.1 PubMed DOI PMC
Marr N, Tirsoaga A, Blanot D, Fernandez R, Caroff M. 2008. Glucosamine found as a substituent of both phosphate groups in Bordetella lipid A backbones: role of A BvgAS-activated ArnT ortholog. J Bacteriol 190:4281–4290. doi:10.1128/JB.01875-07 PubMed DOI PMC
Marr N, Hajjar AM, Shah NR, Novikov A, Yam CS, Caroff M, Fernandez RC. 2010. Substitution of the Bordetella pertussis lipid A phosphate groups with glucosamine is required for robust NF-kappaB activation and release of proinflammatory cytokines in cells expressing human but not murine Toll-like receptor 4-MD-2-CD14. Infect Immun 78:2060–2069. doi:10.1128/IAI.01346-09 PubMed DOI PMC
Geurtsen J, Dzieciatkowska M, Steeghs L, Hamstra H-J, Boleij J, Broen K, Akkerman G, El Hassan H, Li J, Richards JC, Tommassen J, van der Ley P. 2009. Identification of a novel lipopolysaccharide core biosynthesis gene cluster in Bordetella pertussis, and influence of core structure and lipid A glucosamine substitution on endotoxic activity. Infect Immun 77:2602–2611. doi:10.1128/IAI.00033-09 PubMed DOI PMC
Walker KE, Weiss AA. 1994. Characterization of the dermonecrotic toxin in members of the genus Bordetella. Infect Immun 62:3817–3828. doi:10.1128/iai.62.9.3817-3828.1994 PubMed DOI PMC
Teruya S, Hiramatsu Y, Nakamura K, Fukui-Miyazaki A, Tsukamoto K, Shinoda N, Motooka D, Nakamura S, Ishigaki K, Shinzawa N, Nishida T, Sugihara F, Maeda Y, Horiguchi Y. 2020. Bordetella dermonecrotic toxin is a neurotropic virulence factor that uses CaV3.1 as the cell surface receptor. mBio 11:e03146-19. doi:10.1128/mBio.03146-19 PubMed DOI PMC
Brown DR, Keith JM, Sato H, Sato Y. 1991. Construction and characterization of genetically inactivated pertussis toxin. Dev Biol Stand 73:63–73. PubMed
Locht C, Capiau C, Feron C. 1989. Identification of amino acid residues essential for the enzymatic activities of pertussis toxin. Proc Natl Acad Sci U S A 86:3075–3079. doi:10.1073/pnas.86.9.3075 PubMed DOI PMC
Pizza M, Covacci A, Bartoloni A, Perugini M, Nencioni L, De Magistris MT, Villa L, Nucci D, Manetti R, Bugnoli M. 1989. Mutants of pertussis toxin suitable for vaccine development. Science 246:497–500. doi:10.1126/science.2683073 PubMed DOI
Ibsen PH. 1996. The effect of formaldehyde, hydrogen peroxide and genetic detoxification of pertussis toxin on epitope recognition by murine monoclonal antibodies. Vaccine (Auckl) 14:359–368. doi:10.1016/0264-410x(95)00230-x PubMed DOI
Ausar SF, Zhu S, Duprez J, Cohen M, Bertrand T, Steier V, Wilson DJ, Li S, Sheung A, Brookes RH, Pedyczak A, Rak A, Andrew James D. 2020. Genetically detoxified pertussis toxin displays near identical structure to its wild-type and exhibits robust immunogenicity. Commun Biol 3:427. doi:10.1038/s42003-020-01153-3 PubMed DOI PMC
Munford RS. 2010. Murine responses to endotoxin: another dirty little secret? J Infect Dis 201:175–177. doi:10.1086/649558 PubMed DOI PMC
Haudek SB, Natmessnig BE, Fürst W, Bahrami S, Schlag G, Redl H. 2003. Lipopolysaccharide dose response in baboons. Shock 20:431–436. doi:10.1097/01.shk.0000090843.66556.74 PubMed DOI
Geurtsen J, Vandebriel RJ, Gremmer ER, Kuipers B, Tommassen J, van der Ley P. 2007. Consequences of the expression of lipopolysaccharide-modifying enzymes for the efficacy and reactogenicity of whole-cell pertussis vaccines. Microbes Infect 9:1096–1103. doi:10.1016/j.micinf.2007.04.015 PubMed DOI
Dias WO, van der Ark AAJ, Sakauchi MA, Kubrusly FS, Prestes AFRO, Borges MM, Furuyama N, Horton DSPQ, Quintilio W, Antoniazi M, Kuipers B, van der Zeijst BAM, Raw I. 2013. An improved whole cell pertussis vaccine with reduced content of endotoxin. Hum Vaccin Immunother 9:339–348. doi:10.4161/hv.22847 PubMed DOI PMC
Warren HS, Fitting C, Hoff E, Adib-Conquy M, Beasley-Topliffe L, Tesini B, Liang X, Valentine C, Hellman J, Hayden D, Cavaillon JM. 2010. Resilience to bacterial infection: difference between species could be due to proteins in serum. J Infect Dis 201:223–232. doi:10.1086/649557 PubMed DOI PMC
Nguyen KB, Watford WT, Salomon R, Hofmann SR, Pien GC, Morinobu A, Gadina M, O’Shea JJ, Biron CA. 2002. Critical role for STAT4 activation by type 1 interferons in the interferon-gamma response to viral infection. Science 297:2063–2066. doi:10.1126/science.1074900 PubMed DOI
Piaszyk-Borychowska A, Széles L, Csermely A, Chiang H-C, Wesoły J, Lee C-K, Nagy L, Bluyssen HAR. 2019. Signal integration of IFN-I and IFN-II with TLR4 involves sequential recruitment of STAT1-complexes and NFκB to enhance pro-inflammatory transcription. Front Immunol 10:1253. doi:10.3389/fimmu.2019.01253 PubMed DOI PMC
Taub RN, Rosett W, Adler A, Morse SI. 1972. Distribution of labeled lymph node cells in mice during the lymphocytosis induced by Bordetella pertussis. J Exp Med 136:1581–1593. doi:10.1084/jem.136.6.1581 PubMed DOI PMC
Kapil P, Papin JF, Wolf RF, Zimmerman LI, Wagner LD, Merkel TJ. 2018. Maternal vaccination with a monocomponent pertussis toxoid vaccine is sufficient to protect infants in a baboon model of whooping cough. J Infect Dis 217:1231–1236. doi:10.1093/infdis/jiy022 PubMed DOI PMC
Warfel JM, Beren J, Kelly VK, Lee G, Merkel TJ. 2012. Nonhuman primate model of pertussis. Infect Immun 80:1530–1536. doi:10.1128/IAI.06310-11 PubMed DOI PMC